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COMPARING ESTIMATION PROCEDURES FOR 
DOSE-RESPONSE FUNCTIONS 

William J. Price, Bahman Shafii 
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University ofSt Andrews, St Andrews, Fife KY169LZ, Scotland 

Shane Early, Joseph P: McCaffrey, Matthew, J. Morra 
Department of Plant, Soil, and Entomological Sciences 

University of Idaho, Moscow, ID 83844 

The dose-response design is often used in agricultural research when it is necessary to 
measure a biological response at various levels of an experimental factor. This type of problem is 
common in chemical and pesticide research, however, it can also occur in other disciplines such as 
plant, animal, soil, and environmental sciences. While the analysis of dose-response data usually 
involves fitting a regression curve, the primary objective often centers on the estimation of dose
related percentiles such as the LDso or LCso. These measures are useful for comparing the relative 
efficacy of various treatments, however, the estimation of the specified percentiles is not always 
straightforward. Traditional methodology has relied on inverted solutions or asymptotic theory 
for statistical inference. More recently, computer intensive methods have been used to model 
dose-response relationships and can be more appropriate than traditional methods in some 
situations. This paper examines both the traditional and modem approaches to estimating dose
response functions as they apply to binomial data. The techniques will be demonstrated using 
mortality data collected on black vine weevil eggs exposed to an organic pesticide treatment. 

Key words: Linearized Probit Analysis, Generalized Nonlinear Models, Bayesian Estimation 

I. INTRODUCTION 

Dose-response problems commonly occur in agricultural research. Examples can be found 
in plant science, soil science, entomology, and animal science (see for example Dungan, et aI. 
2001; Hemandez-Sevillano, et aI., 2001; Turner, et aI., 1995). The general framework of dose
response modeling encompasses many types of problems including the effects oftime, e.g. 
germination and emergence responses, or environmental effects, such as temperature and chemical 
exposure. Dose-response modeling also arises in the related areas of bioassay, calibration, and 
standard curve estimation where the objective is to determine an unknown dose given an observed 
response. 

Graphically, dose-response problems are often expressed as nonlinear curves. Over a 
range of dosages, the measured response, will often change in either an increasing or decreasing 
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sigmoidal fashion, although the response may also follow other asymptotic patterns, depending on 
the research problem. The responses, in either case, may be considered to originate from a 
continuous distribution, e.g. normal, log-normal, gamma, etc., or possibly from a discrete 
distribution such as the binomial, multinomial or Poisson. 

Estimation of the dose-response functions can be carried out using linear or nonlinear 
regression techniques. The resulting estimated curves are not only useful for describing the 
overall dose-response process, but the estimated parameter values may provide valuable 
information relevant to the problem under investigation. For example, the objective of dose
response analysis typically involves the estimation of an unknown dose which corresponds to a 
predetermined level of response, say 50%. These estimated percentiles are usually referred to as 
the lethal dose 50% (LDso), the lethal concentration 50% (LCso), the effective concentration 50% 
(ECso), etc., dependent on the context of the problem and represent the dosage required to 
achieve a 50% response rate. While estimation of other percentiles may be desirable for the 
problem, the 50th percentile is traditionally used as a measure of efficacy and often is the easiest to 
compute. Estimation of a dose conditional on a fixed response can be problematic, however, 
since it essentially involves working the regression problem backwards, i.e. an inverted solution 
usually having an unknown distribution which must be approximated. Thus, any statistical 
inferences or contrasts on these quantities will also be approximated. 

This paper will outline and demonstrate several estimation methods for binomial dose
response data. The methods considered will cover traditional approaches including least squares 
and maximum likelihood, as well as more contemporary solutions consisting of generalized 
nonlinear models and Bayesian estimation techniques. 

II. METHODS 

1. Traditional Estimation Techniques 

1.1 Linearized Least Squares Pro bit Analysis 

Binomial dose-response modeling was originally fonnulated through a linearized weighted 
least squares estimation (Bliss, 1934). The linearizing transformation in this case is based on a 
convenient CDF form. The resulting linear model is given by: 

(1) 

Here, cD-1(p) is the value of the inverse CDF computed for each proportion of success, Pij 
YiN, where Yij is the number of successes at fh replication ofthe ith dose, and N is the total 
number oftrials. <P is referred to as the tolerance distribution and is typically selected to be a 
normal distribution (probit), logistic distribution (logit), Students t distribution (tobit) or 
gompertz distribution (gompit). ~o and ~1 are regression parameters and lOij is a random error 
under the usual regression assumptions, i.e. eij ~ NID(0,cr2). Least squares estimation of (1) is 
carried out assuming weights proportional to lI(Pi/(1-Pi). 

The linearized estimation has the advantages of simplicity and ease in computation, 
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however, it can present problems when the expectation surface is not planar and exhibits 
nonlinearity. Furthermore, percentiles are obtained through inversion of predicted values which 
are assumed to be normally distributed and, hence, making all inferences approximate. 

1.2 Maximum Likelihood Pro bit Analysis 

The limitations of the linearized least squares solution were widely acknowledged early 
on, and a more appropriate maximum likelihood technique was proposed (Bliss, 1938; Fisher, 
1935; Finney, 1971). In the maximum likelihood procedure, the underlying distribution of the 
data, 
I.e. Yij ~ bin(N, 7t;), is used to form the likelihood function: 

(2) 

The binomial parameter, 7t j , is assumed to be a function of dose given by: 

(3) 

where <P, ~o, ~l' and dose j are defined as in (1), and M represents the natural or threshold level of 
the response under the control ( dose=O condition). M acts as a scaling factor in (3) increasing 
the function intercept while limiting the maximum value to be 1.0. During the estimation process, 
M can be assumed equal to 0, fixed at a known value, or estimated in conjunction with the other 
parameters. 

The estimation of percentile values can be derived using inversion, as above, or more 
typically, using a ratio of the parameters ~o and ~l and using a normal approximation (Fie1ler, 
1944). Thus, while maximum likelihood improves the estimation process through the use of a 
correct probability distribution and a true nonlinear situation, the exact distribution for the 
estimated parameters and percentiles are unknown and corresponding inferences on these 
quantities remain approximate. 

2. Modern Estimation Techniques 

2.1 Nonlinear Least Squares Analysis 

Dose-response estimation can be carried out by directly estimating the proportion of 
success as a function of dose: 

Pi = j{dosei , 8) + Eij (4) 

where f( dose j , 8) may be generalized to any continuous function of dose with a domain between 
0.0 and 1.0 and parameter vector 8. While this solution provides more flexibility in the functional 
form of the dose-response model than the probit models, for example, it fails to account for the 
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underlying distribution of the data and assumes the error term, Cij' to be normally distributed with 
zero mean and constant variance. This leads to asymptotic standard errors and approximate 
inference on 8 and can produce invalid predicted values, e.g. predictions less than 0.0 or greater 
than 1.0. For these reasons, the above technique constitutes a poor choice for estimating dose
response functions. 

2.2 Generalized Nonlinear Models Analysis 

A more appropriate method for nonlinear estimation is the generalized nonlinear model 
which expands upon the maximum likelihood approach given in section 1.2. Like that procedure, 
the data distribution is assumed Yij ~ bin(N, 7r i), and the likelihood function is specified as in (2). 
However, the binomial parameter, 7r i , may now be defined more generally as: 

(5) 

where f( dose i , 8) is as defined in nonlinear least squares (4). This strategy retains the desirable 
characteristics of maximum likelihood probit analysis, i.e. a true nonlinear estimation utilizing the 
correct data distribution, while yielding the advantage of specifying dose-response functions 
outside the class of CDF fonns. The generalized nonlinear model specification has additional 
benefits. The likelihood, for example, could be redefined to include other types of data, both 
continuous and discrete. Furthermore, the model may include random components in a mixed 
model scenario to account for effects such as over dispersion due to uncertainty in dosage. If 
f( dose i, 8) is specified as in (3), however, the results should be identical to those of maximum 
likelihood probit analysis. 

While generalized nonlinear models were not practical due to the lack of available 
computer software in the past, several computational options now exist to handle the 
requirements of generalized nonlinear models [see for example PROC NLMIXED in the SAS 
software package (SAS, 1999), or the GNLM module for the R statistical package (Lindsey, et al. 
2000]. Typically, these software solutions can estimate parameter values, as well as specified 
functions of the parameters. Measures of variability and inference on these quantities are still 
approximate and are often based on the Delta method or Taylor series expansions under the usual 
assumptions of normality. 

One useful advantage of the maximum likelihood procedures is the ability to formulate a 
full dummy variable specification which encompasses k independent treatments. This is 
accomplished by expanding the likelihood given in (2): 

(6) 

where 7rik is now the binomial parameter for the ith dose in the kth treatment. In the generalized 
nonlinear model, 7rik can be given as: 

(7) 
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where 8k is the parameter vector for the kth treatment. Comparison of treatments in terms of the 
8k can then be conducted through likelihood ratio tests and reduced model methodology. 

2.3 Bayesian Estimation 

The Bayesian analysis is based on the premise that given the dose-response function 
f(dosei, e), the percentile of interest is simply a function of the parameter vector 8, say g(8). 
Hence, the estimation begins with: 

p(6 I Yi) 
p(Yij I 6)*p(6) 

JP(yij I 6)*p(6)d6 
(8) 

where p(YijI8) is the likelihood of the data set Yij evaluated over the parameter vector 8, pee) is a 
prior distribution for 8, and p(eIYi) is the posterior distribution ofe given the data Yij' For the 
binomial case, the likelihood is equivalent to that given in (2) and the prior distribution is specified 
by the user based on previous experience or knowledge. If the percentile is a one-to-one function 
of the parameter vector 8, then the posterior distribution of g(8) may be determined from the 
posterior distribution of 8. 

Similar to the maximum likelihood procedures, the Bayesian method is a true nonlinear 
estimation which correctly specifies the distribution of the data. Parameter variability and 
inference, i.e. credible regions, are now based on exact distributions with the prior assumptions of 
the model. Furthermore, the Bayesian technique inherently allows for updating of the estimation 
procedure through augmentation of data in the likelihood. 

Under the Bayesian method, higher order treatment structures may also be handled 
through pair-wise comparisons. This is carried out by making probability statements on the 
differences among treatment parameter vectors. Let 81 and 82 be two independent parameter 
values with respective posterior distributions m(8 1) and h(82). Define Z = 81 - e2 as the difference 
in the parameter values. Then the posterior distribution for the difference in parameters, Z, is the 
transformation of variables given by: 

(9) 

where the joint probability distribution of81 and 82 is m(81)*h(82). 

All computations and graphics were carried out using SAS (1999) or custom C program 
codes. Sample programs and data are available at http://www.uidaho.edulag/statprog. 
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III. DEMONSTRATION 

1. Source and Description of Data 

The data used for this demonstration measure the effects of an organic pesticide on the 
egg hatch of black vine weevil (BVW). For each dose level, 20 BVW eggs were placed in a petri 
dish containing the pesticide. Several dose levels (concentrations) were used ranging from 0.0 to 
0.03 g of the compound. In order to obtain a complete range of doses, three independent 
experiments were conducted. Pooling data in this manner can conceivably result in 
overdispersion. This could be modeled using a mixed model methodology, however for this 
demonstration, the effect is considered negligible and not considered. Doses were replicated an 
average of 10 times and the number of unhatched eggs within a 48 hour period (success) 
recorded. A scatter plot of these data is shown in Figure 1. The data displayed the typical 
sigmoidal shape conducive to dose-response modeling. 

2. Dose-Response Model 

An appropriate model for the data in Figure 1 might be the logistic. First proposed for 
dose-response modeling by Berkson (1944), this model is symmetric and unimodal. It is similar to 
the normal distribution with the exception of heavier tails. One advantage of the logistic form is 
that it could be parameterized to directly estimate the LCso percentile: 

~ = 
1 

(1 + exp( P * (dose; - V»~) 
(10) 

where ~ is a rate related parameter and y is the LCso ' The rate parameter ~ can be set as positive 
or negative which result in decreasing or increasing sigmoidal curves, respectively. The model in 
(10) can be generalized to estimate the Qlh percentile as: 

~ = 
C 

(C + exp( P * (dose; - V»~) 
(11) 

where C = (Q - M)/(l- Q + M) and M is the natural threshold. 

2.1 Linearized Logit Analysis 

In order to implement (1), a logit transformation was performed on the proportions of 
unhatched BVW eggs, Pij' yielding the model: 

(12) 
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The estimation of (12) is weighted by 1/(p/(l-Pi))' The 10git transformation for the conditions of 
Pij = 0 and Pij = 1 are undefined. This was corrected by offsetting these extremes by an arbitrarily 
small amount, 1 x 10.7• While this correction should have minimal impact on the final estimation, 
the arbitrary nature of the offset is an additional drawback to this technique. Estimation was 
carried out using the simple linear regression, i.e. SAS, PROC REG (1999). 

The estimated curve is shown in Figure 2 and the associated parameter estimates given in 
Table 1. While the parameter estimates are significant and the curve does generally follow the 
data, the predicted values appear shifted away from the observed data, particularly at dose = 

O.Olg. The predicted LCso value for this model (computed through inversion) is O.00787g with 
lower and upper 95% confidence bounds ofO.0044g and O.Ol08g, respectively. 

2.2 Maximum Likelihood Logit Analysis 

The maximum likelihood estimation maximizes (2) with the binomial parameter, TC ij , 

defined as: 

TI. = M + (1 - M) * _____ 1 ____ _ 
I (1 + exp( Po + PI *dosei ) 

The threshold unhatched rate, M, was considered fixed at 0.05, for this example. This is the 
approximate rate expected at a dose = Og. Estimation was carried out through the PROC 
PROBIT procedure in SAS (1999). 

(13) 

The fitted curve and parameter estimates are shown in Figure 3 and Table 2, respectively. 
Both parameters are significant and the predicted curve follows the data well. The estimated LCso 

value (computed via Fieller's ratio theorem) is 0.009055g with a lower 95% bound of 0.008817g 
and an upper bound ofO.009291g. 

2.3 Generalized Nonlinear Logistic Analysis 

As in section 2.3, the likelihood given in (2) was maximized, however, the binomial 
parameter in this case was set to: 

TI. = M + (1 - M)* _____ 1 ____ _ 
I (1 + exp( -P * (dosei - y))) 

where M was again assumed fixed at 0.05. No random effects were specified for this model. 
Estimation was carried out using the PROC NLMIXED procedure in SAS (1999). 

(14) 

The results of the generalized nonlinear procedure are given in Table 3. The fitted curve is 
shown in Figure 4. Both parameter estimates are significant and the curve follows the data well. 
As might be expected, these results are nearly equivalent to those for the maximum likelihood 
analysis, however, the model specified in (14) provides a direct estimate for the LCso value, y, 
without the use of Fieller' s ratio theorem. 
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2.4 Bayesian Logistic Analysis 

Before the Bayesian estimation procedure is carried out, the logistic model given in (14) 
should be reparameterized such that the required prior distributions are easier to specify. 
Specifically, the proportion of unhatched eggs at dose = 0, say 81, reduces the model to: 

8 = M + (1 - M)* ___ I __ _ 
1 (1 + exp( P *y») 

(15) 

and at the maximum dose, dosemax, the proportion, 82, becomes: 

1 82 = M + (1 - M)*----------
(1 + exp(-p * (dosemax - y») (16) 

The domain for the parameters 81 and 82 lies between 0.0 and 1.0. With further consideration, it 
can be shown that for the 50th percentile, 81 is bounded between 0.0 and 0.5 and that 82 is 
bounded between 0.5 and 1.0. If no prior preference is specified within these ranges, uniform 
priors may be specified as: 81~U(0.0, 0.5) and 82~U(0.5, 1.0) which are consistent with the 
principle of maximum entropy assuming no prior information. 

Solving (15) and (16) for p and y, respectively, yields: 

* dosemax*ln«1 - 81)/(8 1 - M) 

Y = In((1 - 8 1)/(8 1 - M) - In((1 - 82)/(8 2 - M) (17) 

and 

P* = 
In((1 - 8 1)/(8 1 - M) 

y* 
(18) 

The logistic model in eq(14) can then be specified as: 

1 
1t j = M + (1 - M)*----------

(1 + exp( - p *(dose j - y *») 
(19) 

Assuming 8 1 and 82 are independent, the posterior distribution of81 and 82, given the data 
Yij, IS: 

(20) 
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The marginal distributions of 8 1 and 82 can be found through integration of the posterior using 
numerical or simulation (MCMC) techniques. The posterior distributions of ~ and y can be 
obtained through a transformation of variables. Estimation was performed using custom C codes. 

The estimated curve is shown in Figure 5 and the parameter estimates in Table 4. The 
predicted curve is similar to that of the maximum likelihood techniques. The initial proportion of 
unhatched eggs, 81, is estimated at 0.052179 and the final proportion at 0.999999. Transforming 
these values to the LCso value, y', yield an estimate of 0.00906g. This too, is essentially 
equivalent to the maximum likelihood estimation. The 95% bounds are similar on the lower end, 
0.00882 for Bayesian vs 0.008817 for maximum likelihood, however the Bayesian upper bound is 
slightly higher at 0.00930. The estimates and bounds for 81,82 , and y* are illustrated in the 
marginal posterior distributions shown in Figures 6-8. The initial and final proportions show 
some skewness which should be expected. The distribution for y' (Figure 8) appears symmetric 
and similar to a normal distribution. This would suggest that inferences based on normal 
approximations used in the previous estimation techniques are reasonable. 

With the exception ofthe linearized solution, all the estimation techniques gave similar 
results for both the parameter point estimates and confidence bounds. This similarity may 
diminish, however, ifthe desired percentiles change. Specifically, the more extreme percentiles 
may have distributions which deviate from the symmetric form. Table 5 presents the estimates 
and bounds for the LC99 . As was seen earlier, the maximum likelihood techniques produce similar 
results. This is not unexpected as both software procedures use equivalent likelihoods and base 
their inferences on normal approximations. The Bayesian procedure, however, produces a point 
estimate and lower and upper credible bounds which are larger than their maximum likelihood 
counterparts. Given that the uniform priors used in the Bayesian estimation essentially reduce the 
posterior distribution to that of maximum likelihood, this difference can only arise from the 
underlying inferential methods. Examination of the changes in the likelihood surface reveal 
nonlinearity which could develop at more extreme percentiles. In these situations, the normal 
approximation used by maximum likelihood techniques may become less reliable. The severity of 
this deviation, however, will be dependent on the specific problem under investigation. 

2.5 Treatment Comparisons 

Treatment comparisons are demonstrated using the generalized nonlinear model approach. 
In order to simulate a second data set, the BVW data dosages were offset by adding 0.005g to the 
original dosages. A full dummy variable model was then set up based on (14) where the 
parameter list was expanded to include ~I and YI for the original data, and ~2' Y2 for the simulated 
treatment. The estimated parameter values and predicted curves are shown in Table 6 and Figure 
9, respectively. The estimated LCso value for the original BVW data was 0.009g. As expected, 
the simulated treatment LCso estimate was approximately 0.005 units larger at 0.014g. The rate 
parameter, ~i' was 667.6 for the BVW data and 686.8 for the simulated data. Contrasts of these 
parameter sets indicated a significant difference in the LCso values (p < 0.0001) while the rate 
parameters were nonsignificant (P = 0.7824). This pattern is evident from Figure 9, where the 
predicted curve for the simulated data is shifted to the right of the BVW data, but the two curves 
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appear parallel. 

IV. CONCLUDING REMARKS 

Dose-response models have a wide range of application in agricultural research. They are 
useful in identifying the relative efficacy of various treatments in plant (herbicides), insect 
(insecticides), animal (bioassays), and environmental sciences. While traditional statistical 
methods have relied upon inverted solutions and asymptotic theory for inference, modern 
techniques such as generalized nonlinear models or Bayesian approaches provide a more flexible 
framework for estimation. These estimation techniques incorporate various response distributions 
and functional forms, and enable inferences with higher order treatment structures. Whereas both 
estimation methods provide similar estimates for midrange percentiles, the Bayesian estimation 
may be preferred when estimating extreme percentiles. 
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Table 1. Estimated parameters and standard errors for the linearized logistic model. 

Parameter Estimate Std Err ~ 

130 -5.186 1.360 0.0002 

131 658.508 54.914 0.0001 

Table 2. Estimated parameters and standard errors for the maximum likelihood logistic model. 

Parameter 

130 

131 

Estimate 

-6.045 

667.597 

StdErr ~ 

0.354 0.0001 

37.945 0.0001 

Table 3. Estimated parameters and standard errors for the generalized nonlinear logistic model. 

Parameter 

y 

13 

Estimate 

0.0091 

667.600 

Std Err 

0.0001 

~ 

0.0001 

37.945 0.0001 

Table 4. Estimated parameters and 95% confidence regions for the Bayesian logistic model. 

Credible Regions 

Parameter Estimate Lower Upper 

91 0.0521 0.05156 0.05549 

0.9999 0.99990 1.00000 
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Table 5. Estimated LC99 values and their corresponding 95% confidence bounds for the 
maximum likelihood (ML), generalized nonlinear model (GNLM), and Bayesian (Bayes) methods. 

Method 

ML 

GNLM 

Bayes 

LC99 95% Bounds 

Estimate Lower Upper 

0.01593 0.01521 001683 

0.01588 0.01508 0.01667 

0.01626 0.01548 0.01710 

Table 6. Estimated logistic model parameters and standard errors for the actual (Treatment 1) 
and simulated (Treatment 2) black vine weevil data. 

Treatment Parameter Estimate Std Error .P2:X2 

1 131 475.51 18.33 0.0001 

Y1 0.00863 0.00013 0.0001 

2 132 417.44 16.77 0.0001 

Y2 0.01366 0.00015 0.0001 

Conference on Applied Statistics in Agriculture
Kansas State University

New Prairie Press
https://newprairiepress.org/agstatconference/2003/proceedings/8



Applied Statistics in Agriculture 95 

20 0 0 0 0 

0 0 0 0 

0 0 

0 

0 0 

en 0 
Cl 
Cl 0 

W 

~ 0 

0 

III 10 
'0 0 Q) 
.c 0 
(,) -ca 
.c 0 

c 
:;) 

'**' 
0 0 0 0 

0 0 0 

0 0 0 

0 0 0 

0 0 0 0 

0.000 0.004 0.008 0.012 0.016 0.020 0.024 0.028 

Dose (g) 

Figure 1. Scatter plot of the number of unhatched Black Vine Weevil (BVW) eggs versus 
dosage of an organic pesticide. 
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Figure 2. Estimated linearized logistic model for the BVW eggs. 
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Figure 3. 
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Estimated maximum likelihood logistic model for the BVW eggs. 
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Figure 4. Estimated generalized nonlinear logistic model for the BVW eggs. 
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Figure 5. Estimated Bayesian logistic model for the BVW eggs. 
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Figure 6. Posterior probability distribution for the initial proportion of unhatched BVW eggs, 81, 

Solid vertical line indicates the most probable value, while the dashed lines indicate 95% credible 
bounds. 
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Figure 7. Posterior probability distribution for the final proportion of unhatched BVW eggs, 82 , 

Solid vertical line indicates the most probable value, while the dashed lines indicate 95% credible 
bounds. 
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Figure 8. Posterior probability distribution for the LCso ofBVW eggs, y*. Solid vertical line 
indicates the most probable value, while the dashed lines indicate 95% credible bounds. 
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Figure 9. Estimated logistic curves for the original (solid line) and simulated (large dashed line) 
BVW data. Smaller dashed lines indicate the estimated LCso of each curve. 
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