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Nonlinear Models with Repeated Measures for Analyzing  
Disease Progress in Plant Epidemiology 

 
R. Macchiavelli, W. Robles, E. Abreu and A. Pantoja 
College of Agricultural Sciences, University of Puerto Rico – Mayagüez,  PO Box 9030,  
Mayagüez, Puerto Rico, 00681-9030 
 
Abstract 
 
Nonlinear models are commonly used in plant disease epidemiology to model temporal changes 
in the proportion of diseased plants (disease index). Most of the times they are fit using 
linearizing transformations or nonlinear least squares. These approaches assume that the disease 
index has a normal distribution, that they are independent and that they have constant variance. 
None of these assumptions can be justified in disease indices. In this paper we apply different 
strategies to model the progress of papaya ring spot virus in papaya. Using the logistic model we 
compare different strategies using the SAS® System. Marginal (population average) and subject-
specific interpretations of the models are discussed. 
 
1. Introduction 
 

Plant diseases are normally monitored over time, assessing the amount of disease present in a 
population of plants: the “Disease Progress Curve” represents an interpretation of all host, 
pathogen and environmental effects occurring during an epidemic (Campbell and Madden, 
1990). This curve is the disease index (proportion of plants showing symptoms in a plot) as a 
function of time. It provides a tool for analyzing plant disease epidemics, comparing different 
conditions (treatments) and predicting disease dynamics. 

Four different models are commonly used for disease progress curves: monomolecular, 
logistic, Gompertz, and exponential. Table 1 presents the form of these models, as a differential 
equation (indicating rate of disease increase or decrease) or in the integrated form. 
 
Table 1. Models used in disease progress curves. 
 

Model Differential equation Integrated Equation 
Exponential 

= e
dY r Y
dt

 0 exp( )= eY Y r t  

Monomolecular (1 )= −m
dY r Y
dt

 1 exp( )= − − mY B r t  

Logistic (1 )= −l
dY r Y Y
dt

 1
1 exp( )

=
+ − + l

Y
B r t

 

Gompertz [ ]log= −g
dY r Y Y
dt

 exp exp( )⎡ ⎤= − −⎣ ⎦gY B r t  
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Papaya, Carica papaya L., is a fruit commonly cultivated in the tropics and subtropics. In 
Puerto Rico, papaya is severely affected by the papaya ringspot virus (PRV) and the papaya 
mosaic virus (PMV). Both viruses can be transmitted by aphids in non-persistent manner. This 
means that the virus can be acquired during brief probes, retained for several hours and 
transmitted to a new host within minutes. So, the chemical control may not be effective 
preventing transmission. This makes it important to find more effective control methods against 
aphids and viruses on papaya. Plastic mulch has been an effective control method to delay viral 
diseases on vegetables (All, 1999). In the present work we evaluate the effect of plastic mulch 
and green cover crop (weed) on the delay of viral symptoms on papaya fields. We compare the 
results of fitting models under different assumptions to see which treatment is best for 
controlling aphids, and thus indirectly control virus spread in papaya plants. 
 
2. Materials and Methods 
 

A study was conducted in 2000-01 with the PR 6-65 variety in the Agricultural 
Experiment Station at Isabela, Puerto Rico. A completely randomized design with five 
replications was used. The plots consisted of twenty plants at a distance of 3.0 meters between 
rows and 1.2 meters between plants. The following treatments were evaluated: reflective plastic 
mulch; black plastic mulch; green cover crop (weeds) and bare ground.  

In order to study the progress of the viruses, the disease index (proportion of plants with 
virus symptoms) was computed for each plot every two weeks.  Once a plant showed symptoms, 
it was classified as diseased for the rest of the experiment. The response was the disease index 
(proportion of plants with symptoms among the 20 plants in each plot) at each period. The 
following disease progress models were used: exponential, monomolecular, logistic and 
Gompertz (Campbell and Madden, 1990).  

The models were fitted using the following strategy: 
1. First we assumed approximate normality and fitted the nonlinear models using time, 

treatment and interaction effects.  
2. Lack of fit tests were performed and based on the results of these tests we decided to use 

the logistic model (Gompertz was also a good alternative) 
3. We fitted the logistic model using the SAS® System with five different methods: 

• Traditional: separate linearized regression for each plot (SAS® Proc Reg) 
• Nonlinear regression with normal distribution and treatment effects on intercepts and 

slopes (SAS® Proc Genmod or Proc Nlin) 
• Nonlinear regression with overdispersed binomial distribution and treatment effects 

(SAS® Proc Genmod / dscale option) 
• Nonlinear regression with binomial distribution and random plot effects (SAS® Proc 

Nlmixed) 
• Nonlinear regression with binomial distribution and correlation among repeated 

measures (SAS® Proc Genmod / repeated) 
4. The results and interpretation of each model are discussed. 
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Plant pathologists (for example, Campbell and Madden, 1990) recommend to fit the 
linearized version of the models. Once the linear regression is done, a model is selected based on 
the best fit, good behavior of residuals, etc. Inference is based on the linear regression analysis, 
separately for each treatment. There are several problems with this approach: the errors may not 
be additive in the transformed scale, and hence the linearized version is not correct, the 
distribution may not be normal, the variances may not be constant, the treatment comparisons are 
not done using the full power of a single model, observations of the same plant in different 
weeks are dependent and observations on the same plot may not be independent (for example, 
because of contagion). In table 2 we show the results from fitting linearized and nonlinear 
models. The slopes (parameters of interest related to the spread of the disease) are very different, 
and the residual plots from the linearized fits show better behavior for the nonlinear fit (figure 1). 
 
Table 2. Slopes estimated using the linearized and nonlinear fit for each of the disease progress 
curves models (LR=linearized regression, NLR=non linear regression). 
 

  Control 
(Bare soil) 

Weeds Silver Plastic Black Plastic 

Model LR NLR LR NLR LR NLR LR NLR 

Monomolecular .034 .016 .043 .018 .100 .029 .094 .027 

Exponential .079 .020 .080 .019 .072 .014 .079 .015 

Logistic .114 .059 .122 .062 .173 .113 .173 .102 

Gompertz .091 .040 .093 .041 .097 .084 .102 .074 
 

Applied Statistics in Agriculture 257

Conference on Applied Statistics in Agriculture
Kansas State University

New Prairie Press
https://newprairiepress.org/agstatconference/2004/proceedings/18



 
 

 

258 Kansas State University

Conference on Applied Statistics in Agriculture
Kansas State University

New Prairie Press
https://newprairiepress.org/agstatconference/2004/proceedings/18



Some solutions to these problems are to use nonlinear models incorporating treatment 
effects on the intercepts and/or slopes, to consider distributions other than normal (binomial, 
beta-binomial) and to consider longitudinal data methodology. In order to use nonlinear models 
incorporating treatment effects, SAS® PROC NLIN can be used, but one needs to set up dummy 
variables for treatments and needs initial values of parameters. (As initial values, one could use 
results from linear regression.) But, since every linearizable model can be written as a 
generalized linear model, SAS® PROC GENMOD can be used. This procedure does not require 
initial values or the specification of dummy variables for treatments (it has a CLASS statement). 
If none of the available link functions is appropriate, a specific one can be written with the 
FWDLINK command.  
 

Since there are replicates, tests for lack of fit can be used. In generalized linear models 
with normal distribution and identity link, the deviance equals the error sum of squares. To 
obtain the “pure error” we need a model with dummy variables for each time (treatment x time 
factorial structure). In this case, 

Error SS (reg) - Error SS (ANOVA)
Error df (reg) - Error df (ANOVA)

Error SS (ANOVA)
Error df (ANOVA)

=F  

For other distributions, the same idea yields likelihood ratio tests for lack of fit: 
2 Deviance (reg) - Deviance (ANOVA)χ =  

As shown in Table 3, the F lack-of fit tests for all models under the assumptions of normality and 
independence indicate that the logistic and Gompertz models seem appropriate for these data.  
 
Table 3. Lack of fit tests assuming normality and independence 
 

Model Error SS Error    df F (lack of fit) p-value 

ANOVA 1.5110 128   

Monomolecular 5.6349 152 14.5560 0.0000 

Exponential 3.5923 152 7.3463 0.0000 

Logistic 1.6916 152 0.6375 0.8999 

Gompertz 1.9131 152 1.4163 0.1104 
 
From here on, the rest of the modeling strategies use the logistic curve as representative of the 
disease progress curve of these data. 
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3. Results 
 
Figure 2 shows the fit of the different models to the data under normality and independence. 

It is clear from this figure that both the logistic and the Gompertz model provide a good fit in all 
treatments. Neither the exponential nor the monomolecular models are able to model the 
inflexion point which the data clearly show.  
 
Figure 2. Nonlinear fit of the different models under normality and independence. 
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If we do not assume normality or independence in the data, different modeling options 

can be used. The first possibility is to consider the disease index (proportion of plants with 
symptoms) at each occasion as a binomial proportion. If we define Y*=20Y (number of diseased 
trees in the plot), the logistic curve and binomial assumption imply that  

( )* Binomial 20,

logit dap

π

π µ α= + +

∼ijk ij

ij i i j

Y

r
 

 
The main difficulty dealing with this as a regular generalized linear model is that Y* is 

not generally binomial because of the possible contagion. Alternatives are using the beta 
binomial distribution (difficult to consider treatment effects), generalized linear models methods 
with overdispersion, generalized linear models using marginal expected values and particular 
correlation structures, and nonlinear mixed models. 
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In the binomial distribution the variance is determined by the mean. If the binomial 
assumptions fail (i.e., contagion) the variance may be larger than the one predicted by the 
binomial mean (Stokes et al., 2001). In this case an oversidpersion parameter (φ) must be 
estimated and standard errors and tests can be adjusted to account for this extra variation. Using 
an overdispersion makes a “quasi-likelihood” function instead of a true likelihood, but the 
asymptotic properties on which the inference is based do not change (Stokes et al., 2001). Using 
SAS® PROC GENMOD or other software, the overdispersion parameter φ can be estimated as 
the deviance divided by its degrees of freedom, and the tests are adjusted accordingly. 

In order to use marginal models, we specify the marginal means and the marginal 
correlation between observations taken repeatedly on the same unit: 

( )

( ) , ( ) '

( ) ( )

( , ) , ;

µ µ β

µ φ

ρ µ µ α

= =

=

=

ij ij ij ij

ij ij

ij ik ij ik

E Y h X
Var Y v

Corr Y Y

 

Regression coefficients are interpreted as average effects through the subpopulation having same 
values of x (“population average inference”). Except in normal linear models (and a few other 
cases), these regression coefficients are different from the ones estimated in a “subject specific” 
model, which we will discuss later. SAS® PROC GENMOD permits fitting the marginal models 
by using the REPEATED command. In general, there is no likelihood available, and hence the 
inference is base on a “quasi-likelihood”. PROC GENMOD reports “quasi score” tests when 
fitting these models. 

For nonlinear mixed models, the repeated observations from the same plot are correlated 
because they share the same value of one or more random plot effects. In its simplest form for 
generalized linear models, the random effect adds a value to the intercept of the linear predictor. 
In the logistic model that we are using for the papaya data, 

( )

( )

*

2

| Binomial 20,

logit dap

Normal 0,

π

π µ α

σ

= + + +

∼

∼

ijk k ijk

ijk i k i j

k

Y u

u r

u

 

The interpretation of regression coefficients corresponds to a “typical” subject with a value of the 
random effect u=0 (“subject specific interpretation”). The fixed effects (for example difference 
in treatment effects) are controlled by the plot (random effect). This model can be fitted in SAS®  
using PROC NLMIXED. 

A more complicated model can be formulated if individual trees responses (0,1) are used. 
This formulation models the correlation between repeated observations on the same tree 
(longitudinal) and between trees on the same plot (contagion): 

( )

( )
( )

( )

( )

2

2
( )

| , Bernouilli

logit dap

Normal 0,

Normal 0,

π

π µ α

σ

σ

= + + + +

∼

∼

∼

ijkl k l k ijkl

ijkl i k l k i j

k u

l k v

Y u v

u v r

u

v
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This formulation would require two RANDOM commands in SAS® PROC NLMIXED, which is 
not a current option (SAS v.9). Alternatively, a more complex formulation could be done using 
only one RANDOM command by specifying 20 random effects, and indicating the covariance 
matrix of these random effects as a function of 2 2, .σ σu v  The fit of this alternative using SAS®  
was not possible because of memory problems. 

Table 4 shows the estimates obtained by the four fitting methods used. The 
parametrization used for the treatment effects on the intercept and the slope is the standard one 
used by SAS® PROC GLM and GENMOD. We can see that the coefficients are similar under 
the different modeling strategies, and the standard errors differ markedly. Figure 3 shows the 
fitted curves for the four different treatments. 
 
Table 4. Fitted models. 
 

Parameter Normal 
NLReg 

Std. 
Error

Binom 
overdis

Std. 
Error

Binom 
margin

Std. 
Error

Binom 
mixed 

Std. 
Error 

Intercept -5.1339 0.5073 -5.4031 0.5109 -5.4164 0.3678 -5.7562 0.4927 

trat W -0.5297 0.7628 -0.4827 0.7463 -0.5185 0.6277 -0.2265 0.6995 
trat BP -5.6118 1.5042 -4.4469 1.0723 -5.0679 1.4240 -5.4332 0.9936 
trat SP -7.1632 1.7807 -5.8215 1.2254 -6.5040 1.3186 -5.9576 1.0310 
trat C 0 0 0 0 0 0 0 0 

dap 0.0593 0.0056 0.0631 0.0057 0.0627 0.0027 0.0673 0.0045 
dap*tr W 0.0023 0.0082 0.0020 0.0081 0.0021 0.0058 -0.0010 0.0062 
dap*tr BP 0.0425 0.0145 0.0308 0.0106 0.0359 0.0130 0.0395 0.0089 
dap*tr SP 0.0535 0.0167 0.0404 0.0117 0.0457 0.0136 0.0408 0.0091 
dap*tr C 0 0 0 0 0 0 0 0 
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Figure 3. Fitted models  
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Contrasts of interest to the researchers are to compare the plastic covers with the control 
and weed treatments. This can be done in all cases using F or chi-square tests with 4 degrees of 
freedom (here the contrasts test simultaneously the equality of 2 intercepts and 2 slopes). The 
results from these tests are presented in Table 5 (for comparison purposes, F and chi-square tests 
are indicated as generated by SAS®, and in parentheses we present the equivalent test when not 
presented by SAS®). 
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Table 5. Contrasting equality of intercepts and slopes for control and weeds, and for silver and 
black plastic. 
 

Model Num 
df 

Den 
df F Pr>F Chisq Pr>Chi Type 

Normal 
NLReg 4 152 2.12 0.0814 8.47 0.0759 LR 

Binom 
overdis 4 152 1.43 0.2269 5.72 0.2212 QLR 

Binom 
margin 4  (0.49)  1.95 0.7447 Score 

Binom 
mixed 4 19 0.34 0.8486 (1.32)  LR 

 
Another inferential procedure in which there was interest is in predicting the disease 

index at 90 days after planting, which is an important phenological stage in papaya: at 90 days 
flowers start to bloom, and if there are fewer plants with virus symptoms at this moment, the 
damage caused by the disease will be small. Table 6 shows the estimated disease indices for 90 
dap for each treatment and each fitting method. This table also presents the width of the 
confidence interval for this estimate. 
 
Table 6. Predicting disease index at 90 days after planting. 
 

 Normal NLReg Binom overdis Binom margin Binom mixed 

Treatment Predicti
on 

Width 
of C.I. 

Predicti
on 

Width 
of C.I. 

Predicti
on 

Width 
of C.I. 

Predicti
on 

Width 
of C.I. 

Control 0.5516 0.1025 0.5693 0.1267 0.5561 0.2608 0.5738 0.3104 

Weed 0.4715 0.1070 0.4947 0.1294 0.4734 0.1043 0.4946 0.3234 

Black plastic 0.1712 0.1378 0.1989 0.1244 0.1664 0.2493 0.1709 0.1952 

Silver plastic 0.1055 0.1228 0.1298 0.1080 0.1033 0.0533 0.1208 0.1513 
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Another question of interest is the inverse prediction problem: when would, for example, 
50% of the plants show symptoms? This can be expressed as a nonlinear function of the 
parameters of the model, and thus can be estimated directly using the nonlinear mixed model 
approach. The other modeling approaches do not directly lead to estimating nonlinear functions 
of the parameters. In SAS® PROC NLMIXED, the command ESTIMATE generates point 
estimates and Wald’s confidence intervals. Table 7 shows these estimates. 
 
Table 7. Estimating number of days after planting until 50% of the plants show symptoms 
 

Treatment 95% 
lower limit

Point 
estimate

95% 
upper limit

Control 76.2 85.6 95.0 

Weed 80.8 90.3 99.9 

Black plastic 98.6 104.8 110.9 

Silver plastic 102.3 108.4 114.4 

 
 

4. Conclusions and Summary 
 

In order to model disease progress curves, it is important to use modeling strategies 
which recognize the distribution of the dependent variable being modeled and the longitudinal 
nature of the data. Linearized models with linear regression (PROC REG) yield very different 
estimates, while non linear models with normality (PROC NLIN or GENMOD) need to take into 
account actual distribution or longitudinal nature. This can be obtained with binomial 
distribution and overdispersion (PROC GENMOD / dscale), marginal binomial models (PROC 
GENMOD / repeated), or non linear models with binomial distribution and “plot” random effects 
(PROC NLMIXED). 

The marginal model permit “population average” inference, while the parameters in the 
mixed model have a “plot specific” interpretations (i.e., compare effects in the same plot). The 
nonlinear mixed model permits the estimation of any function of parameters, while there are no 
direct ways of doing this with the other approaches.  

Currently there is no simple way of fitting in SAS a nonlinear mixed model including 
both a tree effect and a plot effect (nested random effects).  

The models fitted for the papaya data set indicate clearly that there is a treatment effect: 
both plastic cover treatments delay the presence of symptoms with respect to the weed or bare 
ground treatments. Among both plastic treatment there are no significant differences, and hence 
the black plastic cover appears as the recommended treatment (because it is cheaper than silver 
plastic).  
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Appendix. SAS Code to fit the different models 
 
*NON LINEAR FITS USING GENMOD, ASSUMING NORMALITY AND INDEPENDENCE; 
 
Proc genmod data=medias; 
class treat repet; 
model y=treat dds treat*dds /dist=normal link=log type3 dscale; 
title 'Exponential'; 
run; 
 
Proc genmod data=medias; 
class treat repet; 
model y1=treat dds treat*dds /dist=normal link=log type3 dscale; 
title 'Monomolecular'; 
run; 
 
Proc genmod data=medias; 
class treat repet; 
model y=treat dds treat*dds /dist=normal link=logit type3 dscale; 
title 'Logistic'; 
run; 
 
Proc genmod data=medias; 
class treat repet; 
fwdlink link=log(-log(_mean_)); 
invlink ilink=exp(-exp(_xbeta_)); 
model y=treat dds treat*dds /dist=normal type3 dscale; 
title 'Gompertz'; 
run; 
 
*ANOVA MODEL (INCLUDING DDS AS A CLASS VARIABLE) TO TEST LACK OF FIT; 
* remember that Deviance in this model is the same as Error SS in ANOVA; 
 
Proc genmod data=medias; 
class treat repet dds; 
model y=treat dds treat*dds /dist=normal link=id type3 dscale; 
title 'ANOVA'; 
run; 
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*Contrasts and estimations using Logistic best fitting curve; 
Proc genmod data=medias; 
class treat repet; 
model y=treat dds treat*dds /dist=normal link=logit type3 dscale; 
contrast 'PP=PC, C=W' treat 1 0 0 -1 , treat 0 1 -1 0,  
                      treat*dds 1 0 0 -1, treat*dds 0 1 -1 0; 
estimate 'mean at 90 days, control'  
         intercept 1 treat 0 0 0 1 dds 90 treat*dds 0 0 0 90; 
estimate 'mean at 9 days,  0 weed'  
         intercept 1 treat 1 0 0 0 dds 90 treat*dds 90 0 0 0; 
estimate 'mean at 9 days, 0 pc'  
         intercept 1 treat 0 1 0 0 dds 90 treat*dds 0 90 0 0; 
estimate 'mean at 90 days, pp'  
         intercept 1 treat 0 0 1 0 dds 90 treat*dds 0 0 90 0 ; 
title 'Normal'; 
run; 
 
 
* Logistic model, binomial distribution, overdispersion; 
Proc genmod data=medias; 
class treat; 
model ndiseased/trees = treat dds treat*dds /dist=bin link=logit type3 
dscale; 
contrast 'PP=PC, C=W' treat 1 0 0 1  eat 0 1 -1 0 -  , tr ,  
                      treat*dds 1 0 0 -1, treat*dds 0 1 -1 0; 
estimate 'mean at 90 days, control'  
         intercept 1 treat 0 0 0 1 dds 90 treat*dds 0 0 0 90; 
estimate 'mean at 90 days, weed'  
         intercept 1 treat 1 0 0 0 dds 90 treat*dds 90 0 0 0; 
estimate 'mean at 9 days, 0 pc'  
         intercept 1 treat 0 1 0 0 dds 90 treat*dds 0 90 0 0; 
estimate 'mean at 90 days, pp'  
         intercept 1 treat 0 0 1 0 dds 90 treat*dds 0 0 90 0 ; 
title 'Binomial w/overdispersion'; 
run; 
 
*Logistic model, binomial data, marginal model; 
Proc genmod data=medias; 
class treat repet; 
model ndiseased/trees = treat dds treat*dds /dist=bin link=logit type3 
dscale; 
contrast 'PP=PC, C=W' treat 1 0 0 1  eat 0 1 -1 0 -  , tr ,  
                      treat*dds 1 0 0 -1, treat*dds 0 1 -1 0; 
estimate 'mean at 90 days, control'  
         intercept 1 treat 0 0 0 1 dds 90 treat*dds 0 0 0 90; 
estimate 'mean at 90 days, weed'  
         intercept 1 treat 1 0 0 0 dds 90 treat*dds 90 0 0 0; 
estimate 'mean at 9 days, 0 pc'  
         intercept 1 treat 0 1 0 0 dds 90 treat*dds 0 90 0 0; 
estimate 'mean at 90 days, pp'  
         intercept 1 treat 0 0 1 0 dds 90 treat*dds 0 0 90 0 ; 
repeated subject=repet / type=ar(1) corrw; 
title 'Binomial w/repeated'; 
run; 
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*Logistic model, binomial data, normal random intercepts; 
 
proc sort data=medias; by repet; 
 
proc nlmixed data=medias; 
parms b0=-5.4  bm= -0.5 bpc=-5 bpp=-6.5  
      r=0.06 rm=0.002 rpc=0.036 rpp=0.046 sigma=0.3; 
media =1/(1+exp(-b0-bm*tratm-bpc*tratpc-bpp*tratpp+u-r*dds-rm*tratm*dds-
rpc*tratpc*dds-rpp*tratpp*dds)); 
 
model ndiseased ~ binomial (20, media); 
random u ~normal(0,sigma*sigma) subject=repet; 
 
contrast 'PP=PC, C=W' bm , bpc-bpp , rm , rpc-rpp; 
 
estimate 'mean at 90 days, control, typical plot'  
             1/(1+exp(-b0-r*90)); 
estimate 'mean at 90 days, weed, typical plot'  
             1/(1+exp(-b0-bm-r*90-rm*90)); 
estimate 'mean at 90 days, pc, typical plot'  
   1/(1+exp(-b0-bpc-r*90-rpc*90)); 
estimate 'mean at 90 days, pp, typical plot'  
   1/(1+exp(-b0-bpp-r*90-rpp*90)); 
 
estimate 'days to 50%, control' -b0/r; 
estimate 'days to 50%, control' -(b0+bm)/(r+rm); 
estimate 'days to 50%, control' -(b0+bpc)/(r+rpc); 
estimate 'days to 50%, control' -(b0+bpp)/(r+rpp); 
 
title 'Binomial with random effects'; 
run; 
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