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DATA STRUCTURE WITH RESPECT TO THE MAIN EFFECTS MODEL: A DISCUSSION 
MOTIVATED BY A META-ANALYSIS DATA SET 

Dawn M. VanLeeuwen1, David S. Birkes2, Cynda Claryl, and Chadelle Robinson3 

INew Mexico State University, Las Cruces 
20regon State University, Corvallis 

3N ew Mexico Department of Agriculture, Las Cruces 

Abstract 

A discussion on data structure relative to the main effects model is motivated by a severely 
unbalanced meta-analysis data set. This data set is used to highlight the difficulty of assessing 
data structure when multiple factor data sets are severely unbalanced. Both theoretical results 
and numerical examples are used to establish that simple approaches to examining data structure 
using two-way tables provide easily assimilated information about the effect of data unbalance on 
main effect contrast variances. In addition, notions of balance, proportionality, unbalance, and 
missing cells with respect to the main effects model are defined in terms of the two-way tables 
and are related to main effect contrast estimate variances as assessed using the D-optimality 
criterion. 

1. Introduction 

While much has already been written on unbalanced and missing cells data, analyzing 
such data continues to present difficulties to statistical practitioners and researchers in other 
disciplines. Unbalanced data are the norm in some disciplines where most research is 
observational. Furthermore, quantitative, model-based approaches to research are being applied 
to more settings than ever before; many of these settings are likely to produce unbalanced data. 
For example, the quantitative literature review, or meta-analysis, is used increasingly in subject 
areas such as economics, marketing, medicine, and education. Often these data are analyzed 
using a main effects AN OVA-type model on an extremely sparse unbalanced data structure 
(Farley and Lehmann, 1986). Concerning the unbalance likely to exist in these data sets, 
practitioners often are advised to use the condition index or some other diagnostic borrowed from 
regression to assess whether a problematic degree of collinearity exists. While such diagnostics 
may provide some insight, they and the guidelines for using them have been developed for 
regression models with quantitative variables. Other approaches to examining data structure 
tailored to the qualitative factors used in many meta-analyses may be useful to the data analyst. 

Examining data structure and understanding the relationships among independent 
variables is an important phase in data analysis. For multiple regression with quantitative 
regressors, Ramsey and Schafer (1997, pp.242-246) recommend obtaining scatter plots for each 
pair of explanatory variables. It also is common to calculate correlation coefficients among the 
explanatory variables (Myers, 1990, pp.124-125). An analogous set of descriptive statistics for 
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2 Kansas State University 

qualitative factors under the main effects model would be the set of two-way tables 
corresponding to every factor pair. However, this simple descriptive approach to examining data 
structure often is overlooked even in problematic data sets. 

In this paper, we borrow from the optimal experimental design literature to gain a 
perspective on examining observational data set structure under the main effects model. In 
particular, we explore the degree to which two-way tables for pairs of independent variables 
inform the data analyst about the data structure's impact on effect estimates. We begin with a 
motivating example and then present an optimal design result. Based on the optimality result, 
basic linear models theory, and an extensive consideration of designs for the 3 x 3 x 2 main 
effects model with n = 36, the degree to which the two-way tables inform the data analyst about 
the data structure's impact on the variance of main effect contrast estimates is examined. We 
recommend that, in the early stages of data analysis, practitioners use two-way tables as a tool in 
the process of understanding data structure. 

2. Motivating Example 

The motivating example is a meta-analysis data set from a masters' project in agricultural 
economics. The researchers (the student and their advisor) had compiled data from an extensive 
literature review of generic advertising'S effectiveness and intended to use the main effects 
ANOV A approach to meta-analysis outlined by Farley and Lehmann (1986) to evaluate the 
effects of various study attributes on the magnitude of advertising elasticity estimates. They 
sought input from a statistician when estimates ofthe "shared" variance were negative. The 
shared variance is computed by first summing the partial sums of squares for each effect in the 
model (i.e., the type II sums of squares) then subtracting that sum from the full model sum of 
squares. A common interpretation of this difference is that it is, indeed, shared variance or the 
amount of variability in the dependent variable that can be accounted for by more than one of the 
independent variables. Consequently, a negative value is counterintuitive. However, a negative 
value for this shared variance is mathematically possible. 

Extremely simple examination of the data suggested that the problem was likely due to 
severe collinearity. The meta-analysis data set consisted of 156 observations. There were 14 
explanatory variables: eight with two levels, and six with three levels. Only 38 of the 186,624 
possible data cells were observed to contain any data. Even though all main effects were 
estimable (20 model degrees of freedom), the data structure was very sparse. Furthermore, the 
156 observations were distributed into the 38 cells in a very uneven fashion. There were 55 
observations in a single cell, while 18 cells contained only a single observation. Numbers of 
observations in the remaining 19 cells ranged from two to 14. 

The researchers had not conducted the cursory examination of the data structure 
summarized in the above paragraph. In fact, while Farley and Lehmann (1986) (henceforth 
referred to as FL) indicated that meta-analysis data sets were likely to be severely unbalanced and 
had emphasized the need to examine the data structure, they provided few details on tools that 
might be used beyond one-way frequencies and the condition number. Consequently, prior to 
attempting the main effects analysis, the researchers had followed all steps outlined by FL and 
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believed that all data structure problems had been resolved by collapsing factor categories 
(levels) on the basis of one-way frequencies. Additionally, FL suggested using the condition 
number, a tool typically used in regression, to assess whether a problematic degree of collinearity 
exists in the data. According to FL, problematic degrees of collinearity would be indicated by a 
condition number of around 1000 or more. The researchers obtained a condition number of 42 
using SAS® Proc Reg. However, the condition number may be based on a singular value 
decomposition of either the design matrix or the design matrix premultiplied by its transpose. FL 
assumed use of the design matrix premultiplied by its transpose while Proc Reg has implemented 
the collinearity diagnostic proposed by Belsley, Kuh and Welsch (1980) (henceforth referred to 
as BKW) based on a singular value decomposition of the design matrix. Consequently, the value 
of 42 would need to be squared to compare it to the cutoff of 1000 suggested by FL. While the 
different scales for computing and reporting the condition number did lead to a misinterpretation, 
a subset of the variables obtained by dropping just one explanatory variable resulted in a 
condition number below 30 (below 900 on the FL scale) but did not resolve the problem with the 
negative shared variance estimate. 

BKW's diagnostic uses the entire set of condition indices obtained by dividing the 
maximum singular value (i.e., eigenvalue) from the decomposition of the design matrix by each 
other singular value. BKW indicate that when accompanied by high variance proportions for two 
or more variables, condition indices greater than 30 may suggest a strong linear dependency. 
However, BKW's empirical explorations suggested that, for quantitative variables, weak 
dependencies may be identified by condition indices of around 10 and even as low as 5 (p.153). 
Indices from 15 to 30 are considered borderline and may reflect borderline tight dependencies. 

As already noted, when applied to the meta-analysis data set, the BKW diagnostic 
identified a dominant dependency associated with a condition index of about 42. However, 
several other condition indices were suggestive of additional dependencies. Four more condition 
indices fell between 15 and 23, and an additional three indices fell between 15 and 10. 
Furthermore, the diagnostic indicated that all but two of 21 regression coefficients had more than 
50% of their variance associated with condition indices greater than 10. Of the two coefficients 
that were not implicated in possible near linear dependencies, one corresponded to a three-level 
variable so that all but one variable were implicated. When a single or relatively few 
dependencies exist, the diagnostic can provide a great deal of guidance in isolating the 
dependencies. However, when several exist, the diagnostic may provide little assistance beyond 
suggesting the number of dependencies that may exist. 

In an attempt to gain insight into the dependencies suggested by the BKW diagnostic, 
two-way tables for every pair of explanatory variables were obtained. Of these 91 two-way 
tables, 60 had one or more cells with counts of zero. Nearly all were highly unbalanced (i.e., not 
only were zero cell counts present in most tables, but among cells with positive counts, the ratio 
of the largest to smallest count typically exceeded 10). Had the researchers begun with this 
simple, descriptive, data structure assessment, they would have realized that their data structure 
barely supported models incorporating only two explanatory variables. Additionally, they would 
have come to this realization before becoming invested in an analysis that the data structure did 
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not support using and would have begun considering alternative approaches to analyzing and 
reporting the data earlier in the process. 

Examining the two-way tables led the researchers to realize that one level of one variable 
was completely confounded with a single research group that had conducted multiple studies. It 
is likely that this insight into the data structure would have been overlooked if, as suggested by 
FL, a canned stepwise regression procedure had been used to simply eliminate some of the 
factors from the model. As already noted, when the analysis was rerun with this variable 
removed, the condition indices all fell below 30 but the negative shared variance did not go 
away. As the two-way tables suggest, a problematic degree of collinearity was still at the root of 
the negative shared variance even though the condition index no longer exceeded 30. 

While these data represent a fairly extreme case, the seeming correspondence between 
insight provided by simple two-way tables versus a sophisticated and difficult to interpret 
regression diagnostic raises interesting questions about the amount of information contained in 
the two-way tables. For this rather extreme case, there appeared to be a correspondence between 
the information provided by a fairly quick perusal of the two-way tables and by the condition 
indices and variance proportions. That is, those variables involved in more tables having missing 
cells tended to be variables that had high variance proportions associated with the condition 
indices over 10. Additionally, for those variables with three levels, having two-way tables with 
more missing cells seemed also to be associated with having high variance proportions associated 
with higher condition indices. 

3. Examining Data Structure Using Two-Way Tables 

In the example, simple examination of the two-way tables was a useful way to look at the 
data and to help the researchers appreciate concerns with their data structure. Because the 
example suggests that the two-way tables may be useful for helping both statisticians and 
nonstatisticians appreciate problems with data structure, the authors resolved to explore the 
usefulness of the two-way tables under the main effects model. The results of this exploration 
are presented in the remainder of this paper. The optimal design literature, while aimed at 
designed experiments, provided the tools that were used for comparing the relative performance 
of differing designs. We refer to universal optimality but use the D-optimality criterion as the 
basis for comparing designs. We establish that, under the main effects model, optimal designs 
can be defined in terms of the two-way tables. A numerical experiment then uses the D
optimality criterion to evaluate and compare designs generated for a 3 x 3 x 2 main effects 
model with n=36. 

3.1. Two-Way Tables and Optimality for the Main Effects Model 

This section summarizes notation, provides a brief overview of optimal design theory, 
presents an optimal design result, and applies the result to the main effects model. 
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Notation. We use s to denote the number of effects in the model, tl, ... ts to denote the numbers 
of levels for each of the s effects, and n to denote the total number of observations. Unless 
implied by context, we use d to index designs belonging to ill), the class of all allowable designs. 
Nor Nd represents the tl x t2 X ... x ts incidence matrix of nil i2 ... i s 's. Nfg (N~g) is the marginal 

incidence matrix for the effects indexed by f and 9 and contains the t f x tg values n{f. The 
terms marginal incidence matrices and two-way tables will be used interchangeably to refer to the 
set ofNfg matrices. The fixed main effects model for Yi]i2".i s k can be written 

Yi]i 2".i sk = f.L + G:li] + G:2i2 + ... G:sis + ei]i2 "isk (3.1.1) 
where the ei]i2".i,k are independent random error terms from the normal distribution with mean 0 
and variance a2 . In matrix notation, the model can be written 

Y = J f.L + AIG:l + A2G:2 + ... AsG:s + e (3.1.2) 
where G:h is the vector of fixed effects corresponding to the hth factor and e rv N(O, a 21). The 
Ah are sometimes called classification matrices (also, incidence matrices or design matrices) and 
are composed of O's and l's with at most a single 1 in each row and n7 l's corresponding to the 
position of G:hi in the ith column (see Tjur, 1984). Here I represents the identity matrix with 
dimensions implied by context; similarly J represents a matrix of ones. 

The range (or column space) of a matrix A is denoted by R(A), and the unique 
orthogonal projection matrix whose range is R(A) is denoted by P A = A(A' A)-A' where A' 
denotes the transpose of the matrix A and (A' A) - denotes the generalized inverse of the matrix 
(A'A). Factors f and 9 are defined to be orthogonal if their respective projection matrices 
commute, that is, if P f P 9 = P gP f, where P f represents the orthogonal proj ection matrix on A f. 
Matrices A and B are ordered A 2 B if A - B is nonnegative definite. 

Overview of Optimal Design. For effect matrix Ah, define X h = (J, AI, ... , A h- l , A h+l , ... 

, As) and also define Mh = I - PXh' Then the information matrix, Ch (or Cdh ), for the hth 
factor treatment effects is 

Ch = A~MhAh (3.1.3) 
(Morgan and Bailey, 2000). 

Typically, an optimal design is defined to be any design, dE]), which minimizes the 
value of some optimality criterion, <P, defined as a function of Ch . In general, functions chosen 
as optimality criteria relate in some way to a notion of minimizing the variance of contrast 
estimates for the hth treatment effects (Shah and Sinha, 1989). The D-optimality criterion is 
defined as <PD(Ch ) = rr1k where, AI, ... , Arh are the nonzero eigenvalues ofCh . 

Kiefer's (1975) proposition 1 provides conditions that can be used to establish a 
design's universal optimality. Designs that are universally optimal are D-optimal. His 
proposition states that if there exists Cd*h E Ch such that Cd*h is completely symmetric (i.e., 
Cd*his of the form aI + bJ) and trace(Cd*h) = max trace Cdh , then d* is universally optimal 

dE]) 
for estimating the h-effects. 
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Two-Way Tables and Optimality. The main effects model (3.1.1) is a special case of the 
following fixed effects model: 

Y = J IL + Aex + B{3 + e. (3.1.4) 
In this setting, ex contains the t parameters of interest, while (IL, (3')' is a vector of nuisance 
parameters. The following result is related to results in Kunert (1993) and Shah and Sinha 
(1993) but allows for a greater number of factors. 

Optimal Design Result: For the model (3.1.4), suppose that there exists a design d* with n 
observations that satisfies the following two conditions: 

1) A'A = mI, 
2) PAPB = PJ. 

Then among all designs for this model with n observations, d* is universally optimal with respect 
to estimation of the ex-effects. 

proof: For d*, C* = A*'(I - P J,B)A* = A*' A* - A*'P J,BA* = 

A*' A* - A*'PJA* = mI - m 2 J n . 

Hence, C* is completely symmetric and satisfies Kiefer's first condition. It remains only to 
establish that trace(C*) 2': trace ( C) for any other design having n observations. 
Let nT represent the number of observations on the ith level of ex. From the above, it follows that 
trace ( C*) = n - tr;:2. 
For any design, C = A'MAA ::::: A' (I - PJ )A. So that trace ( C) ::::: A' (I - PJ)A = 
trace (A' A - A' PJA) = n - (nl?+~.+(n~j2 ::::: n - tr;:2 since (ni)2 + ... + (ni)2 is minimized by 

taking nt = I = m. D 

The optimal design result implies that a main effects model design will be optimal for 
estimating the exl-contrasts, if the following two conditions hold: 

1) nt = m for all i = 1, ... , tl and 
mnh nh 

2) nt? = ~ = -t for h = 2, ... , s. 
While the optimal design result only applies when n = mtl, where n is the total sample 

size, it provides insight into the relationship between the two-way tables and optimality criterion 
values. 

Many of the existing results in optimal design are predicated on the assumption that the 
blocking factors, which are considered to correspond to "nuisance" parameters, form a 
statistically orthogonal arrangement (Morgan and Bailey, 2000; Shah and Sinha, 1989). 
However, the optimal design result implies that the structure among the blocking or nuisance 
factors is immaterial. As long as each level of the effect of interest is replicated the same number 
of times and each level of the effect of interest appears the same number of times within each 
level of each nuisance factor, the design will be optimal for the effect of interest. This implies 
that a design may be poor for estimating some contrast sets while it is quite good for estimating 
other contrast sets. 
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The second optimal design result condition is a proportionality condition and implies 
statistical orthogonality between the first effect and each of the other effects (Tjur, 1984). When 
this condition is satisfied, the usual two-way table x2-test for independence would yield a test 
statistic value of zero. 

Example 1. Consider a 3 x 3 x 2 three factor main effects model. For convenience, use a, b, 
and c to denote the three effect vectors so that the model becomes: 

Y = J fJ, + Aa + Bb + Cc + e 
Throughout this paper, we use this model with n = 36. Consider the design: 

nijl nij2 

J= 1 2 3 1 2 3 

1 2 2 2 2 2 2 
~ 2 1 4 2 4 1 2 

3 3 0 2 0 3 2 

Then: 
n·· tJ. ni.k n.jk 

4 4 4 6 6 6 6 
5 5 4 7 7 6 6 
3 3 4 5 5 6 6 

This design is optimal for estimating the c-contrast, Cl - C2; both Nac and Nbc satisfy the 
proportionality condition and nk = 18 for k = 1,2. Because Nbc is a constant multiple of the J 
matrix, it is obvious that it satisfies the proportionality condition. Nac also satisfies the condition 
because, within each row (i.e., within each level ofthe a-effect), each level ofthe c-effect is 
replicated the same number oftimes. Note that estimates for a and b effects are not optimal, 
since Nab does not satisfy the proportionality condition (and different levels of a have different 
numbers of replication). 0 

The optimal design result implies that if all of the two-way tables are multiples of a 
matrix of l's (i.e., Nfg ex: J for all f =1= g), then the design will be universally optimal for all s 
factors. Consequently, while a completely balanced design with the same number of replications 
in every cell will be universally optimal, designs containing missing cells also may be optimal. 

Example 2. Consider the model introduced in Example 1. Then the design with nijk = 2 will be 
completely balanced and therefore universally optimal with Nab = 4J, and Nac = Nbc = 6J. 
The following two designs have the same marginal incidence matrices as the completely 
balanced design. 

7 
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Optimal Design 1 (ODl): 

nijl nij2 
J= 1 2 3 1 2 3 

1 2 2 2 2 2 2 
z 2 1 3 2 3 1 2 

3 3 1 2 1 3 2 

Optimal Design 2 (OD2) (from VanLeeuwen, Birkes, and Seely, 1999): 

nijl nij2 
J= 1 2 3 1 2 3 

1 2 0 4 2 4 0 
2 4 2 0 0 2 4 
3 0 4 2 4 0 2 

Under the main effects model, the completely balanced design, ODI and OD2 are universally 
optimal for estimating all three main effect contrast sets. D 

For a multiple factor main effects model, a design will be optimal if all possible two
factor submodels are balanced. This, in a sense, defines a type of balance with respect to the 
main effects model. The example of a 3 x 3 x 2 model with n = 36 is continued in the next 
section to explore the relationship between simple unbalance assessments and degradation to 
effect estimates as measured by the D-optimality criterion. 

3.2. Two-Way Tables and Data Unbalance: A Numerical Experiment 

This section summarizes a numerical experiment that examines more generally the 
behavior of designs for the 3 x 3 x 2 model with n = 36. The experiment's goal was to explore 
the relationship between the D-optimality criterion and simple summaries of pairwise unbalance 
for this model. 

To ensure that the sample contained a broad range of design attributes, random samples 
of 100 designs from each of 13 configurations were generated using SAS Proc IML (SAS 
Institute, 2000). All 1300 designs in the combined sample were chosen so that all effect 
contrasts were estimable. The first sample corresponded to designs having no missing cells (i.e., 
designs having no zeros in N). The second sample consisted of designs with one missing cell, 
the third sample consisted of designs with two missing cells, and so on up to the 13th sample, 
which contained designs with 12 missing cells. Note for example, that the design in Example 1 
is a design with two missing cells in N. Example 2 OD 1 has no missing cells in N while OD 2 
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has 6 missing cells. While these example designs mayor may not have been chosen in the 
experiment, all effect contrasts are estimable with all three designs. Consequently, they would 
have been candidate designs for random generation in the following samples. The Example 1 
design would have been a candidate for sample 3; OD 1 would have been a candidate for sample 
1; and OD 2 a candidate for sample 7. 

For each design, the D-optimality criterion (D-opt) values were calculated for the A
effect. For each two-way table, the numbers of missing cells (AB_miss, AC_miss, BC_miss) 
and the variance of the two-way table cell counts (AB _imb, AC _imb, BC _imb) were calculated. 
In addition, similar overall quantities for N were calculated. Each sample had a value for the 
number of missing cells in N (miss) associated with it and the variance of the nijk (imb) was 
calculated for each design. 

9 

All 13 samples were pooled. While an initial regression analysis found substantial 
associations between D-opt and the quantitative two-way table descriptions, diagnostics indicated 
that as the predicted optimality criterion value increased, so did the residual variance. Log 
transformations ofD-opt greatly reduced the severity of the variance's observed heterogeneity. 
Consequently, the reported analysis focuses on the log transformed optimality criterion (log(D
opt)). 

For the optimal designs in Example 2, the value of log(D-opt) for the A-effect 
was - 4.9762. Experimental values oflog(D-opt) ranged from - 4.9546 to - 1.3863. Fairly 
substantial associations (as measured by the Pearson correlation coefficient) were observed to 
exist between log(D-opt) and both the missing cell counts and the cell count variances. The 
correlation between miss and log(D-opt) was 0.82. The correlations between log(D-opt) and the 
pairwise missing counts also were substantial: AB_miss (0.86), AC_miss (0.77), BC_miss 
(0.54). Observed correlations between 10g(D-opt) and the cell count variances also were 
substantial: imb (0.88), AB_imb (0.84), AC_imb (0.76), and BC_imb (0.46). Correlations 
among miss, imb, AB_miss, AC_miss, BC_miss, AB_imb, AC_imb, BC_imb were all 
substantial as well and ranged in value from 0.50 (between BC_imb and AC_imb) to 0.94 
(between miss and imb). 

Four regression models were fit (Table 1) using log(D-opt) as the dependent variable. 
The first model used only two-way table missing cell counts as explanatory variables; the second 
used only two-way table cell count variances; the third used both two-way table missing cell 
counts and two-way table cell count variances; and the fourth included all model three 
explanatory variables, as well as miss and imb. 

For log(D-opt), the lowest value ofR2 is 0.83, which corresponds to models 1 and 2. In 
both models, all coefficients differ significantly from o. Not surprizingly, since the optimality 
criterion is assessed for the A-effect, the coefficients associated with measures on the AB and 
AC two-way tables are positive and larger in magnitude than the coefficient associated with the 
measure on the BC marginal matrix. Furthermore, for both models, the coefficients associated 
with the BC matrix are negative. Model 3 explains 88% of the variability observed in log(D
opt). Only the coefficient associated with the BC missing cell count is not significantly different 
from 0 (P = 0.0630). Model 4 establishes that some information can still be retrieved from the 
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measures on N. When miss and imb are added to the explanatory variables, R2 increases to 0.92. 
As with model 3, only the coefficient for BC _miss is not significant (P = 0.6088). 

This examination of the 3 x 3 x 2 model with 36 observations supports the notion that 
examining the two-way tables may be a useful step in examining data structure. For this 
particular case, simple two-way table summaries, such as missing cell counts and marginal cell 
count variances, explain much of the variability observed in the log D-optimality criterion. 
Furthermore, as our earlier discussion would suggest, the associations between logged optimality 
criterion and measures on the marginal incidence matrices for A are stronger than the 
associations with marginal incidence matrices that do not include A as a factor. Furthermore, 
while simple associations between 10g(D-opt) and BC_miss and BC_imb are positive, their 
regression coefficients are negative. This suggests that the partial correlations, after adjusting 
for the associations with the AB and AC two-way tables, are negative. 

4. Discussion and Summary 

As suggested by the motivating example, two-way tables between main effect model 
factors are useful tools for gaining insight into the data structure's likely impact on effect estimate 
variances. In the motivating example, simple examination of two-way tables revealed both 
missing cells and high cell count variability which seemed to be associated with problematic 
degrees of collinearity. Subsequent exploration of simple measures, such as numbers of missing 
cells and variances of cell counts, on the two-way tables for the 3 x 3 x 2 model with n = 36 
suggests that these measures provide substantial insight into changes in D-optimality criterion 
values. The experiment confirms what seems to be intuitively obvious: That an increasing 
degree of unbalance in the two-way tables corresponds to an increasing degree of confounding 
and partial confounding of effects. 

While the optimal design result is simple and applies to only limited model-resource 
combinations, which preclude incomplete blocks, it is instructive when thinking conceptually 
about unbalance in observational experiments. (Here "model" refers to the number of factors and 
numbers of levels corresponding to each factor in a main effects model and "resource" refers to 
the total number of observations, n.) The result emphasizes the role of the pairwise relationships 
between factors in the model and is consistent with many of the optimal design results that 
essentially require as much balance as possible between a treatment factor and each of the 
blocking factors (Shah and Sinha, 1989). Readers are, however, cautioned against 
overgeneralizing for two reasons. First, most optimal design literature assumes orthogonal block 
structure. Second, because of the discrete nature of the mathematics involved in obtaining 
optimal designs, certain model-resource combinations may behave pathologically. 

Urquhart and Weeks (1978) noted that even when all effects are estimable, missing cells 
are problematic in the two-way main effects model. They provided a numerical example to 
illustrate the degradation to estimates that begins to occur as missing cells appear. Consequently, 
it is not surprising that D-optimality criterion values were strongly associated with measures as 
simple as the missing cell counts in the two-way tables. 
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While Urquhart and Weeks (1978) noted that "models excluding many possible, perhaps 
even all, interactions are the rule, not the exception, particularly for large data sets," they 
recommended that with messy data, "the researcher. .. should define the relevant parametric 
functions in terms of cell means." This is good advice in some cases. However, model-based 
analyses are common in many disciplines and often are used when analyzing both observational 
data and data from designed experiments. Ultimately, both the research goals and the data 
structure should be used to inform the approach to analyzing the data. Designed experiments 
using Latin Squares and fractional factorials are common in industrial settings. Both Latin 
Squares and some fractional factorial designs are used widely and accepted for use under an 
assumed main effects model, despite the missing cells in the incidence matrix, N. These designs 
do not, however, have missing cells in the two-way tables. This research suggests that what 
constitutes a meaningful degree of missing ness may depend, in part, on the model. Under the 
main effects model, missing cells in the two-way tables may, in some senses, be the natural 
extension of missing cells in a design for a main effects model having only two factors. 

It is not surprising that simple measures on two-way table cell counts are associated 
strongly with optimality criteria. Both the criteria and the two-way cell counts are functions of 
the X' X matrix where X = (J, Ai, ... ,As). The X' X matrix consists of blocks with the N/g 
making up the off-diagonal blocks and diagonal blocks consisting of off-diagonal zeros with 
single-factor marginal totals along the diagonal. Consequently, for a main effects model, 
information criteria are a function of the two-way tables. However, given the complexity of 
these functions, it is interesting that simple two-way table measures provide as much insight into 
criteria values as this study suggests. More research is need to examine the association between 
criteria and these simple measures for other main effect model-resource combinations. 

The observations presented lead to notions of four (overlapping) design categories 
defined in terms of the two-way tables. The first are balanced designs with respect to the main 
effects model. These are the optimal designs with all two-way tables being multiples of matrices 
of ones. Another category is suggested by Tjur (1984). Designs that are proportional with 
respect to the main effects model have statistically orthogonal factors. These designs are 
characterized by n{] = (n{ n;)/n for all f =1= g. Balanced designs are a special case of 
proportional designs. The remaining two classes are designs that are unbalanced or have missing 
cells with respect to the main effects model. Unbalanced designs simply include at least one 
unbalanced two-way table, while missing cells designs have at least one missing cell in at least 
one two-way table. While these design categories do not define a clear hierarchy with respect to 
optimality criteria, they are instructive for clarifying conceptual thinking about design structure. 

Completely balanced designs are not defined in terms of the two-way tables but are the 
traditional equal replication designs. Using criteria that include design optimality, orthogonality, 
and robustness to departures from the main effects model, it can be argued that completely 
balanced designs are the "best" designs. As long as the main effects model holds, however, 
designs that are balanced with respect to the main effects model are just as good; they will be 
both optimal and orthogonal. Proportional designs are orthogonal and so possess some desirable 
analytical properties. However, some designs that are unbalanced with respect to the main 
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effects model may have better (smaller) D-optimality criterion values than some proportional 
designs. Similarly, some unbalanced designs may have larger D-optimality criterion values than 
some designs that have missing cells with respect to the main effects model. Nonetheless, as the 
experiment demonstrated, there is a strong relationship between D-optimality criterion values 
and simple measures on the two-way tables. This empirical study suggests that designs with 
missing cells generally have higher criterion values, and the more missing cells in the two-way 
tables, the higher the criterion. Similarly, the more variability in the cell counts for two-way 
tables involving the factor on which the criterion is measured, the higher the criterion. Because 
such simple measures were used, a practitioner can obtain the two-way tables and, by inspection, 
quickly assess whether there are missing cells in the two-way tables and whether the two-way 
table cell count variances are relatively large. While not a substitute for estimating variances of 
estimate effects and other traditional data analysis details, such inspections may contribute early 
in the analysis to the practitioner's understanding of the data structure. 

5. Recommendations 

Practitioners should use two-way tables to examine observational study data structure. 
Particularly in cases of severe unbalance, the two-way tables may provide insight into partial 
confounding among factors. Furthermore, we recommend that practitioners use two-way tables 
early in the process of analyzing observational data. In some cases, this will allow them to assess 
whether the data structure supports the intended analysis before too much effort is invested in 
that analysis. In some disciplines, a common procedure is to collapse factor categories prior to 
analysis. This often is done on the basis of one-way frequencies. If a main effects model is to be 
used, it may be better to consider both the one-way and all two-way frequencies involving the 
factor when making decisions about collapsing categories. In some cases, practitioners also 
should be aware that a design may be quite good (even optimal) for estimating one set of effect 
contrasts but poor for estimating others. 
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Table 1. Summary of regression coefficients and R2 values for regressions on the log transformed 
D-optimality criterion values for the A-effect contrast set. 

Model Intercept AB miss AC miss BC miss AB imb AC imb BC imb miss imb R2 

1 - 4.7643 0.3441 0.3934 - 0.1445 - - - - - 0.83 
2 - 5.0470 - - - 0.0832 0.0330 - 0.0111 - - 0.83 
3 - 4.8766 0.1897 0.2310 0.0357 0.0445 0.0166 - 0.0183 - - 0.88 
4 - 4.9787 0.1193 0.1815 - 0.0084 0.0268 0.0091 - 0.0256 - 0.0156 0.1530 0.92 

NOTE: Miss, AB_Miss, AC_miss, and BC_miss are missing cell counts. 1mb, AB_imb, ACjmb, and BC_imb are vanances 
ofN, Nab, Nac, and Nbccell counts, respectively. 
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