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Abstract 

121 

Incorporating the spatial structure of data from agricultural field experiments into inference 
procedures has become an important topic in recent years. As part of a larger project to 
determine whether or not reliable predictions and estimates can be obtained for sample sizes 
often encountered in traditional field experimentation, this paper focuses on the small sample 
estimation of the parameters of the exponential semivariogram model. Simulation studies were 
conducted for both expanding and fixed domains. The results indicate large sample to sample 
variation in sample and fitted semivariograms, neither of which may be "close" to the true model. 
Distributions of individual parameter estimators are skewed and highly variable. Empirical 
coverage levels for large sample confidence intervals for the parameters are well below the 
nominal level and, contrary to what would be expected, decrease as the sample size increases. 
The results cast doubt on the success of incorporating spatial structure into traditional field data 
analyses. 

Keywords: exponential semivariogram, simulation, small sample estimation, spatial data 

1. Introduction 

The motivation for this research came from our work as part of the North-Central Regional 
Project NCR-170 "Research Advances in Agricultural Statistics." Our focus in that project was 
on small sample spatial problems. In particular, we wanted to investigate whether or not reliable 
predictions and estimates can be obtained for sample/grid sizes often encountered in traditional 
agricultural field experimentation. We planned and began to carry out a simulation study with 
different models and sample sizes. However, we soon realized that this work was generating 
more questions than answers. This paper summarizes some of this work, focusing on the 
exponential semivariogram model and estimation of the model parameters. 

2. Motivating Example 

Let Z(x,y) be an isotropic, second-order stationary Gaussian random process defined on a 
region in two dimensions (x,y); i.e., the mean of Z is constant and the covariance between Z at 
any two points is a function only of the difference between them. Without loss of generality, 
assume that E(Z) = O. As a result of the stationarity assumption, 
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where Sj = (Xj'Yi)' i = 1,2, are any two points in the region. The function y(.) is called the 
semivariogram. 

To illustrate the basic problem, suppose that Z follows an exponential semivariogram model; 
l.e., 

(1) 

with Co = 1, ce = 4 and ae = 3 and where h is the distance between any two points. Consider a 10 
x 10 grid of points (x,y), spaced one unit apart in both directions, located within the region on 
which Z is defined. Random samples ZI' ... , Z\Oo were generated on the grid and the sample 
semivariograms were obtained using the SAS procedures SIM2D and V ARIOGRAM. The 
sample semivariograms for the first six realizations are shown in Figure 1. 

Large sample to sample variability is evident in the figure. Moreover, none of the sample 
semivariograms seem to mirror the underlying model very well (Rep 6 appears the closest). This 
figure is especially disconcerting because the realizations were not chosen specifically to 
illustrate the diversity but rather represent the first six realizations generated. Figure 2 plots the 
first 100 sample semivariograms. This plot reinforces the fact that there is a large amount of 
sample variability and that many did not appear to be exponential. Several authors (e.g., Diggle 
et aI., 2002; Webster and Oliver, 1992) have commented on the problem of sample 
semivariogram variability but none that we found convey the impression of its severity as do 
Figures 1 and 2. 

Faced with the above evidence, we turned to a much more fundamental question. Based on 
the sample semivariogram from a small sample, can we identify the appropriate model which 
generated the data? As a first step toward answering this new question, if we assume that the 
form of the semivariogram model is known, how well can we estimate the parameters? 
Underlying our investigation of this question was the implicit assumption that a reasonably 
"good" estimate of the semivariogram model is ultimately necessary for "good" prediction and 
estimation. Webster and Oliver (1992) note that even though predictions obtained by kriging are 
fairly stable, their prediction variances and, hence, confidence limits, are sensitive to the 
semlVanogram. 

3. Previous Work 

Investigations of the behavior of a statistical procedure in small samples are usually related to 
its asymptotic properties. In our problem, two possible scenarios of increasing sample size 
(number of grid points) arise. First, the distance between adjacent points can be held constant 
and the overall area of the grid increased. Second, the overall area of the grid can be held 
constant and the distance between adjacent points reduced. We refer to the former situation as 
the expanding domain case and the latter as the fixed domain or in-fill case. 

Zimmerman and Zimmerman (1991) compared five estimators of the exponential 
semivariogram parameters based on ordinary least squares, weighted least squares, maximum 
likelihood, REML and generalized MIVQU. In their simulation, Co = 0, ce =1 and ae was varied. 
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They considered the fixed domain case with 4 x 4 and 6 x 6 grids. They concluded that no 
estimator was uniformly superior for purposes of parameter estimation but the performance of all 
estimators was best when the spatial dependence was weak. In contrast, standard 95% prediction 
intervals performed best when the spatial dependence was strong with the MLE based interval 
having slightly better overall performance compared to the others. However, they concluded that 
very little would be sacrificed by using the more easily computed least squares estimators. 

In semivariogram estimation, the asymptotic behavior in the expanding domain and fixed 
domain cases are different. Mardia and Marshall (1984) proved the consistency and asymptotic 
normality of the MLE of (02,8) in the expanding domain case for an underlying stationary 
Gaussian process Z and for more general isotropic semivariograms of the form 

y(h) = a2p( - hl8). 

For the fixed domain case and a one-dimensional Gaussian process, Ying (1991) has shown that 
the MLEs for 0 2 and 8 are not consistent individually but that the MLE for the ratio 0 2/8 is 
consistent and asymptotically normal. Stein (1999) indicated that this ratio is often more 
important for prediction than are the individual parameters. For the class of Matern models, of 
which the exponential model is a member, Zhang (2003) has shown that predicted values and 
prediction variances are approximately the same for models with different parameter values but 
the same ratio. 

Webster and Oliver (1992) presented the results of a study which focused on the variability of 
the sample semivariograms at fixed lag distances for spherical and exponential models in the 
fixed domain case. They concluded that "semivariograms computed on fewer than 50 data are of 
little value and that at least 100 data are needed." Baczkowski and Mardia (1987) presented 
evidence via simulation that, for each fixed lag distance, the sample semivariogram from an 
underlying stationary Gaussian process in two dimensions with a spherical semivariogram is 
approximately lognormally distributed for moderately large sample sizes. 

4. General Framework for the Simulations 

As in the motivating example, we assumed that Z(x,y) was an isotropic, second-order 
stationary Gaussian process with E(Z) = O. Two exponential models of the form (1) were 
considered. In both models, Co = 1 and ce = 4. The models differed in the value of ae, which was 
set to 2 or 3. Hence, for ae equal to 2 and 3, respectively, the values of the ratio c/ae were 2 and 
4/3, the effective ranges were 5.5 and 8.3, and the correlations between grid points one unit apart 
were 0.48 and 0.57, respectively. The values ofae were chosen so that in the 10 x 10 grid the 
effective ranges were approximately % and % of the maximum distance between any pair of grid 
points (opposite comers of the grid). 

Consideration was restricted to square grids with grid points equally spaced in both 
directions. In the expanding domain case, grid points were always spaced one unit apart. Four 
grid sizes were included: 7 x 7, lOx 10, 14 x 14 and 20 x 20, corresponding to sample sizes of 
49, 100, 196 and 400, respectively. For the fixed domain case, the overall grid size was fixed at 
10 units in each direction and grid points were spaced at 1.5 units apart (7 x 7 grid), 1.0 units 
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apart (10 x 10 grid) and 0.5 units apart (20 x 20 grid). 
For each parameter combination, 1000 realizations for the 20 x 20 grid were generated using 

SAS's PROC SIM2D. The realizations for the smaller girds were obtained as subsets of the 20 x 
20 grid anchored at the lower left comer of the grid; i.e., at (x,y) = (1,1). Sample semivariograms 
were calculated using PROC V ARIOGRAM. 

For each sample semivariogram, an exponential model was fitted using iteratively reweighted 
least squares where the weights were proportional to the reciprocal of the estimated variance of 
the semivariogram at that point. The algorithm was terminated if convergence was not obtained 
after 100 iterations. The nugget Co was restricted to be non-negative and ce and ae were restricted 
to be positive. 

5. Simulation in the Expanding Domain Case 

The results for both models were similar and only results for ae = 3 are presented here. 
As with any nonlinear model fitting, convergence of the algorithm can be problematic. The 

convergence status according to PROC NUN for each grid size is summarized in Table 1. All 
realizations in which the Hessian was singular were excluded from further analysis. Zero 
estimates became less of a problem as the sample size increased. The zero estimates were for Co 

except for nine realizations in the 7 x 7 grid where ae was estimated to be zero. In three of these 
cases, Co was also estimated to be zero. However, in all cases the Hessian was singular and the 
realizations were automatically excluded from further considerations. 

Figure 3 illustrates the variability in the sample semivariograms for the first 50 realizations 
for each grid size. From the figure it is clear that the sample to sample variability decreases as 
the sample/grid size increases. In addition, the sample semivariograms tend to become 
"smoother" as the sample size increases. Side-by-side boxplots of the sample semivariogram 
values at each observed lag distance (data not shown) show skewed distributions which appear to 
be consistent with the lognormality result ofBaczkowski and Mardia (1987). 

Figure 4 shows the weighted least squares fits for the first six sample semivariograms from 
the lOx 10 grid where convergence was obtained. Realizations 2 and 4 from Figure 1 had 
singular Hessians and are not included. The figure represents the common situation for all grid 
sizes; viz., the fitted semivariograms were "close" to the sample semivariograms but often 
neither the sample nor fitted semivariogram were close to the underlying theoretical exponential 
semivariogram model. 

Plots of the estimated coefficients which define the exponential semivariogram are presented 
in Figure 5. Boxplots for the individual coefficents and the ratio c/ae are shown in Figure 6. 
Both figures have truncated upper tails for ce and ae with 31 and 61 observations, respectively, 
over all four grids not plotted. The maximum values occurred for the same sample on the 14 x 
14 grid where the estimates were 673.9 for Ce and 1792.8 for ae. The estimate for Co was 1.9 in 
that sample, which was slightly larger than the 90th percentile of its distribution. In general, 
realizations with large estimated values for ae tended to have large values for ceo 

The sampling distribution of Co is highly skewed in the 7 x7 grid with a median of zero and 
an upper quartile of 1.002 (which was essentially the true value of 1.0). The skewness decreases 
as the grid size increases but is still present in the 20 x 20 grid. The downward bias in the 
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estimates of co, caused, in part, by the large number of zero estimates, decreases as the grid size 
increases. The sampling distributions of ce and ae display similar skewed behavior but with much 
less pronounced bias. In contrast, the distribution of the ratio c/ae is relatively symmetric with 
an upward bias which decreases as the grid size increases. 

6. Simulation in the Fixed Domain (In-fill) Case 

The results for the fixed domain case are similar to the expanding domain results and are not 
presented here. Convergence problems were similar to those described previously and only 
realizations where convergence was obtained were included in the analysis. The only notable 
difference between the two cases is that the decreasing variability of the individual parameter 
estimates as the sample size increases (and the distance between grid points decreases) is not as 
pronounced in the fixed domain case. This is evident by comparing Figure 8 for the fixed 
domain case to Figure 6 for the expanding domain case. 

7. Approximate Confidence Intervals 

Approximate 95% large sample confidence intervals based on the normal distribution and the 
asymptotic variance estimates from PROC NLIN were constructed for all four parameters. The 
variance of the estimated ratio c/ae was approximated using the delta method. Coverage levels 
for the expanding domain case when ae = 3 are given in Table 2 and confidence average interval 
lengths are presented in Table 3. Similar results hold for the other cases. 

Empirical coverage levels for all parameters are well below the nominal level and decrease 
for both Ce and ae as the sample/grid size increases. The increasing coverage for Co as a function 
of sample size is a reflection of the decreasing number of zero estimates for the parameter. 
When realizations with one or more zero estimates are removed from consideration, the coverage 
levels improve but are still well below the nominal level. In addition, in the reduced set of 
realizations, the coverages for all parameters decrease dramatically as the sample size increases. 

For all parameters, the distribution of the confidence interval lengths is highly skewed with a 
long upper tail as evidenced by the large differences between the mean and median lengths in 
Table 3. The skewness decreases somewhat as the sample size increases. Average confidence 
interval length also decreases as sample size increases for all parameters. 

A graph of confidence interval length versus the parameter estimate for the 20 x 20 grid is 
shown in Figure 7. The corresponding graphs for the remaining grid sizes show similar patterns. 
The figure provides some insight into the relationship between the coverage level and confidence 
interval length. For all parameters, except when the estimate is very close to the true value, the 
longer confidence intervals for a particular estimated value are those which covered the true 
value. Since larger standard errors arise from larger error sums of squares in the least squares fit, 
the realizations where the confidence intervals cover the true parameter values are those where 
there is more variability in the sample semivariogram; i.e., "smooth" sample semivariograms do 
not lead to "good" parameter estimates. 
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8. Conclusion 

The results from our simulations lead to several conclusions about the ability to estimate the 
semivariogram in small samples assuming a correctly known functional form. First, there is huge 
sample to sample variability in the sample and fitted semivariograms. While this fact has been 
commented on the literature, its extent has not been completely clear. The most important 
practical ramification of this variability is the difficulty it causes a user in recognizing an 
appropriate model from a plot of the sample semivariogram for hislher data. For example, 
which, if any, of the realizations displayed in Figure 1 would have been fit to an exponential 
model if they represented real data? 

The simulation results also demonstrate that weighted least squares generally provides a 
fitted semivariogram "close" to the sample semivariogram. Unfortunately, neither may be close 
to the true model. This is reflected in both the variability in the parameter estimates and in large 
confidence interval lengths and coverage levels well below the nominal level. While decreasing 
standard errors for estimated parameters and confidence interval lengths as sample sizes increase 
might be expected, the accompanying decrease in confidence interval coverage is troublesome, at 
least in the expanding domain case where estimators have been shown to be consistent. The 
issue is complicated by the relationship between coverage and confidence interval length. 

Finally, the most disturbing impact of our results is with regards to our motivation for doing 
the study. For many agricultural field experiments, and perhaps for other disciplines as well, 
sample sizes of 100 and 200 may not be feasible, either practically or financially. Hence, from 
the experimenter's point of view, the "small" samples in our simulation are not really "small" 
samples at all. 
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Table 1. Convergence status for realizations from the exponential model with ae = 3 as 
determined by SAS' s PROC NLIN in the expanding domain case. 

Grid size 

Convergence status 7x7 10 x 10 14 x 14 20 x 20 

Converged 104 220 302 388 

No step size improvement 225 289 381 450 

Zero estimate( s) 393 331 248 154 

Singular Hessian 263 159 69 8 

Singular Hessian & zero estimate(s) 15 1 0 0 
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Table 2. Empirical coverage percentages for approximate large sample 95% confidence intervals 
for the parameters from the exponential model with ae = 3 in the expanding domain case. 
Percentages in parentheses represent coverage levels without realizations having one or more 
parameters estimated to be zero. 

Grid size 

Parameter 7x7 10 x 10 14 x 14 20 x 20 

Co 41.3 (90.5) 46.0 (75.8) 48.3 (65.8) 52.2 (61.8) 

Ce 53.6 (82.3) 43.9 (59.6) 37.1 (45.8) 33.0 (37.2) 

ae 51.0 (96.0) 52.7 (81.7) 41.8 (54.2) 30.5 (35.1) 

c/ae 52.4 (82.3) 40.0 (61.6) 41.8 (56.7) 43.3 (51.4) 

Table 3. Average 95% confidence interval lengths for the parameters from the exponential 
model with ae = 3 in the expanding domain case. Table entries are mean lengths with median 
lengths given in parentheses. Realizations with zero estimates are included. 

Grid size 

Parameter 7x7 10 x 10 14 x 14 20 x 20 

Co 2.8 (0.0) 2.9 (1.0) 1.2 (0.9) 1.0 (0.8) 

ce 230.8 (2.1) 259.7 (1.7) 196.8 (1.2) 5.4 (0.9) 

ae 362.3 (2.6) 616.0 (2.6) 547.5 (1.8) 16.1 (1.2) 

c/ae 9.5 (2.6) 9.2 (l.5) 1.6(1.1) 1.1 (0.8) 
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Figure 1o Sample semivariograms for the first six realizations from an exponential 
semivariogram model with Co = 1, ce = 4 and ae = 3o 
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o 1 2 3 4 5 6 7 8 9 10 11 12 

Lag distance 

Figure 2. Exponential semivariogram model (solid line) with Co = 1, ce = 4 and ae = 3 on a 10 x 
10 grid and 100 sample semivariograms. 
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Figure 3" Exponential semivariogram model (solid line) with Co = 1, ce = 4 and ae = 3 and the 
first 50 sample semivariograms for each grid size in the expanding domain case. 
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Figure 4, Sample semivariograms, weighted least squares fitted semivariograms (dotted line) 
and underlying exponential semivariogram model (solid line) with Co = 1, ce = 4 and ae = 3 in 
the expanding domain case, 

Conference on Applied Statistics in Agriculture
Kansas State University

New Prairie Press
https://newprairiepress.org/agstatconference/2003/proceedings/10



Applied Statistics in Agriculture 

7 x 7 grid 

49.97 48.46 

33.40 

3.99 

49.73 0.00 

14 x 14 grid 

46.44 

3.96 

:l9.oB 0.00 

10 x 10 grid 

80.16 0.00 

20 x 20 grid 

8.20 

lI1.BB 0.00 

:1.33 

L17 ,,-0 

3.80 

133 

Figure 5. Estimated coefficients for an underlying exponential model with Co = 1, ce = 4 and ae = 

3 in the expanding domain case. The scales on the axes for ce and ae have been truncated. 
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Figure 7. Estimated parameters versus confidence interval (Cl) lengths for an underlying 
exponential model with Co = 1, ce = 4 and ae = 3 in the expanding domain case. A solid circle 
indicates the CI did not cover the true parameter value; an open circle indicates it did. 
"Outlying" data points for all four plots have been truncated. Dotted lines represent the true 
parameter values. 
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Figure 8. Sampling distributions for the estimated parameters of an underlying exponential 
model with Co = 1, ce = 4 and ae = 3 in the fixed domain case. The distributions for ce and ae have 
been truncated. Dotted lines represent the true parameter values. The 1.5 unit spacing is a 7 x 7 
grid, the 1.0 unit spacing is a lOx 10 grid and the 0.5 unit spacing is a 20 x 20 grid. 
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