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Abstract:The nonlinear PET model based on Newton's law of cooling can be used to estimate 
body temperature in cattle, T b challenged by hot cyclic chamber temperatures, T a • The PET 

model has four biologically meaningful parameters: K, the thermal constant; 1:1, the difference 
between T b and adjusted T a; r ' the proportion of variation in T b comparable to variation in 

T" ; T bini, the initial body temperature. The two parameters Y and L1 are highly correlated in 

the current version of the model. This study looks at other ways to parameterize the PET model 
in an effort to reduce the correlation between parameters and improve nonlinear behaviors, such 
as parameter-effects curvature, bias, excess variance and skewness. 

Key Words: Nonlinear, PET model, parameterize, nonlinear behavior, curvature, bias, excess 
variance, skewness, correlation. 

1. Introduction 
The nonlinear PET model was developed by Parkhurst, Eskridge and Travnicek (1999), to 
estimate body temperature in cattle challenged by hot cyclic chamber temperature. The model 
assumes that when cattle are under heat stress, air temperature, Ta is the principle driving force 

influencing body temperature, T b (Hahn, 1989). The effect of Ta on Tb follows "Newton's law 

of cooling"; i.e., the rate of change in animal body temperature, from the body core to its surface, 
is proportional to the difference in temperature between the body core and its environment. It can 

aTb 
be written as a one-parameter mathematical model: a, = K(T a - T b)' 

where K is a thermal constant that represents how rapidly T b adjusts to changes in Ta. 
The thermal constant is measured in units per time and T a is usually regarded as constant in 

time. But the animals in this study were enclosed in a hot cyclic environment. So, T a is 
modeled by the following sinusoidal function: 

T a = JI a + A sin {C0 (t - cp)}, 

where Jla is mean air temperature, A is amplitude, C0 is frequency, t is time and cp is phase angle. 
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A useful solution that is a function of Newton's differential equation is the following model 
(Parkhurst, et.al, 2000): 

Tb= e-"*t (K*(So+ SI)+Tbini), 

where T bini is the initial body temperature; 

So =( Y * fi a + /). ) * ( e ,,*t - 1)/ K; 

S 1 =(A * Y I( -J K2 + 0/ ))* e"*t (sin( OJ (t- (jJ -{ arctan (OJ I K)}I OJ)) 

+sin (OJ ((jJ +{ arctan (OJ I K)}I OJ ))); 

285 

Y represents the proportion of average Ta passed on to the average Tb ; /). = fib - Y fia is the 

gradient parameter which represents the difference between /lb, (the average T b) and adjusted 

average Ta. Frequently, it is helpful to convert K to "[ , the length of time that T b lags behind 

Ta· 

There are four parameters in this model: K, T bini, /)., y. Of the four parameters in the model, 

one of the most important parameters to measure acclimation of steers to heat stress is the lag, 
"[ , which is a function of K. However, this parameter is highly correlated with y and L1. 
Moreover y and L1 are highly correlated with each other. And, while correlations among 
parameters is typical in nonlinear regression models, high values may indicate 
overparameterizaton. Another problem is that the nonlinear behaviors of these parameters are 
not ideal. 

One way to solve these problems is to reparameterize this model. Parameterization is the 
process of expressing the mean function of a statistical model in terms of parameters to be 
estimated. A particular parameterization may be chosen so that the parameter estimators have a 
pertinent interpretation, desirable statistical properties, and/or allow embedding of hypotheses. 

A nonlinear model can be parameterized in different ways. Two ways discussed by 
Schabenger and Pierce (2000) are called defining relationships and expected values. The 
technique called defining relationships consists of creating a new parameter that is a function of 
the original parameter(s). The new parameter is then substituted into the original model. 

The expected value parameterization technique due to Ratkowsky (1983) consists of 
rewriting the model in an expected value parameterization in order to reduce the parameter­
effects curvature and make the estimates of the parameters more Gaussian-distributed, less 
biased, less correlated and make their standard error estimates more reliable. Furthermore, the 
model usually converges more rapidly (Schabenger and Pierce, 2000). Expected-value 
parameters exhibit close-to-linear behavior because the bias in predicted values depends only on 
the intrinsic nonlinearity (Ratkowsky, 1983) and the intrinsic nonlinearity is typically small for 
useful model-data sets. The only restriction on expected-value parameters is that they should fall 
within the observed range of the data and not correspond to asymptotes or extrapolations outside 
the data range. 

Ratkowsky's expected-value parameters correspond to the fitted (or predicted) values of 
the response variable. To find expected-value parameters, choose p values of the explanatory 
variable t1, t2, ...... tp , P being the number of parameters, set the expected values equal to Y1, 
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Y 2, ...... , Yp, then substitute each pair of t and Y into the model to get p equations. Then, one 
solves for the p original parameters from the p equations in term of the p explanatory variables tl, 
t2, ...... tp and the p expected values Y1, Y2, ...... , Yp' Finally, the original parameters are 
eliminated after the parameter solutions are substituted into the original model (Ratkowsky, 
1990). 

The objective of this study is to find formulations of the PET model that have good 
estimation behavior and low parameter correlations. Reparamaterization and parameter reduction 
are used to: 1) improve nonlinear behaviors, such as parameter-effects curvature, bias, excess 
variance, and skewness; 2) reduce the correlation between parameters; and, 3) find a set of 
easily-interpreted parameters. 

2. Materials and Methods 
2.a Data 

The data comes from a study conducted by T. Brown-Brandl, R. Eigenberg, and J. 
Nienaber in 2001. That study was designed to evaluate the dynamics of thermoregulation when 
feeder cattle were exposed to simulated heat waves in comparison with repeated sinusoidal hot 
environments. Core body temperature from day six for one of the nine beef steers exposed to a 
controlled heat stress treatment of 32±7°C were used in this investigation. The observations 
started at 0:00am (Figure 1). 

2.B Reparameterizations 
i. Direct Substitution Parameterizations: 

Parameterization 1 : (Mean Body Temperature replacing ~) K, T bini, J..lb' r. In the original 

PET model, there are four parameters: K, Tbini, ~, r. But r is highly correlated with ~. 

Therefore, either r or ~ could be reparameterized by direct substitution. As stated in the 

introduction, ~ = J..lb - r J..la· So, J..lb can be used to replace ~ and obtain the following 

model: 

Tb = e-K*t (K *(So + S\)+ Tbini) ; 

SO=J..lb (eK*t_l)1 K; 

S \ = (A * r I( -Jr-K-2 -+-{j)-2 »( eK*t sine OJ (t- qJ -{ arctan (OJ I K)}I OJ» 

+sin (OJ (qJ +{ arctan (OJ I K)}I OJ »). 

Parameterization 2: (Mean Body Temperature replacing y) K, Tbini, ~, J..lb' Similarly, J..lb can 

be used to replace r via the formula r = (J..lb -~)I J..la to obtain the following model: 

Tb= e-K*t (K*(So+ S\)+Tbini); 

SO=J..lb (eK*I-l)1 K; 

S \ = (A *( J..lb -~ )/( J..la -J K2 + {j)2 »( eK*t sin (OJ (t- qJ -{ arctan (OJ I K)}I OJ» + 
sine OJ (qJ +{ arctan (OJ I K)}I OJ »). 
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ii. Combination: Expected-Value Parameterizations and Direct Relationships: 
Parameterization 3: (Body Temperature at 0:00am next day - Last time with thermal constant) 

K, T bini , Tblast, Jib' Use an expected-value parameterization to replace Ll based on the model 

with Parameterization 2. First set t = tlas !> i.e. the last time value recorded. In this data, t = tlast 
=25, i.e. 0:00 next day (figure1) and set Tb = Tblast, the body temperature when t = tlast(figure 2). 

Substitute the two variables into the model with parameterization 2 and solve parameter Ll in 

terms of tlast, Tblast and the other parameters. Finally, Tblast can be used to replace Ll via the 
solved equation to obtain the reparameterized model: 

T b = e-K*t ( K *( So + S 1)+ T bini) ; 

So = Jib (e K*t - 1)1 K; 

S 1= (T blast*eXp( K *tlast)-T bini - Jib *(exp( K *tlast) -1)1 K I 
(-eXp(*tlast)*sin( - OJ * (tlast (j? )+arctan( OJ I K »+ sine OJ * (j? + arctan( OJ I K ») *( exp( K *t) 

*sin( OJ *(t (j? )arctan( OJ I K »+ sine OJ * (j? +arctan( OJ I K ». 

Parameterization 4 (Body Temperature at 0:00am next day - Last time with lag): 1', Tbini , Tblast, 

Jib' Use l' to replace K via the equation 

K = OJ Itan (1' OJ) to reduce parameter effects curvature based on the model with 
Parameterization 3 and obtain model: 

T b = exp( - OJ Itan (1' OJ )*tlast) (OJ Itan (1' OJ )*( So + S 1)+ T bini) ; 

SO=Jib (exp(OJltan (1' OJ)*t) -1)1 (OJltan (1' OJ»; 

S 1= (T blast *exp( OJ Itan (1' OJ )*tlast)-T bini- Jib *( exp( OJ Itan (1' OJ )*tlast) -1»1 

OJ It an (1' OJ)/(-eXp(OJ*tlast)*sin(-OJ*(tlast (j?)+ l' OJ)+ sin(OJ*(j?+ l' OJ»* 

(exp(OJltan (1' OJ)*t)*sin(OJ*(t-(j?)-1' OJ)+sin(OJ * (j?+1' OJ». 

Parameterization 5 (Body Temperature at 12pm - Median Time with lag): 1', Tbini, Tbm, Jib' 
Because the model contains sinusoidal functions, T blast might be the same as T bini" initial body 
temperature. Therefore, another expected value parameterization would be to replace tblast with 
the median time, t= tmed =l3, i.e. 12 pm (figure2), Thus, Tblast changes into Tbm, the body 
temperature when time is at the median time, tmed. Therefore, the model will be: 

T b = exp( - OJ It an (1' OJ )*tmed) (OJ Itan (1' OJ )*( So + S 1)+ T bini) ; 

SO=Jib (exp(OJltan (1' OJ)*t) -1)1 (OJltan (1' OJ»; 

S,= (Tbm*exp(OJltan (1' OJ)*tmed)-Tbini-Jib *(exp(OJI 

tan (1' OJ )*tmed) -1»1 OJI tan (1' OJ )/(-exp( OJ *tmed)*sin(- OJ * 
(tmed (j?)+1' OJ)+ sin(OJ*(j?+ l' OJ»*(exp(OJI 

tan (1' OJ)*t)*sin(OJ*(t-(j?)-1' OJ)+sin(OJ*(j?+1' OJ». 

Parameterization 6 (Log of Mean Body Temperature): l' , Tbini, Tbm , Lllb. Following a rational 

similar to that used in step 5, Tbm might be close to Jib' So, Lllb =Ln(Jib) can be used to 

replace Jib to try to further reduce parameter effects curvature. The model will be: 
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Tb = exp(- lVltan (t' lV )*tmed) (lVltan (t' lV )*( So + Sl)+ Tbini) ; 

So= exp(Lllb)(exp(lVltan (t' lV)*t) -1)1 (lVltan (t' lV)); 

S 1= (T bm *exp( lV Itan (t' lV )*tmed)-T bini- exp(Lllb)*( exp( lV I 

tan (t' lV)*tmed) -1))1 lVltan (t' lV)/(-exp(lV*tmed)* 
sine - lV *(tmed qJ)+ t' lV)+ sine lV * qJ + 

t' lV)) *(exp(lVltan (t' lV)*t)*sin(lV*(t-qJ)-t' lV)+sin(lV*qJ+t' lV)). 

Parameterization 7 (Body Temperature at 5: 15am - Lower quartile with lag): t', Tbini, Tbq, Jib' 

Use parameterization 5, keep Jib in the model but replace the median time with the lower 

quartile time, tq. Thus tbm becomes tbq, and T bq is the body temperature when time is at the lower 
quartile of t. The model is; 

T b = ex p( - lV Itan (t' lV) *tq) (lV Itan (t' lV) * ( So + S I )+ T bini); 

So = Jib (exp( lV Itan (t' lV )*t) -1)1 (lV Itan (t' lV )); 

Sl= (Tbq*exp(lVltan (t' lV)*tq)-Tbini-Jib *(exp(lVltan (t' lV)*tq) -1))1 lVltan (t' lV)/(­

exp(lV*tq)*sin(-lV*(tqqJ) + t' lV)+sin(lV*qJ+t' lV))* 

(exp(lVltan (t' lV)*t)*sin(lV*(t-qJ)-t' lV)+sin(lV*qJ+t' lV)). 

Parameterization 8 (Body Temperature at 5: 15am - Lower quartile with thermal constant): K , 

T bini, T bq, Jib . Based on parameterization 3, keep K in model and replace the last time value, tlast 

with the lower quartile time, tq. The parameter Tblast becomes Tbq, as in Parameterization 7. 
Therefore, the model will be: 

Tb= e-K*t (K*(So+ SI)+Tbini); 

SO=Jib (eK*t_1)1 K; 

S 1= (T bq *exp( K *tq)-T bini- Jib *(exp( K *tq)-l))1 K I( -exp(*tq)* 

sin(- {()*(tq qJ )+arctan( OJI K ))+ sine lV * qJ +arctan( OJI K )))* 

(exp( K *t)*sin( lV *(t- qJ) -arctan( OJI K ))+sin( lV * qJ +arctan( lVl K ))). 

Parameterization 9 (Body Temperature at 6pm- Peak Time): t', Tbini , Tbp ,Jib' Begin with 

parameterization 7, replace the lower quartile time, tq with the peak time, tp, i.e the time when 
body temperature is expected to be the highest. Maximum air temperature was set at 2 pm 
(figure1) and body temperature may be expected to lag 4 hours behind air temperature (Hahn et 
al. 1997). So, let the peak time, tp=19 (6pm) since observations begin at 0:00am (figures 1 and 2). 
The body temperature becomes T bp. Therefore, the model is: 

Tb = exp(-lVltan (t' lV)*tp) (lVltan (t' lV)*(So + Sl)+ Tbini) ; 

SO=Jib (exp(lVltan (t' lV)*t) -1)1 (lVltan (t' lV)); 

Sl= (Tbp*exp(lVltan (t' lV)*tp)-Tbini-Jib *(exp(lVltan (t' lV)*tp) -1))1 lVltan (t' lV)/(­

exp(lV*tp)*sin(-lV*(tp qJ) + t' lV)+sin(OJ*qJ+ t' lV))*(exp(lVltan (t' lV)*t)*sin(OJ*(t-qJ)­

t' lV)+sin(OJ*qJ+t' lV)). 
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2.c Parameter Reduction 
Parameterization 10: (Reduced model) K, T bini, ~. The high con'elation between ~ and y may 
indicate the model is over-parameterized. When y, the proportion of air temperature passed on to 

the body, is set to be the ratio of the amplitudes, T JTa and approximated by K/ -J K2 + 0/ the 

number of parameters is then reduced by one. The model becomes: 

Tb= e-K*t (K*(So+ Sl)+Tbini ), 

where Tbini is the initial body temperature (treated as a random effect); 

So=(Ji,,* KI-JK2+0/ +~)*(eK*I_I)1 K; 

S 1 =A * K I( e + 0/)* eK*1 (sin( OJ (t- qJ -{ arctan (OJ I K)}I OJ» 

+sin (OJ (lP +{ arctan (OJ I K)}I OJ »); 

Paramertization 11 (Reduced model- Jib) K, Tbini, Jib' Based on parameterization 10, Jib can 

be used to replace ~ since ~ = Jib - r Jia and to obtain the following model: 

_ -K*t 
Tb- e ( K*(So+ Sl)+Tbini), 

SO=Jib *(e'*I-I)1 K; 

S 1 =A * K I( K2 + OJ2)* eK*t (sin( OJ (t- lP -{ arctan (OJ I K)}I OJ» 

+sin (OJ (lP +{ arctan (OJ I K)}I OJ »); 

Parameterization 12: (Reduced model- T) T , T bini, Jib' Based on the parameterization 11 

model, T can be used to replace K by K = OJ It an (T OJ) and obtain the following model: 

Tb= exp(-OJt/tan (T OJ»(OJltan (T OJ) *(So+ Sl)+TbinD, 

So = Jib *( exp( OJ titan (T OJ »- 1)1 OJ Itan (T OJ); 

S 1 =A *t*tan (T OJ )/( OJ *( 1 + tan (T OJ)* *2) *( exp( OJ titan (T OJ»* 

(sin(OJ (t-lP-T»+sin (OJ(lP+T »); 

Parameterization 13 (Reduced model-6pm Peak Time) K ,T bini,Tbp . Similar to parameterization 3, 

use an expected-value parameterization to replace Jib based on the model with Parameterization 

11. First set t = tp = 19 and real time is at 6pm i.e. the time when body temperature reaches the 
peak (figures 1 , 2) and the body temperature at that time is Tbp . Substitute the two variables into 

the model with parameterization 11 and solve parameter Jib in terms of tp, Tbp and the other 

parameters. Finally, Tbp can be used to replace Jib via the solved equation to obtain the 

reparameterized model: 

Tb= e-x*t ( K*(So+ Sl)+Tbini), 

So = Jib *( eX"! - 1)1 K; 

Jib =-(exp( K *tp)* A * K 2*exp( K *tp)*sin( OJ tp JtJlP -Atan( OJ I K »+exp( K *tp) 

*A* K 2*sin(Uh lP +Atan( OJ I K»+exp(- K *tp)*Tini* K 2+exp(_ K *tp)* Tini* OJ2_ 
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Tbp* K 2 _ Tbp* 0./ )/exp(- K *tp)/(exp(- K *tp)* K 2+exp( K *tp)* 0/ _ K 2 - 0/) 

S 1 =A * K /( K2 + 0/)* eK*t (sin( ()) (t- rp -{ arctan «()) / K)}/ ()))) + 

sin «()) (rp +{ arctan «()) / K)}/ ()) »)); 

Parameterization 14 (Reduced model-6pm Peak Time with r) r, Tbini , Tbp ,. Use r to replace 
K based on the model with Parameterization 13 and obtain the following model: 

_ -}(*[ * Tb- e ( K '(So+ Sl)+Tbini), 

So = fib *( eK*t - 1)/ K; 

K = ()) /tan (r ())) 

fib =-(exp( K *tp)'~ A * K 2*exp( K *tp)*sin( ()) tp - ())rp -Atan( ()) / K »)+exp( K * tp) 

* A * K 2*sin( ())* rp +Atan( ()) / K ))+exp( - K *tp)*Tini * K 2 +exp( - K *tp)* Tini * ())2 

_ Tbp* K 2 _ Tbp* ())2 )/exp(- K *tp)/(exp(- K *tp)* K 2+exp( K *tp)* ())2 _ K 2 _ ())2) 

S 1 =A * K /( K2 + ())2)* eK*t (sin( ()) (t- rp -{ arctan «()) / K)}/ ()))) + 

sin «()) (rp +{ arctan «()) / K)}/ ()) ))); 

Parameterization 15 (Reduced model at 5: 15am Lower quartile with K) K, Tbini , Tbg . 
Set t = tp ,lower quartile time and T b=T bg i.e. the body temperature at tp and then repeat the 
procedure in the Parameterization 13 and obtain the following model: 

Tb= e-K*t (K*(So+ Sl)+Tbini ), 

So = fib *(ex·*t - 1)/ K; 

fib =-(exp( K *tp)*A* K 2*exp( K *tp)*sin«())tp -())rp -Atan( ()) / K »+exp( K * tp) 

* A * K 2*sin( ())* rp +Atan( ()) / K) )+exp( - K *tp)*Tini * K 2 +exp( - K *tp)* Tini * ())2 

_ Tbq * K 2 _ Tbq * ())2 )/exp( _ K *tp)/( exp( _ K *tp)* K 2 +exp( K *tp)* ())2 _ K 2 _ ())2) 

S 1 =A * K /( K2 + ())2)* eK*t (sin( ()) (t- rp -{ arctan «()) / K)}/ ()))) + 

sin «()) (rp +{ arctan «()) / K)}/ ()) »); 

Parameterization 16 (Reduced model at 5: 15am - Lower quartile with T) T , Tbini , Tbg. 
Use r to replace K based on the model with Parameterization 15 and obtain the following 

model: 

Tb= e-x*t (K*(So+ SJ+Tbini), 

So = fib *(eK*t_ 1)/ K; 

K = ()) /tan (r ())) 

fib =-(exp( K *tp)* A * K 2*exp( K *tp)*sin( ()) tp - ()) rp -Atan( ()) / K »+exp( K * tp) 

* A * K 2*sin( ())* rp +Atan( ()) / K) )+exp(- K *tp)*Tini * K 2 +exp( - K *tp)* Tini * ())2 

_ Tbq* K 2 _ Tbq* ())2 )/exp( _ K *tp)/(exp( _ K *tp)* K 2 +exp( K *tp)* ())2 _ K 2 _ ())2) 

S 1 =A * K /( K2 + ())2)* eK*t (sin( ()) (t- rp -{ arctan «()) / K)}/ ()))) + 
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sin (ill (rp +{ arctan (ill I K)}I ill ))); 

2.d Assessing Nonlinear behavior 

291 

Nonlinear models have two curvature components: intrinsic and parameter-effect, 
curvature. Changing the parameterization alters the degree of parameter-effects curvature. The 
smaller the curvature of a model, the more the estimates behave like the efficient estimators in a 
linear model and the more reliable the inferential and diagnostic procedures (Schabenger and 
Pierce, 2000). 

The parameter-effects curvature is a measure of the lack of parallelism and the inequality 
of spacing of parameter lines on the expectation surface. The root mean square parameter effects 
curvature CO is a scalar quantity, representing the square root of the average over all directions of 

the squared curvature. When a 95% confidence disk is used as a scale of reference, C0* -J F O.os 

can be compared to the deviation of the expectation surface with a radius 11C from the tangent 

plane at a distance of -J F 0.05 from the tangent point. If parameter effects CIJ is so small that 

PE= CIJ * -J F 0.05 is close to 0.4 (a deviation of 21 %), the linear approximation inference regions 

will be acceptable (Bates and Watts, 1980). Similar reasoning holds for the standardized 
intrinsic curvature, IN. 

2.e Data Analysis 
Nonlinear regressions were performed to estimate the parameters, standard errors, 

confidence intervals and correlations for each parameterization, (proc NUN, SAS, 1999). Proc 
GPLOT was used to graph the observations and predicted curves for T (( and T b' The 
asymptotic properties and curvatures were calculated by writing code for functions of the first 
and second derivatives in proc IML. Maple (1981) was used to obtain the formulas for the 
derivatives. 

3. Results and Discussions 
The intrinsic root mean square curvatures are acceptable both the original and reduced 

models (IN =0.025708 and 0.016469, respectively). The parameter effects root mean square 
curvature PE are given in Table 1. For the four parameter (full) model, the direct relationship 
parameterizations, 1 and 2 leave the original parameter effects curvature essentially unchanged at 
1.26. The expected value parameterizations gave mixed results. Parameterizations involving 
body temperature at the last time, 0:00am the next day, were disappointing. The parameter 
effects curvature increased drastically for parameterizations [3&4], (PE=2.1935 and PE= 2.3166 
for K and 't, respectively). Using body temperature at the median time of 12pm provides an 
improvement by lowering PE to 0.8636 for parameterization 5 with, lag 'to But reparameterizing 
parm5 model by taking the log of /-lb destroys the improvement and raises PE to 2.2334 for 
parameterization 6. The expected value parameterizations [7,8,9] involving body temperature at 
lower quartile time of 5: 15am and the peak time of 6pm further improves the curvature 
(PE~0.6156). But, only the lower quartile parameterizations [7&8] (Body Temperature at 
6: 15am): parm7 with lag 't, and parm8 with thermal constant K have barely acceptable 
parameter effects curvature ( 0.4420, 0.4492 for 't and K). 
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For the reduced model, all parameterizations have acceptable parameter effects curvature. 

Replacing Ll with Jib improves the PE (0.06) with either K or T models [11&12]. Once again the 

expected value parameterizations give mixed results, although all PE's were < 0.4. The PE 
increased for the 5:15am lower quartile models,[15&16] (0.0886,0.0908 for K and T). While 
both 6pm peak models [13&14] had the lowest PE (0.04) of all parameterizations. 

The asymptotic properties as well as the parameter estimates and correlations are shown 
in Tables 2-12. For the original parameterization, the linear approximation is questionable 
because T bini, has a % excess variance = 6.256, r has % bias = 2.841, and % excess variance = 

6.326. The values of all these asymptotic properties are> 1 indicating deviations from the close 

to linear assumption. Furthermore, K is highly correlated with ~ and r (0.921, -0.930, 

respectively), and~ is highly correlated with r (0.999) suggesting over-parameterization 

(table2). Therefore, the original parameterization is unacceptable for this model-data set. 
Parameterizations 1 and 2 are direct relationship parameterizations. In parameterization 1, 

~ was replaced by Jib based on the original model. The parameterization improved % excess 

variance for Tbini (0.132) and the correlation between Jib and r (0.191). But the % excess 

variance for Jiu (3.671) , % bias for r (2.841) and % excess variance for r (6.325) are still 

greater than 1 and K is still highly correlated with r (-0.930) (table 3). In parameterization 2, r 
was replaced by Jiu based on the original model. The results (not shown) were the same as for 

parameterization 1 (table 3) except for Ll. For the parameter Ll, the % bias (-0.572) improved but 
the % excess variance (6.256) did not; and, K is highly correlated with ~ (0.920) . Therefore, 
parameterizations 1 and 2 are unacceptable for this model. 

Parameterizations 3-9 are combinations of expected value parameterizations and direct 
relationships. In parameterization 3 (Last time- K), ~ was replaced by expected value Tblast at 
last time, i.e. t=25 based on the model with parameterization 2. The parameterization reduced all 
correlations (::S; 0.85) (table 4) and all parameter estimates are closer to linear in behavior except 

Jib (% excess variance = 3.675). But, the parameterization is still unacceptable because PE = 

2.1935 (tablel). Similarly, when K was replaced by'Z", parameterization 4 (Last time-'Z"), the 
asymptotic properties (results not shown) were acceptable except for % excess variance ).lb and 
the PE assumptions were violated. 

Parameterization 5 (Median time- 'Z" ) is based on parameterization 4, only T blast was 
replaced by T bm, the body temperature at median time, tmed =13. This parameterization further 

reduced the correlation between the expected value parameter (Tbm ) and Jib (0.195) (table 5), 

but again % excess variance ).lb > 1. 

When Jib was replaced by Log().lb), parameterization 6 (Log Jib)' there was a dramatic 

increase in % excess variance ).lb (25.877) (table 6) as well as the PE (2.2334). This is the worse 
parameterization in the study. 
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In parameterization 7 (5:15am Lower quartile - 't), Tbm was replaced by Tbq, the body 
temperature at the lower quartile time, tq based on the model with parameterization 5. The 
behavior of this parameterization is similar to parameterization 5: it reduced the correlations 
between any two parameters ( :::; 0.762); and, all estimates indicated close to linear behavior 

except for % excess variance for parameter JLb (3.674)(table 7). More importantly, the 

PE=0.4420 was very close to the criterion value (0.4). So, parameterization 7, Lower quartile 
with lag, is an acceptable version of the model. Similar results are obtained when 't is replaced 
by K. SO, parameterization 8, (results not shown) (5: 15am Lower quartile with thermal constant 
K), is also an acceptable version of the model. 

In parameterization 9 (6pm Peak time-1"), T bq was replaced by T bp, the body temperature 
at the peak time, tp =19 based on the model with parameterization 7. This parameterization didn't 
make any essential changes in asymptotic properties and correlations (table8). But since PE = 
0.6156, the peak time parameterization (9) is not as acceptable as parameterizations (7 and 8) 
based on the lower quartile. 

For the reduced model, all parameterizations have well behaved asymptotic properties. 

The main focus is on the correlations. Parameterization 10: (Reduced model) K, Tbini, ~ still 
has a high correlation between K and ~ (-0.992) (table 9). So, this model is less than ideal. 

Replacing ~ with Ilb as in parameterization 11: (Reduced model- JLb) K, Tbini , JLb and 

parameterization 12: (Reduced model-1") T, Tbini , JLb ' reduces the correlations to less than 

0.815 (table 10). More specifically, the Icorrelationl between K (or 't) and JLb is (0.626) So, 

parameterizations using JLb are more acceptable than those using ~. 

When expected value parameterizations are used, the correlations are reduced still 
further. For peak time (6pm), the correlations are less than 0.739 for both K and 't, reduced 
models [parameterizations 13 (table 11) and 14(results not shown)]. The results based on the 
lower quartile (5:15am) are similar [parameterizations 15 (table 12) and 16 (results not shown)]. 
While the correlations are comparable, the peak time models are preferred because they have the 
smallest PE. 

4. Conclusions 
For the full PET model, parameterizations based on direct substitution showed little 

effect on (or in some cases actually worsened) the nonlinear behavior, However, the expected 
value parameterizations showed great improvement in nonlinear behavior and asymptotic 
properties. Most notably, parameterizations based on the lower quartile had the lowest PE 
(0.44 ). 

Parameterization 7 (Body Temperature at 5: 15am - Lower quartile with lag: 1" , Tbini , Tbg , 

JLu) is the best four parameter formulation studied. The validity of the linear approximation is 

strong. The parameter effects curvature is greatly reduced and all estimates (except % excess 
variation for Ilb) are closer to linear in behavior. Moreover, after the reparameterization, the high 
correlations between parameters are reduced. This increases the stability of the model and the 
validity of simultaneous confidence intervals. Finally, the interpretation of the parameters Tbini, 

Conference on Applied Statistics in Agriculture
Kansas State University

New Prairie Press
https://newprairiepress.org/agstatconference/2003/proceedings/24



294 Kansas State University 

Jlb' r, Tbq is more direct (using the lag, 't instead of the rate constant, K): Tbini is initial body 

temperature at time zero; Jlb is Tb mean body temperature; r is the time it takes the Tb to 

respond to Ta and is a function of the thermal constant. r = (arctan (OJ /K))/ OJ; Tbq is the 
expected value of T b when t is at the lower quartile. For example, the data used in this study, 
consisted of a total of 25 hours, since the analysis started at 0:00am and continued until 0:00am 
the next day. Thus, T bq is the expected body temperature of the steer when t=6.25, i.e. at 5: 15 
am. 

For the reduced model all parameterizations adhere to the nonlinear assumptions 
(PE<O.OI) but the peak time formulations are better than rest (PE<O.045). All parameterizations 
exhibited close to linear behavior. The only concern is the high correlations when /::,. is used. 
The correlations were reduced by either direct substitution to ~b or expected value 
parameterizations. Parameterization 14 (Reduced model-6pm Peak time): 't, Tbini, Tbp is 
considered the best of the best because the lag, 't is easy to interpret. 

In general, when the heat challenge is a controlled sinusoidal function, the reduced model 
gives better parameterizations than those of the full model but it may not describe the data as 
well. The next step is to perform a simulation study to determine if these conclusions hold for 
this type of model-data combinations and to assess how well the models fit the data. 

5. Summary 
The original parameterization of the PET model indicates deviations from the 

assumptions needed for nonlinear parameter estimation. Two types of parameterization (direct 
substitution and expected value) were used to improve nonlinear behaviors, such as parameter­
effects curvature, bias, excess variance, and skewness, and reduce the correlation between 
parameters. The parameterizations were used on two versions of the model, full and reduced. 
The full model consisted of all four parameters involved in the original model. The reduced 
model was produced by assuming that y, the proportion of air temperature passed on to the body, 

equals the ratio of the amplitudes, T JT a, and can be approximated by K / ~ K 2 + W 2 Of the 

nine full parameterizations studied, the two based on the Lower quartile (Sam) expected value 
parameterizations provided acceptable versions of the model. Parameterization 7: (Lower 
quartile with lagr) and parameterization 8:( Lower quartile with thermal constant), K ,produced 

satisfactory parameter effects curvature and close to linear behavior for all estimates except Jlb . 
However, r , the length of time (days) that T b lags behind T a can be considered a more 
desirable interpretation of the heat stress dynamics than K, the thermal constant that represents 
how rapidly T b adjusts to changes in T a in units of lIhr. 

Of the seven reduced parameterizations studied, all had excellent nonlinear behavior. In 

addition, low correlations were produced by direct substitution (Reduced model - Jlb ) 
[parameterizations 11&12] and expected value parameterizations both those based on lower 
quartile and those based on peak time The reduced peak time (6pm): 't, Tbini , Tbp ) 
parameterization [14] was slightly preferred over the other three-parameters formulations. And 
the reduced model parameterizations were superior to those based on the full version of the 
model in terms of meeting nonlinear behavioral assumptions. 

Conference on Applied Statistics in Agriculture
Kansas State University

New Prairie Press
https://newprairiepress.org/agstatconference/2003/proceedings/24



Applied Statistics in Agriculture 295 

References 
Bates, D.M., and D.L. Watts. 1980. "Relative curvature measures of nonlinearity." J. R. Statist. 
Soc. Ser. B 42:1-25. 
Hahn,G.L. 1989. "Body temperature rhythms in farm animals" Proceedings of 11 th ISB-Congrss 
.SPB Academic Publishing BV, The Hage, The Netherlands. 325-337. 
Hahn, G.L., AM. Parkhurst and J.B.Gaughan.1997. "Cattle respiration rate as a function of 
ambient temperature". ASAE Mid-Central Conf. Paper MC97-121, April, 1997. 
Maple. 1981. Maple V Release 4.00a. Waterloo Maple Inc., Ontario, Canada. 
Parkhurst, AM., G.L.Hahn, K.M.Eskridge, D.ATravnicek, and H.D.Liu. 1999. "Predicting body 
temperature of cattle during stages of exposure to controlled hot cyclic air temperature using 
metrics with specified delays", Proceedings of the International Congress of Biometeorology & 
International Conference on Urban Climatology Nov 8-12 p 274-280 
Ratkowsky, D. A. 1983. Nonlinear regression Modeling: Marcel Dekker, New York. 
Ratkowsky, D. A. 1990. Handbook of Nonlinear Regression Models. Marcel Dekker, New 
York. Pp75-82. 
SAS. 1999. SAS/STAT User's Guide. Version 8. SAS Institute Inc., Cary, NC. 
Schabenberge, O. and Pierce, F,J.2000. Contemporary Statistical Models for the Plant and soil 
Sciences. CRC Press, New York. Pp 228-234. 

Conference on Applied Statistics in Agriculture
Kansas State University

New Prairie Press
https://newprairiepress.org/agstatconference/2003/proceedings/24



Table 1: Comparison of Standardized Parameter-effects Curvature, PE= eli * ~FO.05 ' for All Paramcterizations Studied 

Parameterization PE Parameterization PE Parameterization PE 

K, Tbini, ~, y 
1.2601 

7: T, Tbini, Tbq, J.1b 
0.4420 10: K, Tbini, ~ 0.0908 

(Original) (Lower quartile- T) (Reduced model) 

1: K, Tbini, J.1b' Y 1.2600 8: K , Tbini , Tbq. J.1b 0.4492 
11: K, Tbini, J.1b 

0.0624 
(Replace ~) (Lower quartile- K ) (Reduced - J.1b ) 

2: K, Tbini, ~, J.1b 
1.2601 9: T, Tbini , Tbp ,J.1b 0.6156 

12: T, Tbini , J.1b 
0.0636 

(Replace y) (Peak time- T ) (Reduced- T) 

3: K, Tbini , Tb1as(, J.1b 
2.1935 

13: K , Tbini , Tbp 
0.0370 

(Last time- K ) (Reduced Peak T - K ) 

4: r, Tbini , Tblast, J.1b 
2.3166 

14: T, Tbini , Tbp 
0.0416 

(Last time- T ) (Reduced Peak - T) 

5: T, T bini, Tbm, J.1b 
0.8636 15: K, Tbini , Tbq 0.0886 

(Median time- T ) (Reduced - Lower quartile- K) 

6: T , T bini,Tbm ,Lflh 
2.2334 

16: T, Tbini , Tbq 
0.0983 

(Log J.1b) (Reduced - Lower quartile- T) 
- .-

I 

I 
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Table 2: The E . fP heir A 

Std 95% Confidence Parmeter Estimate 
Error Interval 

K 0.079 0.015 0.048 0.111 

Tbini 40.083 0.058 39.961 40.205 

l'1 33.084 1.101 30.793 35.374 

r 0.209 0.034 0.138 0.281 

Table 3: The Estimates of P ters. their A . L 

Std 95% Confidence Parmeter Estimate 
Error Interval 

K 0.079 0.015 0.048 0.111 

Tbini 40.083 0.058 39.961 40.205 

f.1b 39.856 0.040 39.772 39.940 

r 0.209 0.034 0.138 0.281 

. P d Correl . for Ori g:inal P . , ~ 

Asymptotic Properties COlTelation 

% Excess 
Skew Bias % K Tbini l'1 

Var 

0.081 0.002 0.132 1.000 0.180 0.921 

0.026 -0.572 6.256 0.180 1.000 -0.117 

-0.953 0.253 0.338 0.921 -0.117 1.000 

0.964 2.841 6.326 -0.930 0.089 -0.999 

totic P d CorreIa!" forP t hon 1 (ReDl i . 
Asymptotic Properties Correlation 

% Excess 
Skew Bias % K Tbini Var f.1b 

0.080 0.253 0.338 1.000 0.180 -0.407 

0.026 0.001 0.132 0.180 1.000 -0.762 

0.392 0.008 3.671 -0.407 -0.762 1.000 

0.961 2.841 6.325 -0.930 0.089 0.191 

r 
, 

-0.930 

0.089 

-0.999 i 

1.000 I 

! 

~) 

r 
-0.930 
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0.191 I 

1.000 
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Table 4: The E . . P K) d Correl . fP heir A . P 3 (L T , ................. , 

Std 95% Confidence 
Asymptotic Properties Correlation 

Parmeter Estimate 
Error Interval % Excess 

Skew Bias % 
Var 

K Tbini Tblast J.1b 

K 0.079 0.015 0.048 0.111 0.080 0.253 0.338 1.000 0.180 -0.795 -0.407 

Tbini 40.083 0.058 39.961 40.205 0.026 0.001 0.133 0.180 1.000 -0.469 -0.761 

Tblast 39.960 0.040 39.875 40.044 0.065 0.000 0.118 -0.795 -0.469 1.000 0.850 

J.1b 39.856 0.040 39.772 39.940 0.392 0.008 3.675 -0.407 -0.761 0.850 1.000 

Tables 5: The Estimates of Parameters, their Asymptotic Properties and Correlations in Parameterization 5 (Median time T bm -r ) 

Std 
Asymptotic Properties Correlation 

Parmeter Estimate 95% Confidence 
Error Interval % Excess 

Skew Bias % 
Var 

r Tbini Tbm J.1b 

r 4.869 0.201 4.451 5.288 0.015 0.010 0.303 1.000 -0.180 -0.726 0.407 

Tbini 40.083 0.058 39.961 40.205 0.026 0.001 0.133 -0.180 1.000 -0.071 -0.762 

Tbm 39.760 0.026 39.706 39.815 0.002 0.000 0.036 -0.726 -0.071 1.000 0.195 

J.1b 39.856 0.040 39.772 39.940 0.392 0.008 3.674 0.407 -0.762 0.195 1.000 
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Table 6: The Estimates of Parameters, their Asymptotic Properties and Correlations in Parameterization 6 ( Log JLb) 

Std 95% Confidence 
Asymptotic Properties Correlation 

Panneter Estimate 
Error Interval % Excess 

Skew Bias % T Tbini Tbm Log /lb Var 

T 4.869 0.201 4.451 5.288 0.015 0.010 0.303 1.000 -0.180 -0.726 0.408 

Tbini 40.083 0.058 39.961 40.205 0.026 0.001 0.133 -0.180 1.000 -0.072 -0.762 

Tbm 39.760 0.026 39.706 39.815 0.002 0.000 0.036 -0.726 -0.072 1.000 0.194 

Log /lb 3.685 0.0010 3.683 3.687 0.315 -0.007 25.877 0.408 -0.762 0.194 1.000 

Table 7: he E . fP heir A . P d Correl . . P 7 (L 'le T - , ~ ~ 
) 

Std 95% Confidence 
Asymptotic Properties Correlation 

Panneter Estimate 
Error Interval % Excess 

Skew Bias % T Tbini Tbq JLb Var 

T 4.869 0.201 4.451 5.288 0.015 0.010 0.303 1.000 -0.180 0.315 0.407 ! 

Tbini 40.083 0.058 39.961 40.205 0.026 0.002 0.133 -0.180 1.000 -0.080 -0.762i 
, 

Tbq 39.443 0.026 39.388 39.498 -0.004 -0.000 0.026 0.315 -0.080 1.000 0.371 ! 

JLb 39.856 0.040 39.772 39.940 0.393 0.008 3.674 0.407 -0.762 0.371 1.000 
, 
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Table 8: The Estimates of Parameters. their Asymptotic Properties and Correlations in Parameterization 9 (Peak time Tbp -r) 

Std 95% Confidence 
Asymptotic Properties Correlation 

Parmeter Estimate 
Error Interval % Excess 

Skew Bias % 
Var 

r Tbini Tbp Pb 

r 4.869 0.201 4.451 5.288 0.015 0.010 0.303 1.000 -0.180 -0.249 0.407 

Tbini 40.083 0.058 39.961 40.205 0.026 0.001 0.133 -0.180 1.000 0.320 -0.762 

Tbp 40.299 0.026 40.244 40.354 0.002 0.000 0.021 -0.249 0.320 1.000 0.103 

Pb 39.856 0.040 39.772 39.940 0.393 0.008 3.674 0.407 -0.762 0.103 1.000 

Table 9: The Estimates of P ters. their A totic P d CorreIa!" . P t tion 10 (Reduced Model) rt . , 

Std 95% Confidence 
Asymptotic Propel1ies Correlation 

Pmmeter Estimate 
Error Interval % Excess 

Skew Bias % K Tbini ~ 
Var 

K 0.066 0.0022 0.061 0.071 -0.086 -0.048 0.0483 1.000 0.737 -0.992 

Tbini 40.078 0.056 39.960 40.195 0.015 0.000 0.0035 0.737 1.000 -0.788 

~ 31.939 0.281 31.356 32.522 0.115 0.016 0.0802 -0.992 -0.788 1.000 
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Table 10: The Estimates of Parameters, their Asymptotic Properties and Correlations in Parameterization 11 (Reduced model- f1b ) 

Parmeter Estimate 

K 0.066 

Tbini 40.078 

f1b 39.872 

Parmeter Estimate 

K 0.066 

Tbini 40.078 

Tbp 40.294 
~-

Std 95% Confidence 
Asymptotic Properties 

Error Interval % Excess 
Skew Bias % 

Var 
K 

0.0022 0.061 0.071 -0.086 -0.048 0.048 1.000 

0.056 39.960 40.195 0.015 0.000 0.003 0.737 

0.044 39.779 39.965 0.113 0.002 0.141 -0.626 

Table 11: The Estimates of Parameters, their Asymptotic Properties and 
Correlations in Parameterization 13 (Reduced model- Peak Time with K) 

Std 95% Confidence 
Asymptotic Properties 

Error Interval % Excess 
Skew Bias % 

Var 
K 

0.002 0.061 0.071 -0.086 -0.048 -0.048 1.000 

0.057 39.959 40.196 0.015 0.000 0.003 0.739 

0.025 40.241 40.348 0.003 -0.000 0.005 0.656 
L _____ ______ 

Correlation 

Tbini f1b 

0.737 -0.626 

1.000 -0.815 

-0.815 1.000 

Correlation 

Tbini Tbp 

0.739 0.656 

1.000 0.330 

0.330 1.000 
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Parmeter Estimate 

K 0.066 

Tbini 40.078 

Tbq 39.449 
-- - --------

Table 12: The Estimates of Parameters, their Asymptotic Properties and 
Con-elations in Parameterization 15 (Reduced model- Lower quartile with K) 

Std 95% Confidence 
Asymptotic Properties Con-elation 

En"or Interval % Excess 
Skew Bias % 

Var 
K Tbini 

0.002 0.061 0.071 -0.086 -0.048 0.048 1.000 0.739 

0.057 39.959 40.196 0.015 0.000 0.003 0.739 1.000 

0.025 39.396 39.502 -0.005 -0.000 0.005 -0.669 -0.055 
- -- '------------~ ----- .. _--_._-----

Tbq 

-0.669 

-0.055 

1.000 

FigureJ. Observations and Curve of Original 
Model for Air Temperature vs Time 

Figure 2. Observations and Predicted Curve of 
Original Model for Body Temperature vs Time 
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