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Abstract 

While extensive progress has been made in quantitative trait locus (QTL) mapping of 
diploid species, the progress of QTL mapping in polyploids has been limited due to the 
polyploid's complex genetic architecture. To date, QTL mapping in polyploids has focused 
primarily on tetraploids with dominant markers and/or codominant markers. In this paper, we 
extend the interval mapping methodology to any autopolyploid of even ploidy level. Our 
approach selects a set of likely parental chromosomal configurations (models) using a Bayesian 
model reduction step. The EM algorithm is then employed to estimate each model's parameters 
including QTL location, marker dosages, QTL dosages, and the trait effect. 

Key words: autopolyploid, QTL mapping, interval mapping, 

1. Introduction 

QTL (quantitative trait locus/loci) mapping detects and identifies regions of a genome associated 
with the variation of a quantitative trait of interest. Molecular markers have been used 
extensively to construct genetic maps for diploid species (Koornneef et al. 1983; Dietrich et al. 
1996), and act as the foundation for further QTL analysis. Based on genetic maps, many 
statistical methods have been developed for QTL mapping, namely interval mapping (Lander 
and Botstein1989), composite interval mapping (Zeng 1993, 1994), and multiple QTL mapping 
(Jansen 1993). The statistical issues involved in QTL mapping are reviewed in Doerge (2002). 

Polyploids are organisms having more than two complete sets of chromosomes 
(genomes) in a cell. Polyploidy is most common in plants, especially in agriculture plants, and is 
found in some insects, amphibians, and reptiles. It is also an important evolutionary force that is 
the basis of many investigations (Soltis and Soltis 2000; Osborn et al. 2003). Due to the different 
approaches of current QTL mapping methods for polyploids, we need to classify polyploids 
according to the homology between genomes. A polyploid with genomes all derived from the 
same species is called an autopolyploid. Otherwise, if the multiple sets of chromosomes are 
derived from different species, the polyploid is called an allopolyploid. 

For allopolyploids, such as bread wheat and potato, meiotic pairing is restricted in 
ancestral parental homologues; therefore, diploid QTL mapping methods can be utilized. 
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However, for autopolyploids the high homology between the genomes creates additional 
complexities in the meiotic process. Specifically, autopolyploids may undergo either bivalent 
pairing (two homologs pair) or multivalent pairing (more than two homologues pair), and it 
varies in different species (Rieseberg and Doyle 1989; Sybenga 1995). Furthermore, the manner 
in which the paired chromosomes segregate during meiosis, especially for multivalent pairing, 
also varies among species (Jackson and Jackson 1996). Finally, the number of alleles for each 
locus, how many copies of each allele, and the linkage phase between loci for the parents and the 
progeny are unknown. 

For autopolyploids, the multiple copies of markers or QTL may be biallelic or 
multiallelic. Here, we assume they are biallelic (or dominant) loci, which holds for experiments 
based on doubled-haploids (Guha and Maheshwari 1964), such as pseudo-doubled backcross 
experiments (Grattapaglia and Sederoff 1994) in inbred populations. Wu et al. (1992) proposed 
the method of estimating a genetic map for autopolyploids with simplex markers, or single dose 
restriction fragment (SDRF) markers, which represent only one homologue and segregates 1:1 in 
the progeny. Ripol et al. (1999) extended the method of Wu et al. (1992) to any dominant marker 
with an unobservable dosage level by first estimating marker dosages and linkage phase, and 
then constructing a genetic map by computing the maximum likelihood estimates of 
recombination based on estimated parental marker configurations. Doerge and Craig (2000) 
developed an algorithmic model selection process for a single marker QTL analysis with 
dominant markers for autopolyploids with any even ploidy leveL' 

As a continuation of the work by Doerge and Craig (2000), we propose a maximum 
likelihood based interval mapping method using available genetic maps to increase the power of 
detecting and estimating QTL locations within an autopolyploid bivalent pairing framework. 
Our work is based on a pseudo-doubled backcross experiment (Grattapaglia and Sederoff 1994) 
and employs model selection for interval mapping to simultaneously estimate model parameters 
including QTL location, parental marker and QTL dosages, and the QTL effect given marker 
presence/absence data and quantitative trait data for the progeny. We first estimate the parental 
marker configuration (i.e., marker dosages and their arrangements) to reduce the number of 
potential parental configurations (i.e., models). Based on each putative parental configuration, 
interval mapping is used to estimate QTL location and QTL effect. We limit our approach to 
even ploidy levels with multiple-dose dominant markers since odd ploidy levels are often highly 
infertile. After describing the methodology, simulation studies are presented to investigate how 
QTL or marker dosages and their linkage affect the performance of our algorithm. 

2. Method 

An example of a pseudo-doubled backcross experiment for a tetraploid with two markers is 
shown in Figure 1. In a pseudo-doubled backcross experiment, after an informative parent Pi is 
selected, half of its chromosomes are doubled to create a non-informative parent P2, and the 
progeny Fi is produced by crossing Pi and P2 under the following assumptions. First, by 
definition, the informative parent has at least one, and at most, half the ploidy dose of the 
dominant allele at each locus. Second, the pairing mechanism in the meiosis process is either 
preferential pairing (select homologs always pair together) or random pairing (equally likely to 
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pair with each homologue). In this work, the examples and simulation studies will be presented 
using preferential pairing mechanism, in which each informative homologue always pairs with a 
non-informative homologue. Last, assuming an additive QTL effect, the trait Y has a normal 
distribution with mean flj = ja + b, where j is the dosage of the QTL, and common variance (i. 
Let 8 = (a, b, (J) denote the vector of model parameters, n denote the number of progeny, m 

denote the number of markers, and k the ploidy level. In what follows, for each locus the upper 
case is used to denote both the locus name and its dominant allele, and the lower case stands for 
the recessive allele (e.g., A and a). The dosage of a locus denotes the dosage of the dominant 
allele at that locus. When a marker is present in an individual, at least one dose of the dominant 
allele for that marker is observed. 

2.1. Interval mapping 

Given a genetic map (i.e., the recombination fractions or genetic distances between the markers) 
and a parental configuration C, interval mapping can be applied to estimate 8 = (a, b, (J) . A 
parental configuration includes the dosage at each locus and the linkage phase between the loci. 
Consider two markers Ml and M2 (m = 2), and one QTL, Q. Let x = (Xl, X2, ... , X/l) denote all the 
observable data. For the ith individual, Xi = (Yi, Di), where Yi is the trait value, and Di = ( liM! ,l~2 ) 

are the marker presence/absence indicators with (Mh = 1 if marker Mil is present and 0 otherwise. 

With a fixed putative position of the QTL and parental configuration C, the likelihood function 
of the trait is a mixture of normal distributions, 

n k 12 

L(8 I X,C) = I1LP(Qi I liM! ,liM, ,C)¢(Yi;Ji j = ja +b,(J2), (1) 
i=1 j=O 

where p(Qi I liM!, liM 2 , C) is the probability of the ill! progeny having j copies of the QTL with 

marker presence status { I/,\ (M2 }, and ¢(Yi;Ji j = ja + b, (J2) is the normal density function 

valued at Yi with mean Ji. = ja + b and variance (J2 . The P(Qj I liM!, liM" C) is a function of 
] 

the recombination fractions between the QTL and markers, and is a known quantity. 
In the interval mapping framework, the putative QTL position is fixed at incremental 

positions between the flanking markers for the purpose of evaluating a test statistic (commonly, 
the log likelihood ratio). At each evaluation position, let rl!a (h = 1, 2) denote the recombination 
fractions between marker M}z and the QTL, where the superscript a stands for alternative 
hypothesis. To test the hypothesis 

H 05 H a a 
o : r l = r2 =. vs. (/ : rj = 1] ,r2 = rz 

where the null hypothesis assumes that the QTL is present, but unlinked to both markers, and the 
alternative hypothesis assumes that the QTL is present and linked to MJ and M2 with 
recombination fractions less than or equal to r}za , the log likelihood ratio test statistic LRT is 

L(80 ,rj = rz = 0.5) 
LRT = -21n A , 

L( 81l ,rj = r] (/ ,r2 = r2 II ) 

Conference on Applied Statistics in Agriculture
Kansas State University

New Prairie Press
https://newprairiepress.org/agstatconference/2003/proceedings/6



Applied Statistics in Agriculture 63 

with 80 and 8a representing the estimated parameters under the null and alternative hypotheses, 

respectively. A permutation test can be performed to estimate the significance threshold for the 
test statistic (Churchill and Doerge 1994}. If the test statistic is significant then the 
corresponding position with the largest LRT statistic is referred to as the estimated QTL position, 
with the corresponding maximum likelihood estimate (MLE) of 8 at this position. 

Due to the summation over QTL dosages in the likelihood function (1), the EM algorithm 
(Dempster et al. 1977) is employed to estimate model parameters. The complete likelihood 
function is 

n kl2 z.· 

f(8 I x, C) = nn [P(Qj I I;M\ ,l;M2, C)f/J(y;;j.i j = ja + b, 0'2)] I) • (2) 
;;1 j;O 

Here, the unobservable data are the individual QTL dosages. For the lh individual, define 
z; = (z;o' z;P"" z;,k'2),i = 1,2,,,., n, be such that zij is an indicator variable for the QTL dosage of j 

for the ilh progeny. To implement the EM algorithm, the zij are estimated in the E step by 
A 

Y - ja-b 
A Pj exp{-O.5(; A )2} 

Zij = E[Zij] = Po(dQ = j I yJ;M\ ,l;M2 ,C) = 0' A A 

"k12 ex {-O.5( y; -la - b)2} 
~1;OPI P (} 

where Pj = Po(dQ = j I yJ;M\ ,l;M2 ,C). Given zij' the MLE of 8 = (a,b,O') is 
n kl2 n kl2 n kl2 

nLLzij xjxy; - LLZij xY;LLZij xj 
a = _;;_I....:,j_;O ______ ;;_1 ..:....j;_O ___ i_;I.....:;J_·;O __ _ 

n kl2 n kl2 
nLLZij x/ -(LLZ;j Xj)2 

A 1 n kl2 
b =-LLZij(y; - ja)2, 

n ;;1 j;O 

1 n kl2 
(}2 =_ LLZij(Y; - ja-b)2. 

n ;;1 j;O 

The E step and M step are iterated until a convergence criterion is satisfied. 
As stated before, the parental configuration is unknown. If each possible parental 

configuration is viewed as a potential model, the model space tends to expand quickly as the loci 
number and ploidy level increase. For example, under a pseudo-doubled backcross experiment 
with only two markers, there are 14 possible parental configurations for a tetraploid, 91 for a 
hexaploid, and 390 for an octaploid. To limit the model search, a model reduction step is 
implemented. 

2.2. Model Reduction 

To reduce the model space, one can consider either a marginal method (1) or joint method (2). 
With method 1, we calculate the posterior probabilities of dosages for each marker individually 
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assuming that all the possible dosages are equally likely a priori. If one particular dosage level 
has a posterior probability higher than a specified cutoff, only that marker dosage is considered 
in candidate parental configurations. Otherwise, we select the most likely dosage levels until the 
sum of posterior probabilities exceeds the cutoff and these dosages are used to form the 
candidate parental configuration set. With method 2, a similar approach is used but information 
on both markers is considered jointly. We can directly calculate parental marker configuration 
posterior probabilities and choose the candidates following the same rule as above. 

2.2.1. Calculate parental marker dosage posterior probability 

The posterior probabilities for parental marker dosages of each marker are calculated using the 
Bayes' rule based on the marginal marker presence/absence distribution (Ripol et al. 1999). This 
method will be referred to as the binomial method. For one marker M, the number of progeny 
with M absent, nnull has a binomial distribution Bin (n, P dM ), where dM denotes the marker dosage 

of M in the informative parent. Under the pseudo-doubled backcross experiment, PdM = (0.5)dM 

for our preferential pairing system and Pd = (k -dM Jj(k J for a random pairing system. 
M k/2 k/2 

Thus, gi ven the informati ve parent marker dosage dM, the chance of observing nnull is 

( n J 11 pen I n d ) = P n,,1/ (1- P )n-n",,11 
null 'M dM dM ' 

nnllll 

Based on a discrete uniform prior on dM , the posterior probability of each dosage level is 
n,mll (1- )n-n,lllil 

P(d I ) PdM PdM 
M nnuli' n = k j? , 

" -P n,,,,1/ (1 _ P ) n-n",,11 
L...Jd~1 d d 

2.2.2. Calculate parental marker configuration posterior probability 

To calculate the posterior probability of parental marker configurations, we can use the joint 
marker information and a genetic map. This method will be referred to as the multinomial 
method. Suppose we have markers M] and M2. All progeny can be classified into four sets 
according to the presence status of the two markers. Let nubs = (noo, nO], n]O, nJI) stand for the 
observed frequency vector in the four sets, where the ht\ (h = 1, 2) subscript is 1 if Mit is present, 
and 0 otherwise. Assuming no segregation distortion and a parental configuration C, nabs follows 
a multinomial distribution with probability parameter vector pc = (Pooe, po/" PJOc, Pl/)' As an 
example, pI' is listed in Table 1 for the five parental marker configurations (A--E) for a tetraploid 
with two markers under preferential pairing. 

A. MJ MJ B. Ml m1 C. MJ MJ D. E. 
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The probability of observing nobs = (noo, nO], nJO, nn; is 
, 1 

P(nobs I n, C) = 1 n. IT (Pu" )nij , 
IT n. !i,j=O 

i,j=O l) 

Thus, the posterior probability for a parental marker configuration Co is 

ITI ( .. co fi j 

I i,j=O PI) 
P(Co nobs,n)= I en' 

IITi,j=o(Pij ) 'J 

C 

2.2.3. Comparison of the two model reduction methods 

65 

Among the criteria for a good model reduction method are ease of implementation, a high 
probability of selecting the true model, and efficiency in reducing the size of the candidate model 
space. The binomial method is relatively easy to be implemented and less computationally 
expensive than the multinomial method. But the binomial method only estimates parental marker 
dosages and there may be multiple marker configurations having the same marker dosages, 
especially if the marker dosages are low. On the other hand, the multinomial method directly 
estimates parental marker configuration posterior probabilities; therefore, the multinomial 
method will be more efficient in reducing the model space. 

A simulation study was performed to compare the performance of the two methods for a 
tetraploid with two markers under all the possible parental marker configurations. The cutoff was 
set to be 0.90. Marker genetic distance was from 10 cM (centi-Morgan) to 50 cM with increment 
10 cM. Sample sizes ranged from 50 to 500 with increment 50. For each combination of 
simulation setting, 10,000 data sets were generated under our preferential pairing mechanism. 
The probability of including the correct configuration in the candidate configuration space was 
estimated from the observed proportion, pine, for each parental configuration. For the binomial 
method, this proportion denotes the probability of selecting the correct marker dosages; while for 
the multinomial method, this means the probability of selecting the correct marker configuration. 
Also the probability of selecting a unique configuration was also estimated from the observed 
proportion, puni, as a measurement of the efficiency of reducing the model space. The results are 
listed in Table 2 with sample sizes 50,100, and 150, and marker distance 0.10 M, 0.3 M, and 0.5 
M chosen for demonstration. 

In general, both methods performed better with a larger sample size or shorter marker 
distance. With sample size 100 and above, both Pine andpuniwere almost 1.0 for all of the 
simulation settings. With a small sample size, the extra information gained from the genetic map 
added strength to the multinomial method in selecting the correct marker configuration and 
reducing the model space. Both pine and puni of the multinomial method were higher than, or as 
large as, those of the binomial method except when the sample size was 50, the marker distance 
was 0.5 M, and both marker dosages were 1. 

Based on the simulation results, we suggest that these two methods can be used 
simultaneously especially if the map is sparse or the sample size is small. If the dosage 
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configuration of the marker configuration selected by the multinomial method is in the candidate 
dosage configuration set selected by the binomial method, then we can use this selected marker 
configuration to do interval mapping, Otherwise, we need to use the whole set chosen by the 
binomial method. With more than two markers (m > 2), the binomial method can be naturally 
extended. The multinomial method can be carried out with all the markers considered jointly, 
and in that case, the dimensionality of nobs and l' is 2m. 

3. Simulation 

Using a pseudo-doubled backcross experiment, a simulation study was performed for tetraploids 
with two markers and one QTL for all possible parental configurations. Among the factors 
affecting the worth of this algorithm, we chose to vary the location of the putative QTL in the 
marker interval, the parental configuration, and sample size to investigate how the QTL or 
marker dosages and their linkage affect the performance of our algorithm. The genetic distance 
between the two markers was set to be 50 cM. Let dh , h = 1, 2 denote the distance between Mh 
and Q. The true location of Q was determined by the ratio of d1 and d2. Three ratios 1 :9, 3: 7, and 
5:5 were used (e.g., if the ratio is 1:9, then the QTL is 5 cM to the right of M1 and 45 cM to the 
left of M2)' The trait distribution parameter vector was fixed at () = (a,b,a) = (2.0,10.0, 1.0), 
and for each location, 100 data sets were generated, each having 500 progeny with marker 
presence/absence and trait data. 

The simulation showed that if the correct configuration was selected, the estimates of the 
QTL position and () = (a,b,a) were close to the true values; otherwise, the estimates could be 
severely biased. Therefore, to be able to select the correct configuration is important. 
Configurations with higher dosages of marker and QTL, often have higher disequilibrium 
between the marker and the QTL and provide more information for recombination fraction 
compared with configurations with lower dosages of marker and QTL. This results in stronger 
linkage (or, stronger statistical association) between the QTL and markers, which in tum helps to 
capture the correct configuration and reduce the variation of the selected models. This is an 
interesting result because it implies that the statistical interpretation for linkage between markers 
and QTL is affected by the dosages of QTL and marker. An example is shown in Table 3, where 
the parental configuration (M1, Q, M2 I M 1, Q, M2) (Model I) has one more dose of QTL than the 
parental configuration (M1, Q, M2 I M 1, q, M2) (Model II). For all the three locations of the QTL, 
model I selected the correct configuration 100%, while model II selected 99% when the QTL is 
very close to M1, and only 90% when the QTL is at the center of the interval, which also 
demonstrates that the ratio of selecting the correct model is smaller if the linkage between the 
QTL and the markers is weaker. 
The simulation showed that 

4. Discussion 

Model selection for QTL analysis using interval mapping for pseudo-double backcross 
experiments in autopolyploids is presented. Assuming a framework that includes a genetic map, 
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progeny marker presence/absence data, and trait data, our approach first identifies the potential 
parental configurations (models), which fit the estimated parental marker dosages using a 
Bayesian approach. Based on the putative models, the QTL location and its effects are then 
estimated using likelihood ratio tests. Since only the presence or absence state of each marker is 
known, the number of potential parental configurations (models) increases dramatically as the 
number of marker and/or ploidy level increases. Estimating marker dosages using Bayesian 
methods is shown to be a useful way of reducing the model space. 

Simulation studies demonstrate that marker dosage, QTL dosage, and QTL position 
affect the chance of selecting the correct configuration and thus, the accuracy in estimating 
parameters. A stronger linkage between the QTL and its markers is the key to increasing the 
power of detecting the QTL, and we have learned that dosage plays a part of this increased 
power. Our simulation study helps answer the questions raised in Doerge and Craig (2000). 
If a molecular marker is found to be tightly linked to a QTL, should the dosage of the marker 
agree with the dosage of the QTL? Simulation shows the linkage between the marker and QTL is 
the strongest if they are in coupling and their dosages agree. In which situations is the linkage 
more strongly affected? We know from our simulation that higher dosages of marker and/or QTL 
strengthen the linkage. Would models with dosage levels more similar to each other be more 
likely, especially with close linkage? Yes, as demonstrated by simulation for a tetraploid, it is 
harder to choose among models with single dose markers than to choose among models with 
double dose markers simply because there are more possible models with single dose markers 
than those with double dose markers. 

Hackett et al. (2001) also proposed a method for interval mapping in autotetraploids 
using both dominant markers and codominant markers, like SSR markers. Their method is based 
on weighted regression analysis and extends the allelic effect structure from the diploid setting to 
the polyploid setting. Since our method can be extended to include codominant markers, the 
strength of our maximum likelihood based method lies in the fact that it allows the development 
of more general QTL allelic effects than linear or additive effects as seen in regression-based 
methods. Rodzen and May (2002) suggested scoring multi allelic SSR markers as individual 
dominant markers unless the markers' underlying mode of inheritance are known because 
different loci may have different inheritance patterns. 

The effect of the assumptions we make on the genetic map used for QTL mapping in 
polyploids is one area of research that remains unaddressed. Currently, our approach and the 
approach by Hackett et al. (2001) assume that the genetic distances are provided from a genetic 
map, but the parental configuration from which the progeny are generated remain unknown. 
Both methods select the potential pool of parental configurations based on observed progeny 
data. However, when a genetic map is estimated, the most likely parental configuration has to be 
estimated since the estimated recombination fractions are based on the estimated parental 
configuration. Therefore, the parental configuration used for estimating the genetic map should 
be consistent with the one used to locate QTL. This leads to the question of whether we should 
use the estimated parental configuration when we map QTL. How this question is addressed 
depends on our confidence in the estimated configuration. If the most likely parental 
configuration is not the correct configuration, the reliability of the map and the mapped QTL will 
be in question. Framework is currently under development to allow variability in estimated map, 
and to gain insight into these questions. 
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Figure 1. A pseudo-doubled backcross experiment for a tetraploid with two loci Ala and 
Bib. The upper case denotes the dominant allele. Pz is the informative parent with two dose 
of each dominant allele. P2 is the non-informative doubled-haploid produced by doubling a 
haploid of PI, which only contains recessive alleles. 
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Table 1. Multinomial distribution probability parameters pC = (PO/, pol, pz/, pz/) for 
parental marker configurations in a tetraploid with two markers. The recombination 
fraction between the two markers is denoted as r. 
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Table 2. The estimated probability of selecting the correct configuration in the candidate 
configuration (model) space, Pine, and the estimated probability of selecting a unique 
configuration,puni, for a tetraploid with two markers, 10,000 simulated data sets, and a 
cutoff of 0.90 for both the binomial and multinomial model reduction methods. The sample 
size is denoted as n, and d stands for the marker genetic distance with unit Morgan (M). 
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Table 3. Estimated location of the QTL and trait distribution parameter 8 = (a, b, (J) from 
100 simulated data sets with sample size 500 under the parental configuration (MJ, Q, M2 I 
MJ, Q, M2). a is the additive QTL effect. b is the grand mean of trait distribution. (J is the 
stand deviation of the trait distribution. "Ratio" stands for dz:d2• "Freq" denotes the 
frequency of having the largest likelihood ratio test statistic for the corresponding model. 
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