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IDENTIFICATION OF ERRORS IN COTTON FIBER DATA SETS USING BAYESIAN 
NETWORKS 

 
G.F. Sassenrath1, J.E. Boggess2, Xintong Bi2, H.C. Pringle3 

1USDA-ARS, APTRU, Stoneville, MS; 2Department of Computer Science and Engineering, 
Mississippi State University; 3Delta Research and Extension Center, Stoneville, MS 

 
 

ABSTRACT 
 
 Cotton fiber is graded on a series of parameters based on physiological factors (strength, 
length, and thickness), lint color, and presence of non-lint matter such as leaves, stems or other 
foreign materials. Cotton lint is graded by the USDA-AMS after harvest and ginning, and the 
grade determines the price of the lint. Given the importance of cotton fiber quality to the value of 
the crop, the spatial variability of cotton fiber properties is of particular interest to researchers 
and producers in developing management scenarios for optimal profitability. Previous research 
studies have relied on hand-harvesting the cotton at intervals throughout the field to obtain a 
measure of the cotton fiber quality and the extent of spatial variability. However, hand-harvested 
cotton has different qualities than that harvested by machine and ginned in the large-scale 
production gins. Part of this arises from the difference in efficiency of harvest between machine 
and humans, and part results from the different gins used for the smaller sample sizes. While 
these studies have demonstrated the extent of spatial variability of fiber properties, hand-
harvesting is not amenable to large-scale or production research efforts. Moreover, the 
differences in fiber properties limit the extension of the results to the production setting. We have 
developed a mechanism of sampling cotton from the cotton chute during mechanical harvest. 
The samples are then ginned on a research gin. This study was undertaken to develop a method 
of translating these small-scale researcher level results to full-scale production level results. The 
research reported here is the first step in that effort, and demonstrates the use of Bayesian 
networks to detect erroneous entries in cotton fiber data sets. 
Keywords: Bayesian networks, cotton fiber quality, cotton fiber spatial variability, neural 
networks 
 
 

1. INTRODUCTION 
 
 Two areas of agronomic research have simultaneously realized the impact of harvesting and 
ginning methods on the final fiber quality: precision agriculture and breeding. Because both of 
these areas of study are directed at improving profitability to the end user – the cotton producer – 
research results need to be comparable to those that a producer would find. In the research 
setting, scale issues have resulted in common practices of cotton harvesting and ginning that are 
different than those used by producers. Researchers routinely hand-harvest cotton (Johnson et 
al., 2002), and then gin the cotton on small research gins. The research gins are equipped with 
saws that remove the lint from the seed, and then pass the lint through rollers to the collection 
area. No preprocessing of the seed cotton is performed. Alternatively, producers harvest cotton 
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by machine, and gin the cotton in large production gins. These large gins have ovens for drying 
the cotton, and leaf and stick machines for removing leaf fragments and other trash from the 
cotton. After this initial processing, the cotton is ginned to separate the lint and seed, and 
packaged for shipping.  
 Prior research has shown the impact of harvest and ginning methods on final fiber properties 
(Williford et al., 1984; Calhoun et al., 1996). Concern for the differences in harvest and ginning 
methods on fiber properties has recently surfaced as more small-scale research studies are 
extrapolating results to the production scale. In precision agriculture, for example, sampling a 
field for determination of the spatial variability of fiber quality results in samples that are too 
small for ginning in the larger gins. Spatially-registered samples that are hand- or machine-
harvested are ginned on research gins without preprocessing. While these studies give an 
indication of the extent of spatial variability, the physical features of the cotton fiber from these 
studies differs in significant ways from that observed by the producers. Because the cotton fiber 
quality determines the price of the cotton, the value of the cotton varies between these different 
harvest and ginning method. In the same way, cotton breeders frequently have small test plots of 
new varieties, and rely on hand-harvesting and research gins for fiber sample preparation.  
 Current methods of determining the value of the cotton fiber quality and price result in a 
mathematically nonlinear and discontinuous evaluation relationship (USDA-AMS, 2004). As a 
consequence, it is difficult to translate the research results to the producer results through 
standard statistical methods. Moreover, in order to truly examine the spatial variability of the 
fiber properties, and better determine the complete range of physiological properties, we need to 
replicate the entire population of samples. We need to find not only the correct mean of the 
population, but the range of variability as well. With a typical biological system, we anticipate a 
standard normal (Gaussian) distribution of values when we sample the population. We obtain 
such a population of values for the various cotton parameters when we sample both the 
researcher and producer values. Now, the task is to correctly translate that population of cotton 
fiber properties from the researcher results to the more correct producer values. This study was 
undertaken to develop a method of translating these small-scale researcher level results to full-
scale production level results. The research reported here is the first stage in that study. This 
study demonstrates the use of Bayesian networks to detect erroneous entries in cotton fiber data 
sets. 
 
 

2. METHODS 
 
2.1 Cotton growth and harvest 
 Cotton was grown in research test plots using standard agricultural practices. The cotton was 
harvested with a commercial cotton picker (John Deere 699) modified for plot picking. The large 
cotton samples from the plot picker were subsampled for comparison with the research gin. The 
remaining cotton was ginned at the USDA-ARS Ginning Lab in Stoneville, MS, using one lint 
cleaner and one stick machine on the microgin. The small cotton samples subsampled from the 
large samples were ginned on a 10-saw research gin (Continental Eagle, Co., Memphis, TN). All 
cotton lint samples were classed at the USDA-AMS Classing Office in Dumas, AR. Cotton 
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discount (or premium) points were determined using the USDA-AMS Spot Cotton Quotations 
for the South Delta (USDA-AMS, 2004).  
 
2.2 Data presentation and data set development 
 Cotton was grown and harvested yearly from 2000 – 2003. The spatially registered cotton 
yield was recorded with the AgLeader Cotton Yield monitor. Data of cotton yield were put into 
spatially registered maps using ArcView (3.2, ESRI, Redlands, CA). Statistical analysis and 
plotting of the yield and fiber properties were performed with SigmaPlot (SigmaPlot, 2001, 
SPSS Inc., Chicago, IL).  
 Data sets for testing the network were derived from samples ginned in the micro-gin, and 
consisted of 90 samples from 2001 (data set 2001) and 90 samples from 2002 (data set 2002).  
Eight feature attributes of the cotton fiber were evaluated.  These data constitute the information 
required to compute the discount subtracted from (or premium added to) the standard value of 
the cotton sample.   
 The information provided in the data set varies widely in type and value.  For example, while 
some values are represented as real numbers, other values are discrete numbers.  Some values 
appearing to be integers are actually discontinuous numbers, representing degree of membership 
in some category, rather than true integers.  The data is of high dimension, and calculation of the 
discount rate is based on look-up tables, rather than a numerical function.  An example of the 
data set is illustrated in Table 1.   
 In order to create a data set for training the Bayesian Network, artificial erroneous data was 
created.  For each of the 90 entries in each original data set, an erroneous entry was created by 
randomly selecting an attribute and then changing its original value to a different value between 
the lower and upper bounds for that attribute such that the new value resulted in a different 
discount value for the given cotton fiber sample.  For example, the lookup table entry for the 
Uniformity attribute is given in Table 2.  
 Assuming that the original value of this sample’s Uniformity attribute is 81, a change to a 
new value of 79 or 83 would be acceptable for use in an erroneous data record, since the discount 
values for both 79 and 83 are different from the discount value for 81. A change to 80 or 82 
would not be useful, however, because new Uniformity values of 82 and 80 produce the same 
discount value as the original Uniformity value of 81.  
 Using this method of creating artificial data, 90 erroneous data items were produced for each 
year’s data, giving a training set of 90 correct and 90 incorrect items for each year, for a total of 
180 items for each of the two years. 
 
2.3 Experimental procedure 
 A Bayesian Network is a widely-used Machine Learning technique which represents the 
conditional dependencies of various factors in a statistical relationship by means of a directed 
acyclic graph.  The nodes of the graph represent features of the data space; arcs connecting some 
(or possibly all) of the nodes are labeled with their conditional probability.  
 Figure 1 is a representation of a Bayesian Network (adapted from Mitchell, 1997).  In this 
network, the conditional dependencies are indicated by directed arcs (arrows).  For example, a 
forest fire may be dependent upon a campfire or lightning, but it is conditionally independent of 
thunder. 
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 The conditional dependence probabilities for campfire in Figure 1 might look something like 
that presented in Table 3. In a Bayesian network, a given node may not be connected to some of 
the other nodes if the effects of these nodes on the overall probability calculated by the network 
are independent of one another.  In these cases, the conditional probabilities do not have to be 
known or calculated. 
 In this experiment, a Bayesian Network package created by Christian Borgelt (2004) was 
utilized with the training data generated as describe above to induce a Bayesian classifier.  This 
classifier was then used to classify the data in the test set.   
 

3. EXPERIMENTAL RESULTS 
 
 A range of yield values is apparent from the map of cotton yield (Figure 2). Of particular 
concern in precision agricultural studies is the extent of variability in crop growth characteristics. 
To this end, we don’t want to simply move, or translate, the research results to the mean for 
comparison to production level observations. Rather, we want to translate the entire population 
of fiber quality measurements from one to the other, maintaining a reasonable representation of 
the variability in the sampled parameters. For a biological system, we expect to have a close 
approximation to a standard normal distribution of results. We see this normal distribution in the 
yield data (Figure 3). Deviations in the normal distribution indicate separate populations within 
the sampled area. In this way we can see that the frequency distribution of yield values gives 
three separate populations – one low yielding area (red – one standard deviation below the 
mean), one high yielding area (blue – one standard deviation above the mean), and one 
intermediate yielding area which contain most of the sampling points (Figure 3). The separate 
populations from the frequency distribution correspond well with the areas of the map and can be 
used to separate out the regions of the map based on yield (Figure 4).  
 The great number of data points in the yield data allows generation of high-density 
histograms, sufficient to separate out different populations within the overall data set. The 
limited number of data points of fiber properties may not allow such distinction, but should show 
a normal distribution. For several of the fiber properties, such distributions are found (Figure 5). 
The difference between the production and research gin is seen as a shift in the entire population, 
and an increase in the variability. We want to map that standard distribution of research-level 
“incorrect” results onto a standard distribution of production-level “correct” results. In this way, 
we will better be able to explore the population, and map, for example, the spatial variability of 
the various fiber properties, final fiber quality and value. 
 The experiment was conducted by using one of the training sets with Borgelt’s bci software 
to induce a Bayesian Classifier, and then using Borgelt’s bcx software to execute the learned 
classifier on one of the test sets to see how well the classifier performs.  Four iterations of this 
experiment were performed, one for each of the four possible combinations of the two data sets, 
using each data set alternately as a training set or a test set.  The results of the experiment are 
summarized in Table 4. 
 

4. DISCUSSION 
 The results are encouraging.  The Bayesian Network evidently is able to learn to identify 
correct from incorrect data quite well when it is trained on and tested on the same year’s data.  

290 Kansas State University

Conference on Applied Statistics in Agriculture
Kansas State University

New Prairie Press
https://newprairiepress.org/agstatconference/2004/proceedings/21



Although the relationship between the feature values and the cotton discount value is nonlinear 
and discontinuous, and thus very difficult to learn, the Bayesian Network apparently has deduced 
a set of statistical rules which allow it to correctly classify the great majority of the data, 
provided that both the training and testing data come from the same year.   
 Learning to predict the classification of erroneous data entry is in fact a probabilistic type of 
learning.  The full Bayesian network outperforms the naïve Bayesian network if trained and 
tested on the same set of data. However, the naïve Bayesian network outperforms the full 
Bayesian network if trained and tested on different data sets. Full Bayes is better for the current 
problem, which is simply identifying erroneous data.  Naïve Bayesian networks assume that 
attribute values are conditionally independent, given the classification of the instance. This is not 
true for the current problem, due to the interaction among the features. 
 With regard to the greater number of errors when training with one years' data and testing 
with a different year, it must be observed that cotton lint quality is so dependent on the growing 
conditions that the quality parameters vary greatly from one year to the next.  The particular 
Bayesian classifier which was learned using one year’s data cannot be expected to work very 
well for correctly assessing a different year, simply because of the differences in the way the 
cotton grew each year.  
 

FUTURE WORK 
 
 Future work will include determining errors in cotton properties due to type of harvesting 
(machine versus hand) and type of gin (10-saw research [no lint-cleaners or trash removing 
steps] versus production level gin [additional steps to remove trash and leaves decreases lint 
strength and length]).  If this is successful, it will permit “translating" from results commonly 
observed by researchers to that commonly observed by producers. In addition, the variability of 
cotton quality from one year to another is something that will need to be taken into account, if 
possible. 
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Figure 1.  Example of a Bayesian Network (adapted from Mitchell, 1997) 
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Figure 2. Spatially registered cotton lint yield as determined by a cotton yield monitor. 
 

 
Figure 3. Frequency distribution of cotton lint yield. 
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Figure 4. Segregation of populations according to cotton lint yield. 
 

 
 
Figure 5. Distribution histograms of length from cotton lint ginned on research and production 
gins.  
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Color Staple Micronaire Extraneous Strength Leaf Uniformity Discount Correct
42 35 49 0 24.8 3 81 -3.14 1 
32 34 48 0 25 3 81 -5.45 1 
32 35 49 0 24.8 3 81 -3.14 0 
32 40 48 0 25 3 81 -5.45 0 
 

Table 1: Example of Training and Test Data Sets 
 
 

Uniformity 
Unit Discount
77 -59
78  -49
79  -39
80  0
81  0
82  0
83  23
84  33
85  43
86  53

 
Table 2: Lookup table entry for the Uniformity attribute (after USDA-AMS Spot Cotton 

Quotations).  
 
 
 Storm, 

BusTourGroup 
Storm, 
~BusTourGroup

~Storm, 
BusTourGroup 

~Storm, 
~BusTourGroup

Campfire 0.1 0.4 0.7 0.2 
~Campfire 0.9 0.6 0.3 0.8 
 
Table 3. Example of conditional dependence probabilities for campfire. 
 
 
Training Set Testing Set Accuracy Using 

Full Bayes 
Accuracy Using 
Naïve Bayes 

2001 2001 95%  82% 
2002 2002 94% 78% 
2001 2002 74%  77% 
2002 2001 60% 65% 
 

Table 4:  Summary of Testing Results with Bayesian Network Classifier 
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