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COMPARING ANALYSES OF UNBALANCED SPLIT-PLOT EXPERIMENTS 
 

Christina D. Smith  Dallas E. Johnson 
Kansas State University Kansas State University 

 
 

ABSTRACT 
Several procedures for constructing confidence intervals and testing hypotheses about fixed effects in unbalanced 
split-plot experiments have previously been presented and discussed by Remmenga and Johnson.  They 
recommended a few of the procedures they considered as useful and reliable procedures.  Since the advent of the 
SAS® MIXED procedure, mixed model analyses with REML estimates of the variance components are easily 
accessible to researchers.  This paper compares the analysis of unbalanced split-plot experiments using mixed model 
procedures with REML estimates of the variance components to the previously established procedures by means of 
additional simulation studies. 
 
Keywords: unbalanced, split-plots, mixed models, variance components, REML 
 
 
1.  INTRODUCTION 
 
 This paper discusses four methods for constructing confidence intervals and hypothesis 
tests about fixed effects for unbalanced split-plot experiments.  It considers three methods 
recommended by Remmenga and Johnson (1995) and one additional method.  All of the 
procedures discussed can be applied to repeated measures experiments when the variance-
covariance matrix satisfies the Huynh-Feldt (1970) conditions. 
 Consider a split-plot experiment with two treatments a and b where a is the whole plot 
treatment and b is the subplot treatment.  When the whole plot treatments are randomly assigned 
to the whole plot experimental units, a model for such an experiment is 
  

ijkjikiijk εαββδαµy +++++= ij)( )(  
 

for i = 1, 2, ..., a,  j = 1, 2, …, b and k = 1, 2, …, ni, where µ is an overall mean, αi is the ith 
whole plot treatment effect, δk(i) ~N(0, σδ 

2) is the whole plot error, βj is the jth subplot treatment 
effect, (αβ)ij is the interaction between the ith whole plot treatment, the jth subplot treatment, and 
εijk ~N(0,σε 

2) is the subplot error.  Also, note that, k(i) identifies each subject within a whole plot 
unit and ni is the number of whole plot experimental units assigned to each of the whole plot 
treatments, i = 1, 2, …, a.  In addition all of the δk(i)’s and the εijk’s are assumed to be 
independent. 
 This model can also be expressed as a mixed model that has the form  
 

εδZβXy ++=  
 

where δ  ~ Nn(0,σδ 2 I) and  ~ Nε N(0, σε 2 I), σδ 2 and σε 2 are not known and  and  are 
distributed independently of each other.  In addition, X is a known 

δ ε
pN ×  design matrix 
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corresponding to the fixed effects, Z is a known nN ×  design matrix corresponding to the 
random effects, where , and N is the total number of observations and β  is a ∑ =

=
a

i inn  

1 
1×p  

vector of unknown parameters where p = (a + 1)(b + 1) is the total number of fixed effects 
parameters. 

Now, when an experiment is unbalanced in the subplots, the ni’s may not be equal and yijk 
may not be observed for every j within each possible i and k combination.  This paper assumes 
that at least one yijk is observed for every i = 1, 2, …, a and k = 1, 2, …, ni, that is, there is at least 
one observation for every experimental unit assigned to a whole plot treatment.  It is also 
assumed that ij)(αββαµ +++ ji  is estimable for every i and j.  That is, ij)(αββαµ +++ i j ,    
i = 1, 2, ..., a, and  j = 1, 2, …, b is a basis set of estimable functions of the parameters, 

ab1111 )(..., ,)( , ..., , ,..., , , αβαβββααµ ba .  Thus confidence intervals and hypothesis tests about 
linear combinations of the elements in the basis set can be constructed.  It might also be noted 
that ij)(αββαµ +++ ji  is estimable if there is at least one observed yijk for each (i, j) 
combination. 
 
 
2.  PROCEDURES 

 
 The procedures discussed by Remmenga and Johnson (1995) considered fourteen 
procedures for the analyses of fixed effects for unbalanced split-plot experiments.  They 
recommended three of the procedures that they considered, two of which initially treated the 
random effects as fixed.  The third procedure recommended by Remmenga and Johnson (1995) 
is a mixed model procedure with uses method of moments estimates for the variance 
components.  The purpose of this paper is to compare the procedure used by PROC MIXED in 
SAS® Version 8.2 with its METHOD=REML default to the procedures recommended by 
Remmenga and Johnson (1995).  All of the procedures considered in this paper are for 
constructing confidence intervals and hypothesis tests about βl ′  which is assumed to be an 
estimable linear combination of the elements in the vector .  The primary complication in 
accomplishing this task is that σ

β
δ 2 and σε 2 are not known and must be estimated.  Each of the 

four methods deal with different ways to estimate σδ 2 and σε 2. 
 
2.1 PROCEDURE 1 – Milliken and Johnson 
 The first procedure recommended by Remmenga and Johnson was originally proposed by 
Milliken and Johnson (1984).  The model εδZβXy ++=  can be written as εβXy += **  

where X* = [X Z],  and ε  ~ N⎥
⎦

⎤
⎢
⎣

⎡
=

δ
β

β* N(0, σε 2 I).  Then one solution to the normal equations, 

, is β̂ , where  is the Moore-Penrose generalized inverse yXβXX **** ′=′ yX
δ

β −=
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
= *ˆ

ˆ
* −*X
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of .  If l is in the column space of  and b is chosen so that  is in the column space of 

, then 

*X X ⎥
⎦

⎤
⎢
⎣

⎡
b
l

*′X
′

⎥
⎦

⎤
⎢
⎣

⎡
b
l

*β̂  = δbβ ˆˆ ′+′l  

 
is an unbiased estimator of .  The elements in b are usually chosen so that they treat the βl ′ )(ikδ  

equally for every k within each i.  That is, in the vector  each of the δb ˆ′ )1(kδ  receive equal 
weights, while each of the )2(kδ  receive equal weights, and so on.   

The variance of δbβ ˆˆ ′+′l  is given by  
 

)(]ˆˆvar[ 2222
δεδε σ

u
wσuwσuσ +=+=′+′ δbβl  

 
 where  

[ ] ⎥
⎦

⎤
⎢
⎣

⎡
⎥
⎦

⎤
⎢
⎣

⎡
′
′

′
′

⎥
⎦

⎤
⎢
⎣

⎡
=⎥

⎦

⎤
⎢
⎣

⎡′′
′

⎥
⎦

⎤
⎢
⎣

⎡
=

−
−−−

bZ
X

ZZZX
bb

XZZX
b

llll
**w  

and  

[ ] ⎥
⎦

⎤
⎢
⎣

⎡
⎥
⎦

⎤
⎢
⎣

⎡
′
′′

⎥
⎦

⎤
⎢
⎣

⎡
=⎥

⎦

⎤
⎢
⎣

⎡′
′

⎥
⎦

⎤
⎢
⎣

⎡
= −−−

bZ
X

ZX
bb

XX
b

llll
**u . 

 
As previously noted σδ 2 and σε

2 are not known and must be estimated in order to estimate the 
variance of δbβ ˆˆ ′+′l .  Let  be the whole plot error mean square with degrees of freedom 
and expected value  where  

2
1s 1ν

22
δε σσ q+

 

an
q

−
′−

=
−− ])**[(Tr ZZXXXX  

 
and let  be the subplot error mean square with  degrees of freedom and expectation σ2

2s 2ν ε 2.  

Then method of moments estimators of σδ 2 and σε
2 are  and 2

2
2ˆ s=εσ q

ss 2
2

2
12ˆ −

=δσ .  An unbiased 

estimate of ]var[ δbβ ˆˆ ′+′l  is  
 

})s({1)ˆˆ(]ˆˆr[âv 2
2

2
1

22 wuqws
qu

wu −+=+=′+′ δε σσδbβl . 
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Note that when  is greater than ,  could be negative.  For such occurrences, Remmenga 

and Johnson recommended replacing  with zero so that .   

2
2s 2

1s 2ˆ δσ
2ˆ δσ

2
2

2ˆ]ˆˆr[âv usu ==′+′ δσδbβl

 Now, 2

*
 ~ 

]ˆˆvar[
]ˆˆr[â*)v(

ν

ν χ
δbβ
δbβ

′+′
′+′

l
l , where  is estimated using the Satterthwaite 

procedure.  That is, the estimate of  is 

*ν

*ν
 

2

22
2

1

22
1

22
2

2
1

])([][
])s([

*ˆ

ν
swuq

ν
ws

wuqws
ν

−
+

−+
=  

if  and  2
2

2
1 ss >

2*ˆ νν =  
if .   2

2
2
1 ss ≤

Thus an approximate (1 – α)100% confidence interval about βl ′  is  
 

]r[av2 δbβδbβ ˆˆˆˆˆ
*ν̂,/αt ′+′±′+′ ll  
 

and the test statistic to test  = 0 is β̂l ′  
]var[ δbβ

δbβ
ˆˆ

ˆˆ
t

′+′

′+′
=

l

l .  The degrees of freedom associated 

with this approximate t statistic are estimated by the Satterthwaite method as . *ν̂
 
2.2 PROCEDURE 2 – Minimal Sufficient Statistics 
 Remmenga and Johnson point out that for Procedure 1 the distribution of  may not 
always be proportional to a chi-square distribution and may not be distributed independently of 

.  Consequently, they considered using a procedure described by Hultquist and Atzinger 

(1972) to obtain a set of mutually independent unbiased minimal sufficient statistics for an 
unbalanced split-plot design using a nonsingular transformation of the observation vector, y.  
The procedure is rather cumbersome and will not be described here, however, it was one of the 
three procedures they recommended.  See Remmenga and Johnson for details. 

2
1s

′

⎥
⎦

⎤
⎢
⎣

⎡
b
l

*β̂

 
2.3 PROCEDURE 3 – Mixed Models with Method of Moments Estimators 
 The third procedure recommended by Remmenga and Johnson is a mixed model method 
that uses method of moments estimators of σε 2 and σδ 2.  First, note that the model can be written 
as  where ε  ~ NεβXy += N(0, ).  When  Σ
 

Σ  = σε 2I + ZZ ′)cov(δ = σε 2I + ( )ZIZ ′2
δσ = σε 2I +σδ 2  ZZ ′
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is known, the normal equations are  and a solution is given by 

.  Then the UMVU estimator of 
yΣXβXΣX 11 ][ −− ′=′

yΣXXΣXβ 11 ][ˆ −−− ′′= βl ′  is  and .  
As before, σ

β̂l ′ lll −−′′=′ ][)ˆvar( 1XΣXβ
ε 2 and σδ 2 are unknown and must be estimated.  The method of moments estimators 

of σε 2 and σδ 2 are  and 2
2

2ˆ s=εσ q
ss 2

2
2
12ˆ −

=δσ , respectively, where , , and q are as given in 

Procedure 1.  The variance-covariance matrix Σ is estimated by 

2
1s 2

2s

ZZIΣ ′⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −
+=

q
ss

s
2
2

2
12

2
ˆ  if 

 and by  if .  Then 2
2

2
1 ss > IΣ 2

2
ˆ s= 2

2
2
1 ss ≤ βl ′  is estimated by  where 

 and the variance of  is estimated by 

. 

MOMβ̂l ′

yΣXXΣXβ 11 ˆ]ˆ[ˆ −−− ′′=MOM MOMβ̂l ′

lll −−′′=′ ]ˆ[)ˆr(âv 1XΣXβMOM

 Now, 
)ˆr(âv

ˆ

MOM

MOM

β

ββ

l

ll

′

′−′
 is often approximated by a standard normal distribution, but this 

cannot be recommended for small sample sizes (Remmenga and Johnson, 1995).  Remmenga 

and Johnson follow a recommendation by McLean and Sanders (1988) that 
)ˆr(âv

ˆ

MOM

MOM

β

ββ

l

ll

′

′−′
 be 

approximated by a student’s t distribution with  degrees of freedom, the same degrees of 
freedom given for Procedure 1.  Then an approximate (1 – α)100% confidence interval about 

*ν̂
βl ′  

is ]ˆr[âvˆ
*ˆ,/ MOMMOM t ββ 2 ll ′±′ να . 

 
2.4 PROCEDURE 4 – Mixed Models with REML Estimators 
 Procedure 4 is also a mixed model procedure except that σδ 2 and σε 2 are estimated by the 
restricted maximum likelihood (REML) approach.  The model is still  
y = Xβ  + Zδ  + ε  where ~ Nδ n(0,σδ 2 I) and ε ~ NN(0, σε 2 I), and that  and  are distributed 
independently of each other.  Again σ

δ ε
δ 2 and σε 2 are not known so they need to be estimated.   

 Now X is a known  matrix of rank k.  Let L be a pN × Nkn ×− )(  matrix of rank n – k 
such that LX = 0.  Let y* = Ly = LZδ + Lε.  Note that y* ~ Nn-k(0, V) where  

LLLZLZV ′+′′= 22 εδ σσ .  The REML estimates of σε 2 and σδ 2 are the respective values of σε 2 
and σδ 2 that maximize the likelihood function  
 

( )
( )

⎭
⎬
⎫

⎩
⎨
⎧

′+′′
= ′+′′′

− *1*
2

1- 22

2
kn

22
2
k-n

22 exp
2π

1)*;,L( yLLLZLZy
LLLZLZ

y -σ εδ

εδ

δε σσ
σσ

σ  . 
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Then  is estimated by  where  and 
.  The variance of  is often simply estimated by 

.  However, Kenward and Roger (1997) give a different 
approximation since the expression above underestimates the true variance of  as shown 
by Kackar and Harville (1984).  The simulations discussed in the next section use Kenward and 
Roger’s recommendations. 

βl ′ REMLβ̂l ′ yVXXVXβ 11 ˆ]ˆ[ˆ −−− ′′=REML

LLLZLZV ′+′′= 22 ˆˆ ˆ
εδ σσ REMLβ̂l ′

lll −−′′=′ ]ˆ[)ˆr(âv 1XVXβ REML

REMLβ̂l ′

 
 
3.  SIMULATION STUDY 
 
 A set of simulations was conducted so that comparisons between the four different 
procedures could be made.  Remmenga (1992) conducted simulations for the three procedures 
recommended by Remmenga and Johnson as well as for several other procedures.  However, she 
did no simulations using REML estimates of the variance components.    Her results are 
combined with the results of an additional set of simulations in order to make comparisons 
between the previously recommended procedures and the mixed model procedure using REML 
estimates of the variance components.   

The general model for all of the simulations is ijkikijijky εδµ ++= )(  where 

ijjiij )(αββαµµ +++=  for i = 1, 2, . . .,a , j = 1, 2, …, b and k = 1, 2, …ni.  The values for 

)(ikδ  and ijkε  were randomly generated from independent normal distributions with means equal 
to zero and variances σδ 2 and σε 2, respectively.  This paper considers the unbalanced split-plot 
where the variance of the whole plot varies relative to the variance of the subplot, as was done by 
Remmenga and Johnson.  Thus, without loss of generality, σε 2 is set equal to one and σδ 2 is 

allowed to take on the values 8 and ,4 ,2 ,1 ,
2

1
 ,

4

1
 ,

8

1 .  In addition, the s'ijµ  can be set equal to zero 

without any loss of generality.  One thousand data sets were generated for each σδ 2 for each of 
the experimental designs considered, as was done by Remmenga and Johnson. 
 It is important to note that sometimes the method of moments estimate for σδ 2, used in 
Procedures 1 and 3, is negative which is not useful in practice.  The strategy recommended by 
Remmenga and Johnson is to replace the estimate of σδ 2 with zero.  For Procedure 2, where 
minimal sufficient statistics were used instead of the usual sum of squares, Remmenga and 
Johnson recommended a similar approach where the estimate of σδ 2 would otherwise be 
negative.  The REML estimates of σε 2 and σδ 2 used in Procedure 4 will always be non-negative.  
The simulations for this procedure used the SAS® MIXED procedure with the ddfm = kr option 
in the model statement. 
 
3.1 SMALL SAMPLE SIMULATION 
 The design for the first set of simulations was taken from Example 28.2 of Milliken and 
Johnson (1994).  The model is given by ijkikijijky εδµ ++= )(  for i = 1, 2, j = 1, 2, and  
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k(1) = 1, 2 and k(2) = 3, 4, 5 where δk(i) ~N(0, σδ 
2) and εijk ~N(0,σε 

2) and are distributed 
independently.  The design for this two-way treatment structure is shown in Table 1, where “x” 
represents known data and “-” represents missing data.  The model can be described with matrix 
notation as , that is,  εZδXβy ++=
   

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤
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⎢
⎢
⎢
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⎢

⎣
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+
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⎥

⎦
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⎣

⎡
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⎥

⎦

⎤
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⎢
⎢
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⎢

⎣

⎡

+
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⎥
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⎥

⎦

⎤

⎢
⎢
⎢
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⎣

⎡

⋅

⎥
⎥
⎥
⎥
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⎥
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⎥

⎦

⎤
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⎢
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⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡
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215
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)2(5

)2(4
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)1(2

)1(1

22
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01000
00100
00100
00010
00001
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y
y
y
y
y
y
y
y

ε
ε
ε
ε
ε
ε
ε
ε

δ
δ
δ
δ
δ

µ
µ
µ
µ

.   

 
As noted previously the simulations took all 0=ijµ  without loss of generality. 

The estimable parameter functions listed in Table 2 were chosen by Remmenga and 
Johnson because they are the functions (i.e. contrasts) whose estimates are affected by the 
missing observations.  Confidence intervals were constructed using an alpha value of 0.05 and 
the average confidence interval widths were computed for each of the eight parameter functions.  
Also, the observed significance levels for testing βl ′  = 0 were recorded for each function. 
 Table 2 also lists the variance associated with the estimate of each parameter function 
using Method 1.  Consider, for example, the parameter function ⋅⋅ − 21 µµ .  That is, let 

⎥⎦
⎤

⎢⎣
⎡ −−=′

2
1

2
1

2
1

2
1l .  Recall that for Procedure 1 the elements in b are chosen so that it 

treats the )(ikδ  equally for every k within each i.  That is, in the vector  each of δb ˆ′ )1(1δ  and )1(2δ  
receive equal weights of 1/2 while )2(3δ , )2(4δ , and )2(5δ  receive equal weights of 1/3.  Thus, to 

estimate ⋅⋅ − 21 µµ , one can take ⎥⎦
⎤

⎢⎣
⎡ −−−=′

3
1

3
1

3
1

2
1

2
1b .  Then 

3

ˆˆˆ

2

ˆˆ

2
ˆˆ

2
ˆˆˆˆ

ˆ
ˆ 5(2)4(2)3(2)2(1)1(1)22211211 δδδδδµµµµ ++

−
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+
+

−
+

=′+′=⎥
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⎤
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⎡′

⎥
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⎤
⎢
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⎡
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δ
β

b
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6
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⎤
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⎣

⎡′′
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⎥
⎦

⎤
⎢
⎣
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b
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w ,  
4
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⎢
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b
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u .  Thus, the variance of 

δbβ ˆˆ ′+′l  is )
9

10(
4
3

6
5

4
3]ˆˆvar[ 2222

δεδε σσσσ +=+=′+′ δbβl .  
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Table 1 Design for Small Sample Experiment   
     
   Week   
 Subject Drug 1 2 
 1 1 X x 
 2 1 x - 
 3 2 x x 
 4 2 x - 
 5 2 x x 

 
 

Table 2   Parameter functions and the variances of their estimates  
for the Small Sample Experiment 

__________________________________________________________ 

l’β    )(]ˆˆvar[ 22
δε σσ

u
wu +=′+′ δbβl  

__________________________________________________________ 

12µ     3/2(σε 2 + 1/3σδ 2)  

22µ     2/3(σε 2 + 1/2σδ 2) 

2212 µµ −     3/6(σε 2 + 5/13σδ 2) 

2⋅µ      13/24(σε 2 + 5/13σδ 2) 

⋅2µ      1/4(σε 2 + 4/3σδ 2) 

⋅⋅ − 21 µµ     3/4(σε 2 + 10/9σδ 2) 

21 ⋅⋅ − µµ     3/4(σε 2) 

22211211 µµµµ +−−   3(σε 2) 
 

 The results of the simulations for computing confidence intervals for 2212 µµ −  are 
shown in Figure 1.  The abscissa has the values .  The observed confidence levels and 
confidence interval widths are both plotted where the ordinates on the left give the observed 
confidence interval widths and the ordinates on the right give the observed confidence levels.     

)(log 2
2 δσ

First, note that all of the procedures show acceptable confidence levels with confidence 
levels varying between 92.3% and 98.5% for all estimable functions considered in the small 
sample simulations and between 94.3% and 95.7% for the function 2212 µµ − .  Notice that for 
the small sample simulations the MSS method seems to give the highest confidence levels.  
However, the confidence interval widths are extremely large which is not useful.  The REML 
estimates seem to give the lowest confidence levels and the lowest confidence interval widths.  
Procedures 1 and 3 are in between these two procedures.  Similar results are obtained for each of 
the other functions for the fixed effect parameters that were considered and for the significance 
levels for testing  = 0.  See Smith (2003) for additional details. βl ′
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Figure 1  Plot of 2212 µµ −  from the Small Sample Simulations  

 
 
 

3.2 LARGE SAMPLE SIMULATION 
 The design for this simulation was motivated by Example 28.1 of Milliken and Johnson 
(1994).  The model is given by ijkikijijky εδµ ++= )(  for i = 1, 2, 3,  j = 1, 2, 3, 4 and k(1) = 1, 2, 
3, k(2) = 4, 5, 6, 7, 8 and k(3) = 9, 10, 11, 12.  Again, without loss of generality, let 0=ijµ  for all 

ji ≠ .  The example from Milliken and Johnson only has missing whole plot treatments.  This 
paper considers, as did Remmenga and Johnson, this experiment and three other designs based 
on this experiment where subplot observations are also missing.  The second design was formed 
by randomly removing approximately 10% of the observations from the original design, the third 
by randomly removing another 10% of the observations. The fourth design has approximately 
30% of the observations removed from the original design.  All of the designs for these two-way 
experiments are shown in Table 3, as they were first described by Remmenga and Johnson.  

Table 4 lists the twelve estimable parameter functions that were considered by 
Remmenga and Johnson.  These functions were selected because they are functions whose 
estimates are most likely to be affected by the unbalanced designs.  An additional parameter 
function comparing two whole plot treatment main effect means was also included.  Remmenga 
and Johnson listed the values for q, u, and v but they are not be reprinted here.  Confidence 
intervals were constructed using an alpha value of 0.05 and the average confidence interval 
widths were computed for each of twelve parameter functions.  Also, the observed significance 
levels for testing  were recorded for each function. 0=′βl
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Table 3    Diagram of experimental designs used in the large sample 

   simulations. 
 

Experimental Whole plot     Subplot treatment   
unit treatment 1 2 3 4 
1 A iii X X X 

2 A X iii X i 

3 A ii X i X 

4 B X ii X X 

5 B X X X X 

6 B X X iii X 

7 B iii X X X 

8 B i ii X X 
9 C X X X X 
10 C X ii X X 
11 C i X ii X 
12 C X X X X 

   i   -   Removed from Design 1 to create Design 2.   
  ii   -   Removed from Design 2 to create Design 3.  

 iii   -   Removed from Design 3 to create Design 4.  
 

 
Table 4   Parameter functions for the Large Sample Simulations  

11µ   ⋅ 2µ     3313 µµ −  

21µ   21 ⋅⋅ − µµ   3414 µµ −  

31µ   2111 µµ −   1411 µµ −  

2212 µµ −   2212 µµ −   ⋅⋅ − 21 µµ    (additional function) 
 

 Figures 2 and 3 contain the simulation results for confidence intervals for 2111 µµ −  for 
the large sample simulations of designs 1 and 4, respectively.  The abscissa again has the values 

.  The observed confidence levels and confidence interval widths are both plotted on 
the same graphs where the left ordinates correspond to the observed confidence interval widths 
and the right ordinates correspond to the observed confidence levels.  

)(log 2
2 δσ

 First, note that all of the procedures show acceptable confidence interval widths and 
confidence levels with observed confidence levels varying between 92.0% and 99.2% for all 
estimable functions considered in the large sample simulations.  For Design 1 the confidences 
levels for 2111 µµ −  are between 93.3% and 95.7% and between 93.9% and 95.6% for Design 4.   
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Figure 2  Plot of 2111 µµ −  from the Large Sample Simulations of Design 1 

 
 
 
Figure 3  Plot of 2111 µµ −  from the Large Sample Simulations of Design 4 
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In Design 1 the three procedures recommended by Remmenga and Johnson behave exactly the 
same and the REML procedure behaves only slightly different.  All four procedures have the 
same confidence interval width for Design 1.  Confidence levels and confidence interval widths 
are acceptable for all four procedures in Design 4.  No procedure seems to always have the  
highest confidence level.  However, the minimal sufficient statistics do seem to have larger 
confidence interval widths for Design 4.  Similar results were observed for each of the other 
functions of the fixed effect parameters that were considered for the significance levels for 
testing  = 0.  See Smith (2003) for additional details.  βl ′
 It should also be noted that, the REML estimate of σδ 2 is equal to zero whenever the 
method of moments estimate of σδ 2 is negative.  Remmenga and Johnson (1995, Table 5) 

reported that negative method of moment estimates were rarely encountered as long as 12

2

≥
ε

δ

σ
σ

.  

When 
2
1

2

2

=
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δ

σ
σ

, the probability of negative method of moment estimates ranged from 0.040 to 

0.123 for the four designs considered.  When 
4
1

2

2

=
ε

δ

σ
σ

, the probabilities ranged from 0.114 to 

0.237, and when 
8
1

2

2

=
ε

δ

σ
σ

, the probabilities ranged from 0.040 to 0.123 

 
 
4.  CONCLUSIONS 
 
 Four procedures for constructing confidence intervals and testing hypotheses about fixed 
effects in unbalanced split-plot experiments have been presented and discussed.  First, it should 
be noted that the three procedures recommended by Remmenga and Johnson were recommended 
because they behaved well.  That is they had acceptable confidence levels for nearly all values of 
σδ 2, with observed confidence levels greater than 93% for Procedures 1 and 3 and greater than 
92% for Procedure 2.  They also have reasonable confidence interval widths and test sizes for 
hypothesis tests of .  Remmenga and Johnson observed that as the number of missing 
observations increased, the variation of the confidence levels given by Procedure 3 increases.  
Procedure 4 performs as well as the three procedures recommended by Remmenga and Johnson.  
It gave acceptable confidence levels, nearly all being above 93%, and reasonable confidence 
interval widths and hypothesis test sizes.  

0=′βl

For the small data sets, Procedure 2 generally has the highest confidence level but the 
confidence interval width is also quite large.  Procedure 4 has the smallest confidence level and 
the smallest confidence interval width.  Procedure 4 tends to have the largest test size and 
Procedure 2 tends to have the smallest test size for the small data set (Smith, 2003).  Procedures 
1 and 3 behave similarly to one another and reasonably for confidence level, confidence interval 
width and hypothesis test size. 

When the larger data sets were considered all four procedures were nearly 
indistinguishable for confidence level, confidence interval width and hypothesis test size where 
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there was little missing data.  As the amount of missing data increases the behavior of all four 
procedures becomes more varied.  Procedure 4 seems to be less erratic than the other three 
procedures but never has consistently higher or lower confidence levels.  However, Procedure 4 
does tend to have the smallest confidence interval widths.   

In general, for designs 1-4 all four procedures perform similarly and no procedure stands 
out as being consistently better than the others.  However, Procedure 2 tends to have the worst 
behavior.  All of the procedures behave more erratically at larger values of σδ 2 as should be 
expected.   

Based on the results of the simulation study, it appears that SAS® MIXED procedure with 
its METHOD=REML and ddfm=kr options is an appropriate procedure for analyzing unbalanced 
split-plot experiments.  It is also reasonable to assume that these results can be extended to 
experimental designs that include multiple splits or strips. 
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