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MODELING AND DESIGN TO DETECT INTERACTION OF 
INSECTICIDES, HERBICIDES AND OTHER SIMILAR COMPOUNDS 

Timothy E. O'Brien 
Loyola University Chicago, Department of Mathematics and Statistics 

6525 N Sheridan Road, Chicago, IL 60626 USA 
tobrien@math.luc.edu 

Abstract 
This paper discusses model and experimental design aspects of agricultural 
studies aimed at discerning antagonism or synergy between two or more 
insecticides, herbicides, or other similar compounds. The developed methods 
involve a broad class of generalised nonlinear models, which are easily fitted 
to data using popular statistical packages such as the NLMIXED procedure in 
SAS® software. Sample computer code is given in the Appendix. 

Keywords - antagonism, combination index, experimental design, generalized 
nonlinear models, isobolograms, optimal design, phenolic acids, synergy. 

1. Introduction 

Nonlinear models, such as dose-response models, are often used in agricultural settings to relate 
the response of interest to the concentration of an herbicide, insecticide or other similar 
compounds such as a phenolic acids. In settings where combinations of such similar compounds 
are applied to the given experimental units, interest often centers on the detection of any relevant 
interaction such as an additive effect (synergy), sub-additive effect (antagonism) or independent 
effect. Statistical models useful for the detection of such interactions are discussed in Finney 
(1952, 1971, 1978) and Greco et al (1995), experimental design strategies for interaction are 
given in Abdelbasit and Plackett (1982), Greco and Tung (1991) and O'Brien (2003a, 2003b), 
and Bates and Watts (1988), Seber and Wild (1989) and McCullagh and Nelder (1989) cover 
generalized nonlinear modelling. Additional references include Chou and Talalay (1981), 
Berenbaum (1989), Barton et al (1993), Khinkis and Greco (1993), Greco et al (1995), Dawson 
et al (2000), Hutchinson et al (2000) and Govindarajulu (2001). Our focus here is to provide 
new modelling and experimental design methods useful for the detection of synergy/antagonism 
with applications to agricultural settings. 

2. Preliminaries 

Before the experimental design can be chosen and before the assessment of interaction between 
two similar compounds can be made, several important concerns need to be addressed - an 
appropriate model must be chosen, the choice of the proper (dose or concentration) scale must be 
made and the relative potency of the two compounds must be estimated. 
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304 Kansas State University 

2.1 The Choice of the Statistical Model 

We consider here parametric statistical models from the general class of generalized linear or 
nonlinear models, meaning that assumptions must be made as to the underlying distribution of 
the response variable(s), the mean function and the link: function. Indeed, this restriction is easily 
relaxed to include all nonlinear models for which one can specify a likelihood; thus, distributions 
are allowable outside the exponential family such as the Weibull distribution. One model useful 
for modelling synergy is the so-called FinneyS model (Finney, 1971, Chap. 11). For this model, 
similar compounds (e.g., herbicides, pollutants, etc.) A and B in amounts Xl and X2 can be related 
to a response Y by first calculating the effective dose, 

(2.1) 

where 84 is the relative potency parameter and 8s is the coefficient of synergy, and then by using 
a parametric model such as the 3-parameter log-logistic model (LL3) 

(2.2) 

Note that 81 is the expected response at zero dose level, that 82 and 83 are the LDso and slope 
parameters respectively, and should a non-zero lower asymptote (87) be required, then we could 
use the 4-parameter log-logistic model (LL4) in place of the LL3 model. For these models, the 
associated curve is descending (as the effective dose increases) whenever 83 is positive, so that 
this model may be useful to describe the antagonistic effect of two phenolic acids on the growth 
of cucumber seedlings, the synergistic effect of two pollutants in terms of crop yield, etc. 

A minor adaptation of this function, called the Finney4 model- useful for binomial dose­
response data - assumes that the response variable has a binomial distribution with a vector of 
n's (with sample size depending on the dose levels), and with 'success' probability 

p = tI (1+t) (2.3) 

for t and z defined in equations (2.1) and (2.2). We point out that for the chosen 
parameterization (where 82, the LDso, is a model parameter), these models are indeed generalized 
nonlinear models - models which are finding more and more recent applications (see e.g. Cox 
(1992)). By way of illustration, since for positive 83, the curve associated with equation (2.3) is 
increasing with z, this model is useful, for example, for modelling the proportion of dead insects 
associated with two insecticides; applications of this sort are discussed in section 3. 

Although the Finney model is useful for a modelling interaction in some cases, this model has 
proven to be too restrictive for several datasets. Whenever the data is chosen using so-called ray 
designs, an important generalization, called the separate ray model, is to fit separate nonlinear 
curves along each ray, each with a potentially different slope and possibly different scale (see 
section 2.2 below). Here, several combinations of points are chosen along each ofr rays, where 
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the x-axis (X2 = 0) is taken as the first ray, the y-axis (Xl = 0) is taken as the second ray, and 
where the rth ray corresponds to the line 

X2 = CrXl (2.4) 

for the chosen (R-2) slopes Cr (for r = 3, 4, ... R). The slopes C3, ... , CR are fixed a priori, and 
correspond to the so-called interior rays. Thus, for example for binomial data, equation (2.3) is 
fit along each ray. It is straightforward to show that when the corresponding slopes are equal and 
the LD50'S follow a specific relationship, then the separate ray model collapses to the Finney 
model; this result is established in Appendix A. 1. The separate ray model is discussed further in 
Section 3 in the context of effective fractions and combination indices. 

We also point out the importance of testing model assumptions (by examining and testing 
residuals, etc.) once the model and design are chosen, the data is obtained, and the model 
parameters are estimated. For example, for some datasets for which continuous Gaussian 
responses are assumed, we have found it useful to model variances according to the assumed 
variance function, var(Y) = (}211$, where 11 = E(Y) and <P is an additional variance parameter to be 
estimated from the data. Other examples of extending the basic model assumptions are the use 
of the beta-binomial distribution in place of the binomial distribution and the use of the negative 
binomial or the generalized Poisson distribution in place of the Poisson distribution whenever 
overdispersion is a concern for a given dataset. 

2.2 The Choice of Scale 

Researchers and beginning students often become understandable confused when textbooks such 
as Myers et al (2001: 114) fit a logistic regression curve using both the dose and the log-dose 
scales to a given dataset and give no clear logic behind how the choice of scale can and should 
be made. Indeed, in many cases, statistical modellers and practitioners are uncertain as to the 
correct scale to use. Even in cases where the doses are chosen according to a geometric pattern 
and where one might be tempted to use the log-concentration to fit the logistic curve, we 
highlight the fact that since the logistic curve only represents a model of the actual relationship, 
this temptation needn't be necessarily followed (nor appropriate) in all situations. One way to 
circumvent this quandary is to have the data "choose" the correct scale by introducing a Box­
Cox scale model parameter which is then estimated. Thus we replace the probability in equation 
(2.3) by 

p = ex / (1 +ex) (2.5) 

where "ex" = exp{83[z(x) - z(82)]} and where 

z(x) = [xG6 - 1] /86 (2.6) 

so that 86, the Box-Cox parameter, is indeed an additional parameter to be estimated. As this 
additional parameter nears zero, the log-dose scale is indicated for the logistic (or other) model, 
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and as it nears one, the dose-scale is deemed more appropriate, though our practice is to include 
other values as well. For the referenced Myers et al exercise, since the 95% confidence interval 
for the Box-Cox parameter includes zero but does not include one, we conclude that these data 
suggest the use of the log-dose and the model in the form of (2.3). We have also found this step 
an important one in the assessment of both relative potency and of drug synergy. Additional 
illustrations of the importance of the scale parameter include Example 2.3.1 and the examples 
given in sections 3 and 4. 

2.3 Estimating the Relative Potency 

Before an experiment can be designed to test for the nature of the interaction between two 
similar compounds or drugs, the relative potency of the two drugs should first be estimated. 
Thus, if separate logistic model functions of the form of equation (2.3) are fit to each drug, then 
we can define the relative potency in terms of the respective LDso' s, by 

p = 821 /8 22 (2.7) 

where 821 is the LDso associated with drug A and 822 is the LDso associated with drug B. Note 
that if instead the LD7S 's (the respective doses at which p = 75% for model (2.3)) were used to 
find the relative potency of the drugs, the potency would be the same as in equation (2.7) if and 
only if the respective logistic curves are parallel (so that 831 = 832); otherwise, the choice of the 
level (50%, 75%, etc.) at which to compare the curves is paramount. As a result, we adopt as a 
sufficient condition in the assessment of relative potency the convention that the dose-response 
curves first be parallel. Regardless of whether or not the dose-response curves can be assumed 
to be parallel, use of the definition of relative potency given in equation (2.7) avoids any 
ambiguity. 

Example 2.3.1 - By way of illustration, we examine the data given in Stokes et al (2000:331) to 
assess the relative potency of the two peptides. For this study, the authors assumed that the 
binomial-logistic model is appropriate with parallel curves and obtained the relative potency 
point estimate of p = 5.64. Further, using an application ofFieller's Theorem (see Finney, 1971, 
p. 63), the authors also give an approximate 95% confidence interval for p of(1.53,20.07). Our 
analysis confirms that the likelihood-ratio test for parallelism dose retain the null hypothesis for 
these data, thereby supporting the inherent parallelism assumption. Also, this illustration 
highlights the fact that practitioners should not use the usual Wald intervals given by most 
software packages (e.g., the NLMIXED procedure in SAS®) for providing an interval estimate of 
p since this interval includes negative values here. The reliability ofWald intervals and 
indicators of their usefulness are discussed in O'Brien and Wang (1996) and Haines, O'Brien 
and Clarke (2004). Indeed, the much-preferred profile-based interval for the relative potency for 
these data is (3.0,19.5), which is quite well approximated by the Fieller interval referenced 
above. We also point out that since the indicated scale for these data is the log-concentration (the 
Box-Cox parameter estimate is near zero), this example also highlights that were the researcher 
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to incorrectly use the concentration scale, these data would then indicate non-parallelism of the 
dose-response curves, thereby rendering an examination of relative potency meaningless .• 

Once a reasonable model and scale are chosen and a reliable estimate of the relative potency of 
one drug to the other is obtained, the synergy experiment can be designed and the interaction can 
be assessed. Typical SAS® code is included in Appendix A.3. 

3. Assessing Synergy and Antagonism 

As noted above, our approach here is a parametric one in the sense that an underlying 
distribution, model and link functions are assumed known (and assessable via parametric lack­
of-fit tests); readers interested in a nonparametric approach can consult Kelly and Rice (1990). 
As noted in the previous section, the assessment of interaction between two or more drugs or 
similar compounds - as well as the optimal design strategies discussed in Section 5 - depends 
upon the model assumed for the specific application. Here, we discuss two very useful models 
and highlight the strengths and weaknesses of each. 

3.1 Assessment of Interaction using the Finney Model 

In some instances, the chosen design prohibits the use of a model as sophisticated as the separate 
ray model and necessitates the use of a model such as the Finney model discussed in section 2.1. 
Using this model, synergy is exhibited whenever the coefficient of synergy, 85, is estimated as 
being significantly positive, antagonism is declared whenever it is significantly negative, and 
independent action is retained otherwise. This follows since if the synergy coefficient is 
negative, then z defined in equation (2.1) corresponds to the upper right portion of an ellipse; 
Appendix A. 1 provides additional insight into these distinctions by relating the Finney and the 
separate ray model parameters. The following example provides a classic illustration of the use 
of the Finney model in agricultural research. 

Example 3.1.1 - Gerig et al (1989) examined the interaction between the phenolic acids, ferulic 
(Xl) and vanilic (X2) acid, on the growth of cucumber seedlings, in a study involving 3 chambers 
and only six support points per chamber, viz, (XI,X2) = (0,0), (0,0.25), (0,0.50), (0.25,0), (0.50,0) 
and (0.25,0.25) (in Ilmlg). Since only one interior point is included in the study design, use of a 
model more sophisticated than the Finney5 model given in equations (2.1) and (2.2) is not 
possible without additional, overly restrictive assumptions. Thus, we fit this model under the 
assumption of Gaussian, homoskedastic errors. For this model, the synergy coefficient, 85, is 
estimated to be -0.8266, leading one to suspect significant antagonism between these phenolic 
acids, and this indeed is the conclusion given in Gerig et al (1989). Although this conclusion 
may be justified, two caveats should be noted. First, that the chosen design has only one interior 
point, puts a great deal of weight on the underlying model assumptions in this instance; clearly, 
much more reliable results can be obtained with a more sophisticated design (see section 5 
below). Second, although the corresponding Wald test of independence (85 = 0) yields a p-value 
ofO.0009 (tl1 = 4.517), the more reliable profile-based test ofthe same hypothesis results in a p­
value ofO.0254 (F1,11 = 6.68). It follows that a more accurate conclusion here may be that these 
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data show marginal or tentative evidence of antagonism and indicate that a larger, better­
designed study is needed. • 

Although the previous example highlights the usefulness of the Finney statistical model in 
assessing the interaction of similar compounds in certain important settings, many other 
examples highlight the inadequacy of this model. For example, in several cases, use of this 
model resulted in large discrepancies between the actual and the predicted responses. Thus, in 
the next section, we introduce a richer statistical model - one which includes the Finney model 
as a special case or "sub-model." 

3.2 Assessment of Interaction using the Separate Ray Model 

One reason the Finney model fails to adequately fit certain interaction datasets is that for these 
datasets, the slopes are not the same along the various rays; see Appendix A. 1 for algebraic 
connections between these models. A second, more important, reason for the inadequacy of the 
Finney model is that, whereas the Finney model assumes that a single coefficient of synergy is 
adequate over all combinations of two or more drugs, in many cases the degree of synergy or 
antagonism depends upon the relative proportions of the drugs in a mixture. This concept, which 
translates into the degree and nature of interaction depending for example on the slope (Cr) in 
equation (2.4), viz, X2 = CrXI, is addressed in Tallarida (2000:9) and in Gessner and Cabana 
(1970). Using data examining the interaction between chloral hydrate (X2) and ethanol (Xl), 

Gessner and Cabana (1970) presents evidence of significant synergy between these drugs for 
slopes greater than c = 117 and independent action for gentler slopes. 

To make this concept of varying degrees of synergy for different rays more concrete, consider 
the so-called LD50 line connecting 821 , the LD50 associated with drug A, with 822, the LD50 
associated with drug B. We express this line as 

(3.1) 

To illustrate, if the relative potency (p) of substances A to B is equal to 10 (e.g." if821 = 10 and 
822 = 1, so that substance B is ten times as potent as substance A), then the effective equipotent 
(EE) ray is one which includes 5 parts of substance A and one-half part of substance B, etc. It 
follows in general that this EE ray has slope lip. We therefore define the effective fraction, f, 
along the rth ray (X2 = CrXI) by 

and X2 = (1 - f) 822, (3.2) 

where flies between 0 and 1, and where f = 1 corresponds to ray 1 (horizontal axis X2 = 0) and 
where f= 0 corresponds to ray 2 (vertical axis Xl = 0); not surprisingly, f= Y2 for the EE ray. 
Thus, rays are referenced here either by the corresponding slopes as in equation (2.4) or by the 
corresponding effective fraction as in (3.2), and one can switch from one to the other by using 
the relations 
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c = [llf - 1] / p and f = 11 [1 + cp]. (3.3) 

For example, since the relative potency for the study given in Gessner and Cabana (1970) is 
estimated to be 10.93, the slope of c = 1/8 referenced above corresponds to the effective fraction 
f= 0.42, meaning that this ray is not far from the effective equipotent ray (f= Y2). Indeed, 
although referencing rays in terms of their slopes may be useful in geometric and graphical 
terms, we note that it is more advantageous to develop experimental designs for synergy studies 
in terms of their corresponding effective fractions. 

For a given ray (referenced by slope or by effective fraction), note that if the corresponding LDso 
along this ray falls below (towards the origin) the LDso line given in equation (3.1), then this 
gives evidence of synergy along this ray; analogously, the LDso falling above the LDso line 
indicates antagonism. In order to obtain a valid statistical test of significance, we reparameterize 
the separate ray model, shifting away from the 82r (the LDso along the rth ray) parameters and 
introduce a new model parameter that can be used to test for interaction. This is achieved by 
introducing the so-called combination index for the rth ray, K r . Given that the LDso along this 
ray is on a line parallel to the LDso line in equation (3. 1) but with the right hand side in (3.1) 
equal to Kr instead of 1, viz, 

(3.4) 

then we are interested in estimating the corresponding combination index (Kr) for each ray and in 
testing whether each is significantly less than one (synergy), equal to one (independent action) or 
greater than one (antagonism). Finally, by combining the relation for the LDso along the rth ray 

with equations (2.4) and (3.4), we obtain the relation 

or equivalently, 

for each interior ray, r = 3,4, ... R. A more informative manner of expressing the rth 
combination index may be by the equation 

(3.5) 

(3.6) 

(3.7) 

(3.8) 

obtained from equations (3.1) - (3.7); this expression gives the ratio of the actual LDso along the 
rth ray to the point on the LDso line where the ray hits this line. 
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It follows that for a study involving R rays, fitting the separate ray model includes the estimation 
of2R model parameters, viz, the R slopes (831,832, ... , 83R), the LD50's for each of the two drugs 
(821 and 822), and the (R - 2) combination indices (K3, 1<4, ... , KR); the LD50's of the interior rays 
are simply functions of these latter parameters. Computationally, this can easily be achieved 
using for example the SAS® statistical package by either programming the likelihood in 
SAS/IML or by using the NLMIXED procedure. The above concepts are illustrated with the 
following examples. 

Example 3.2.1 - Martin (1942) presents data regarding the interaction between two insecticides, 
deguelin (Xl) and rotenone (X2), in isolation and in a 1 :4. mixture (thus a single interior ray), when 
sprayed on Macrosiphoniella sanborni, the chrysanthemum aphis; these data are also examined 
in Finney (1971) and Greco and Lawrence (1988). The binomial logistic model is assumed here 
since the number of dead plants is recorded out of a fixed number (usually 50) for each dose 
combination. We find for these data that an appropriate scale is indeed the log-dose scale (i.e., 
that 86 in equation (2.6) is near zero). Note that since the underlying design involves only a 
single interior ray, the Finney4 model is equivalent to the equi-slope separate ray model (see 
Appendix AI). However, the full separate ray model is required here since the likelihood-based 
test of common slopes is rejected (xl = 10.93, p = 0.0042), and, using this richer model, we note 
that these data exhibit significant synergy with an estimated combination index of K3 = 0.7355 
6~12 = 14.3, P = 0.0002 corresponding to the test of independence, Ro: K3 = 1). It is important to 
highlight the fact that since for these data the relative potency is estimated as 11.97/4.77 = 2.51 
and since C3 = 114, the interior ray used here corresponds to the estimated effective fraction f = 
0.62. That is, we conclude that these data suggest significant synergism corresponding to this 
fraction and that extrapolation to other fractions is potentially precarious; should this is the goal 
of a study, additional fractions (corresponding to additional rays) should be added to the 
underlying study design. • 

Example 3.2.2 - Designs with one interior ray and involving binomial data are used in Collett 
(2003: 113) (originally from Hewlett and Plackett (1950» and in Finney (1952: 149) (originally 
from LePelley and Sullivan (1936». The Hewlett and Plackett study involved an insecticide trial 
in which flour beetles were sprayed with either DDT (dichloro-diphenyltrichloroethane) or y­
BHC (y-benzene hexachloride) or a 1: 1 mixture of the two. For these data, a common Box-Cox 
parameter (c.f, equation (2.6» is required, the common slope hypothesis (831 = 832 = 833) is 
accepted, and synergy is indicated (estimated combination index ofK3 = 0.4555 and test ofHo: K3 
= 1 yields X1 2 = 208.8, P < 0.0001). More specifically, significant synergy is observed along the 
ray with estimated effective fraction off= 0.44 (using equation (3.3» since the relative potency 
is estimated as 4.90/3.83 = 1.28. Evidence of significant synergy is less clear for the LePelley 
and Sullivan study, which involves two trials, each involving house-flies sprayed with the 
insecticides rotenone or pyrethrins alone or in a (respectively 1:5 or 1: 15) mixture ofthe two. 
Analysis of these data requires distinct Box-Cox parameters for each of the rays, and significant 
synergy is observed for the first trial (likelihood test ofRo: K3 = 1 yields X1 2 = 54.1, P < 0.0001), 
for which the estimated effective fraction is f= 0.46, but independent action is concluded for the 
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second trial (likelihood test ofHo: K3 = 1 yields X1 2 = 0.8, P = 0.37), for which the estimated 
effective fraction is f= 0.70. Thus, the LePelley and Sullivan studies highlights the fact that 
synergy can be observed for some mixture proportions but not for others. -

311 

Example 3.2.3 - In cases where the response variable is a percentage - for example, percent of 
weed control- a transformation such as the logit transform in equation (2.9) or the arcsine­
square root transformation is usually warranted. This is the case for the trials - each with a 
single interior ray - reported in Shelton (1990) and Tallarida (2000:63). Shelton (1990) 
examined percentage weed control after use of one of two herbicides or a 1:4 mixture of the two, 
and the separate ray model (with log-dose) with different slopes is found to be adequate using the 
logit transformation; these data exhibit significant synergy (estimated combination index of K3 = 
0.4286 and test ofHo: K3 = 1 yields X1 2 = 30.6, P < 0.0001) along the ray with estimated effective 
fraction off= 0.26. That this estimated fraction is so low may be evidence that the relative 
potency was poorly estimated a priori (see equation (3.3» and that perhaps a slope of c =1110 (a 
mixture of 1: 10) should have been used. In contrast, the study reported in Tallarida (2000:63), 
which also gives evidence of significant synergy (with estimated combination index of 0.3232 
which corresponds to the effective fraction of 0.51), includes an interior ray that is nearer to the 
corresponding effective equipotent rays (f= Y2). -

The previous example highlights one of the potential dangers of the use of only one interior ray 
in assessing the interaction of similar compounds - that if the relative potency is estimated very 
poorly, then the region of exploration actually studied could be quite different from the intended 
one. This follows since if po is the initial a priori guess at the relative potency and fo is the 
effective fraction corresponding to the chosen ray in equation (3.2), whereas PF is the actual 
estimated relative potency for a given study, then the corresponding realized effective fraction, 
fF, is given by 

fF = [1 + r(1/ fo - 1)]"1 (3.9) 

where r = PF /Po is the ratio of the final and guessed potencies. Thus, regardless of the value of 
the initial fraction (fo), the realized fraction (fF) in (3.9) can take on any number between zero 
and one depending on the value of r. As a result, it is our strong recommendation that 
researchers first get an idea of the relative potency of the substances under study (stage I) before 
the actual (stage II) interaction study is performed; this two-stage design strategy is further 
discussed in section 5 below. Fortunately, one obvious way to (at least partially) circumvent the 
need for a precise estimate of the relative potency is to use a design with several interior rays, as 
was the case for the following illustrations. 

Example 3.2.4 - Giltinan et al (1988) and Morgan (1992:17) discuss data gathered to study the 
interaction between two insecticides (labelled A and B) where the response variable is the 
number of dead tobacco budworms of a fixed total (usually 30) budworms exposed to either 
insecticide A alone, insecticide B alone or a combination in a mixture of 3 : 1, 1: 1 or 1: 3. For 
these data and the separate ray model, the indicated Box-Cox scale is the log-dose scale (c.r, 
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equation (2.6)), the common-slope hypothesis (831 = ... = 835) is accepted, and the estimated 
combination indices are K3 = l.57, K4 = 2.46 and K5 = l.57, thereby indicating significant 
antagonism between these insecticides. Since we can further accept that K3 = Ks = K, the 
corresponding separate ray model contains only 5 parameters. It turns out too that the Finney4 
submodel (c.r., equation (2.3)) also adequately fits these data (X1 2 = 3.8, P = 5.13%), thereby 
implying that the estimated combination indices and LD50'S follow the pattern as specified by the 
Finney model (see equation (7.2) in Appendix A.l); however, we feel that the separate ray model 
is more informative since it allows us to verify significant antagonism for each of the chosen 
rays. Finally, note that since the estimated relative potency here is 10.06/11.49 = 0.88, the 
selected mixtures correspond to the realized effective fractions f = 0.28, 0.53, and 0.77, and so 
the selected mixtures adequately cover the mixture region (i.e., fs between 0 and 1) .• 

The previous example points out the far-reaching application and usefulness of the separate ray 
model in conjunction with several (typically three) interior rays; this methodology is easily 
extended to find estimated mixtures associated with the maximal amount of synergy or 
antagonism. We return to a discussion of the set-ups and experimental designs useful in 
interaction experiments in Section 5 below after a discussion of two noteworthy extensions of the 
basic separate ray model. 

4. Some Extensions of the Finney and Separate Ray Models 

The basic separate ray model discussed in Section 3 is easily adapted to account for blocking 
variables and for checkerboard designs, which are occasionally encountered in practical settings. 

4.1 Experiments Involving Blocks 

Agricultural studies are often laid out in growing chambers and herbicide trials typically involve 
distinct field plots; thus, it is important to note that variability associated with these blocking 
factors must be removed in the Finney or separate ray models so that potential interactions can 
more accurately be assessed. The following example illustrates how interaction patterns can 
better be discerned when this variability is first removed. 

Example 4.1.1 - For the cucumber-phenolic acids dataset discussed above in Example 3.1.1, 
Gerig et al (1989) recommends that a separate upper-asymptote parameter (81 in equation (2.2)) 
be used for each of the three chambers, and this results in the estimated coefficient of synergy 
given above (85 = -0.8266) and the tentative conclusion of significant antagonism (likelihood 
test of independence resulted in the p-value of2.54%). In effect, this procedure allows us to 
remove the fixed block effects as captured in the upper-asymptote parameter; an alternate 
strategy is to treat the chambers as random blocks and the realized upper asymptotes as random 
realizations from a random (e.g., Gaussian) distribution. This latter technique, which is easily 
implemented using the NLMIXED procedure in SAS@, yields almost identical results in terms of 
the estimated synergy coefficient (85 = -0.8371), but for this random upper-asymptotes, the 
likelihood-based test of independence is strongly rejected (X1 2 = 12.9, P = 0.0003). It is therefore 
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reasonable to conclude that these data do therefore suggest significant antagonism between these 
phenolic acids - though a better-designed study is clearly needed. We also underscore the 
importance of removing the random block (chamber in this example) variability so that 
interactions can be more clearly detected. • 

Similar results can be obtained in settings where randomised complete or incomplete block 
designs are used in environmental or agricultural field studies or in which individual subjects act 
as blocks (such as in medical studies). 

4.2 Horizontal and Vertical Rays; Checkboard Designs 

Although most recent interaction studies use the ray designs discussed in sections 2.1 and 3.2, 
occasionally the so-called checkerboard design (or some variant of it) is employed. 
Checkerboard designs combine rays 1 (X2 = 0) and 2 (Xl = 0) with a factorial design using all 
non-zero doses. For example, situations arise for which researchers are interested in determining 
whether significant interaction is present with herbicide A for fixed levels of herbicide B (called 
horizontal rays, of the form X2 = c) or with herbicide B for fixed levels of herbicide A (called 
vertical rays, of the form Xl = c). Thus, Gessner and Cabana (1970) describes a study in which 
synergy is detected for both horizontal and vertical rays. The following examples demonstrate 
two simple extensions of the separate rays model to handle these designs. 

Example 4.2.1 - Whereas classic checkerboard designs include both the horizontal ray (X2 = 0) 
and the vertical ray (Xl = 0), the design used in Peters and Ganter (1935) (and discussed in 
Finney (1952:118)) involves only horizontal rays. These rays correspond to one of seven 
different concentrations of hydrocyanic acid in a study of the toxicity of hydrocyanic acid to the 
grain weevil Calandra granaria, in which batches of ten insects were exposed to the specific 
concentration for between two to five different exposure times. Thus, the authors are interested 
in testing for the interaction between concentration and exposure time, and the separate ray 
model is readily extended to handle this design, with details given in Appendix A.2. For this 
design and model, 821 represents the LDso for the lowest concentration (3.5 g/cu.m.), 822 denotes 
the LDso for the highest concentration (30 g/cu.m.), and combination indices again quantify the 
deviation of the data from the straight line connecting 821 and 822 . Using this approach, these 
data show significant synergy for each ofthe concentrations 8.5, 11.5, 15.5 and 24 g/cu.m with 
estimated combination indices, K = 0.83, 0.64, 0.61 and 0.76, respectively. Since the vertical ray 
(Xl = 0) is omitted here, the Finney model cannot be fit, and the extension of the separate ray 
model described here provides the only sensible means to detect interaction for these data. • 

5. Experimental Design Strategies for Detecting Interaction 

Optimal designs are often chosen to maximize some function of the information matrix, M, 
which corresponds to the assumed model function. Designs that maximize the determinant of M, 
called D-optimal designs, are discussed here. The D-criterion is by far the most popular one (see 
Silvey (1980:40)), although other criteria are discussed in Atkinson and Donev (1992) and 
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Atkinson and Haines (1996); a more non-technical introduction to optimal design strategies is 
provided in O'Brien (2003b) and O'Brien and Funk (2003). 

Unfortunately, so-called optimal designs often only have enough support points to estimate the 
model parameters of the assumed model function, and hence provide no ability to test for lack of 
fit. Our approach here is to provide "robust" optimal designs - efficient designs with extra 
support points - by embedding key deviations into the model. Robust optimal designs are 
therefore advantageous since they (1) provide a nice compromise between the theoretical and the 
practical, (2) do not waste limited resources, (3) efficiently estimate model parameters, and (4) 
allow for lack of fit tests and tests of model discrimination. 

As noted above in Example 3.2.3, we advise the use of a two-stage experimental design process 
- in the first stage a small study be set up to give an accurate idea of the relative potency (if one 
is not readily available from previous studies), and a second stage (using the relative potency 
estimate as an a priori estimate) to evaluate synergy. Thus, for example if the separate-ray 
binomial logistic model is to be used, then for the first stage, we intentionally saturate the model 
with extra parameters by allowing three-parameter logistic models on each of the first and 
second rays. This process of saturation provides designs with additional design points to check 
for model mis-specification. An alternate strategy is to find optimal designs using a set of initial 
parameter estimates at the ends of a reasonable range of such values. Our design strategy 
includes the choice of a stage I design that uses the compromise subset D-criterion (see O'Brien 
(2003b)) and which focuses on maximizing the information regarding the relative potency 
parameter (p in equation (2.7)). Once the relative potency has been efficiently estimated, phase 
II of our design strategy suggests using ray designs with the single-compounds rays (Xl = 0 and 
X2 = 0) with 3-5 interior rays if possible, and with additional support points chosen either by 
using a saturated model such as the power logistic model or by using two sets of initial parameter 
estimates. To illustrate, for the phenolic acid illustration discussed in Example 3.1.1, this 
strategy would require a phase I design with at least seven support points and a phase II design 
with at least ten support points, and so may very well mean the use of incomplete blocks if 
limitations exist on the number of runs per chamber. 

6. Summary and Further Extensions 

This paper highlights statistical modelling and experimental design strategies useful in 
characterizing the interaction between two or more similar compounds with a focus on 
agricultural applications. These model parameters and designs are easily obtained using 
software packages such as the SAS® system, and NLMIXED and SAS/IML programs are 
available in Appendix A.3 or from the author upon request. Further extensions of these methods 
- with applications to two- and three-drug therapies - are currently underway. 
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7. Appendices 

A.1. The Equivalence of the Finney4 and the Equi-slope Separate Ray Models 

As noted in section 2.1, the Finney4 model defined in equations (2.1) - (2.3) is identical to the 
separate ray model defined in sections 2.1 and 3.2 when the respective slope parameters, 831, 832, 
... , 83R, are equal (and equal to 83 from the Finney4 model). This result is established by further 
relating 82,84, and 85 (Finney model) and 821, 822, ... , 82R, K3, .,. , KR (separate ray model) 
according to the relationships 82 = 821, 84 = 82d822 = p from equation (2.7), and 

(7.1) 

for r = 3, 4, ... , R and where <l>r = (1 + cr) / [82r cr1l2]. Since the term <l>r (821 822)112 in equation 
(7.1) is positive, this equation highlights the fact that synergy is indeed achieved in the Finney4 
model whenever 85> 0 (since this occurs when Kr < 1), that independent action occurs whenever 
85 = 0 (Kr = 1), and that antagonism occurs whenever 85 < 0 (Kr > 1). Equation (7.1) also 
highlights that in addition to the equi-slope assumption, the Finney4 model also includes the 
restriction amongst the Kr'S, 

(7.2) 

for all (unequal) sand t chosen from {3, 4, ... , R} whenever the data is chosen using at least two 
interior rays. 

A.2. The Extended Separate Ray Model for Horizontal and Vertical Rays 

With reference to a design analogous to that used in Example 4.2.1 and using the separate ray 
model with rays 1 (X2 = 0) and 2 (Xl = 0) with respective LD50's 821 and 822, for the horizontal 
ray X2 = b1 with LD50, 82bl, we have 82b1 = Xl + X2, so that X2 = 82b1 - b1. Defining the interior 
combination index Kb1 as in equation (3.4), we obtain horizontal combination index 

(7.3) 

A similar calculation for the vertical ray Xl = a1 and 82a1 the LD50 on this ray gives the following 
form for the vertical combination index 

(7.4) 

Extending this for a horizontal ray design as used in Example 4.2.1, with 821 and 822 representing 
the LD50'S for the lowest value ofx2 (X2 = C1) and the highest value ofx2 (X2 = C2) respectively, 
the line connecting these two points has slope (C1 - C2) / (821 - 822). Thus, for the (interior) 
horizontal ray X2 = Cr with LD50 82r, the horizontal combination index is defined here by 
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Kr = 82r / a + cr / f3 (7.5) 

A.3. Typical SAS® Code for Assessing Relative Potency and Synergy 

****************************************************************************. , 
*** 
*** 
*** 

Data from Stokes et al, 2000, p.331 - accept working on loge scales 
for each drug. Tested and accept parallelism (chisq1 = 2.4). Then 
estimate rho = gammas / gamman using Wald CI - should also find PLCI 

**. , 
**. , 
**. , 

****************************************************************************. , 

data one; 
input drug $ dose y @@; ldose=log(dose); 
n=10; if dose le .05 then n=30; pct=y/n; 
dn=(drug='n'); ds=(drug='s'); datalines; 

n .01 0 n .03 1 n .10 1 n .30 1 n 1.00 4 
n 30.00 7 s .30 0 s 1.00 0 s 3.00 1 s 10 4 

proc nlmixed; 

n 3.00 4 
s 30.00 5 

n 10.00 5 
s 100 8 

parms th3n=0.8 th2n=5 th6n=0.2 th3s=3 th2s=20 th6s=0.2; 
th3=th3n*dn+th3s*ds; th2=th2n*dn+th2s*ds; th6=th6n*dn+th6s*ds; 
zdose=(dose**th6-1)/th6; zth2=(th2**th6-1)/th6; 
eta=th3*(zdose-zth2); ex=exp(eta); p=ex/(l+ex); 
model y-binomial(n,p); 

run; 
proc nlmixed; 

parms th3n=0.8 th2n=5 th6=0.2 th3s=3 th2s=20; 
th3=th3n*dn+th3s*ds; th2=th2n*dn+th2s*ds; 
zdose=(dose**th6-1)/th6; zth2=(th2**th6-1)/th6; 
eta=th3*(zdose-zth2); ex=exp(eta); p=ex/(l+ex); 
model y-binomial(n,p); 

run; 
proc nlmixed; 

parms th3n=0.6 th3s=1 th2n=1.8 th2s=14; 
th3=th3n*dn+th3s*ds; th2=th2n*dn+th2s*ds; 
t=(dose/th2)**th3; 
p=t/ (1+t) ; 
model y-binomial(n,p); 

run; 
proc nlmixed; 

parms th3=0.6 th2n=1.8 th2s=14; 
th2=th2n*dn+th2s*ds; 
t=(dose/th2)**th3; 
p=t/ (1+t) ; 
model y-binomial(n,p); 

run; 
proc nlmixed; 

parms th3=0.6 th2n=1.8 rho=l; 
th2s=rho*th2n; th2=th2n*dn+th2s*ds; 
t=(dose/th2)**th3; 
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p=t/ (1+t) ; 
model y-binomial(n,p); 

run; 

317 

****************************************************************************. , 
****************************************************************************. , 
***** SAS program to assess synergy for Giltinan et al 1988 data *****. , 
****************************************************************************. , 
****************************************************************************. , 

data one; 
input a b y n @@; ratio=y/n; datalines; 

0.0000 30.0000 26 30 0.0000 15.0000 19 30 0.0000 7.5000 7 30 0.0000 3.7500 5 
30 6.5000 19.5000 23 30 3.2500 9.7500 11 30 1.6250 4.8750 3 30 0.8125 2.4375 
o 30 13.0000 13.0000 15 30 6.5000 6.5000 5 30 3.2500 3.2500 4 29 1.6250 
1.6250 0 29 19.5000 6.5000 20 30 9.7500 3.2500 13 30 4.8750 1.6250 6 29 
2.4375 0.8125 0 30 30.0000 0.0000 23 30 15.0000 0.0000 21 30 7.5000 0.0000 13 
30 3.7500 0.0000 5 30 

data one; set one; 
if a=O then a=O.OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOl; 
if b=O then b=O.OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOl; dd=a+b; 
ray=2*(_n_ Ie 4)+3*( n Ie 8 and n ge 5)+4*( n Ie 12 and n ge 9) 

+5*( n Ie 16 and n ge 13)+1*( n ge 17); 
proc nlmixed data=one; 

parms th21=10 th22=15 k3=1 k4=1 k5=1 th31=2 th32=2 th33=2 th34=2 th35=2; 
c3=3; th23=(1+c3)*k3*th21*th22/(th22+c3*th21); 
c4=1; th24=(1+c4)*k4*th21*th22/(th22+c4*th21); 
c5=1/3; th25=(1+c5)*k5*th21*th22/(th22+c5*th21); 
th2=th21* (ray=1)+th22*(ray=2)+th23* (ray=3)+th24* (ray=4 )+th25*(ray=5); 
th3=th31* (ray=1)+th32* (ray=2)+th33* (ray=3)+th34* (ray=4 )+th35*(ray=5); 
t=(dd/th2)**th3; den=l+t; p=t/den; 
model y-binomial(n,p); 

run; 
proc nlmixed data=one; 

parms th21=10 th22=15 k3=1 k4=1 k5=1 th3=2; 
c3=3; th23=(1+c3)*k3*th21*th22/(th22+c3*th21); 
c4=1; th24=(1+c4)*k4*th21*th22/(th22+c4*th21); 
c5=1/3; th25=(1+c5)*k5*th21*th22/(th22+c5*th21); 
th2=th21* (ray=1)+th22* (ray=2)+th23* (ray=3)+th24* (ray=4 )+th25*(ray=5); 
t=(dd/th2)**th3; den=l+t; p=t/den; 
model y-binomial(n,p); 
estimate 'LD50 on ray3' th23; 
estimate 'LD50 on ray4' th24; 
estimate 'LD50 on ray5' th25; 

run; 
proc nlmixed data=one; 

parms th2=10 th3=2 th4=1 th5=O; 
z=a+th4*b+th5*sqrt(th4*a*b) ; 
t=(z/th2)**th3; den=l+t; p=t/den; 
model y-binomial(n,p); 

run; 
proc nlmixed data=one; 

parms th21=10 th22=15 k4=1 th3=2 kk=l; k3=kk; k5=kk; 
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c3=3; th23=(1+c3)*k3*th21*th22/(th22+c3*th21); 
c4=1; th24=(1+c4)*k4*th21*th22/(th22+c4*th21); 
c5=1/3; th25=(1+c5)*k5*th21*th22/(th22+c5*th21); 
th2=th21* (ray=1)+th22* (ray=2)+th23* (ray=3)+th24* (ray=4 )+th25*(ray=5); 
t=(dd/th2)**th3; den=l+t; p=t/den; 
model y-binomial(n,p); 

run; 
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