Response of Soybean Grown on a Claypan Soil in Southeastern Kansas to the Residual of Different Plant Nutrient Sources and Tillage

D. W. Sweeney
Kansas State University, dsweeney@ksu.edu

Philip Barnes
Kansas State University, lbarnes@ksu.edu

Gary Pierzynski
Kansas State University, gmp@ksu.edu

Follow this and additional works at: https://newprairiepress.org/kaesrr

Part of the Agronomy and Crop Sciences Commons

Recommended Citation

This report is brought to you for free and open access by New Prairie Press. It has been accepted for inclusion in Kansas Agricultural Experiment Station Research Reports by an authorized administrator of New Prairie Press. Copyright 1-1-2016 Kansas State University Agricultural Experiment Station and Cooperative Extension Service. Contents of this publication may be freely reproduced for educational purposes. All other rights reserved. Brand names appearing in this publication are for product identification purposes only. No endorsement is intended, nor is criticism implied of similar products not mentioned. K-State Research and Extension is an equal opportunity provider and employer.
Response of Soybean Grown on a Claypan Soil in Southeastern Kansas to the Residual of Different Plant Nutrient Sources and Tillage

Abstract
The residual from previous high rate turkey litter applications, which were based on N requirements of the previous grain sorghum crop, increased soybean yield above that obtained from the residual of P-based turkey litter applications (low rate), commercial fertilizer, or the control. Even though early soybean growth was not significantly affected by residual treatments, the greatest dry matter production at the R6 growth stage was where the N-based litter had been applied and incorporated.

Keywords
soybean

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.

Cover Page Footnote
Partially funded by USDA NRCS Conservation Innovation Grant.
Response of Soybean Grown on a Claypan Soil in Southeastern Kansas to the Residual of Different Plant Nutrient Sources and Tillage

D.W. Sweeney, P. Barnes\(^2\), G. Pierzynski\(^3\)

Summary

The residual from previous high rate turkey litter applications, which were based on N requirements of the previous grain sorghum crop, increased soybean yield above that obtained from the residual of P-based turkey litter applications (low rate), commercial fertilizer, or the control. Even though early soybean growth was not significantly affected by residual treatments, the greatest dry matter production at the R6 growth stage was where the N-based litter had been applied and incorporated.

Introduction

Increased fertilizer prices in recent years, especially noticeable when the cost of phosphorus spiked in 2008, have led U.S. producers to consider other alternatives, including manure sources. The use of poultry litter as an alternative to fertilizer is of particular interest in southeastern Kansas because large amounts of poultry litter are imported from nearby confined animal feeding operations in Arkansas, Oklahoma, and Missouri. Annual application of turkey litter can affect the current crop, but information is lacking concerning any residual effects from several continuous years of poultry litter applications on a following crop. This is especially true for tilled soil compared with no-till, because production of most annual cereal crops on the claypan soils of the region is often negatively affected by no-till planting. The objective of this study was to determine if the residual from fertilizer and poultry litter applications under tilled or no-till systems affects soybean yield and growth.

Experimental Procedures

A water quality experiment was conducted near Girard, KS, on the Greenbush Educational facility’s grounds from spring 2011 through spring 2014. Fertilizer and turkey litter were applied prior to planting grain sorghum each spring. Individual plot size was 1 acre. A total of 10 plots with five treatments were replicated twice. The five treatments were:

1. Partly funded by USDA NRCS Conservation Innovation Grant.
2. Kansas State University Department of Biological and Agricultural Engineering.
3. Kansas State University Department of Agronomy.

Kansas State University Agricultural Experiment Station and Cooperative Extension Service
Starting in 2015 after the above study, soybean was planted in the plots with no further application of turkey litter or fertilizer. Prior to planting soybean, tillage operations were done in appropriate plots as in previous years. A subarea of 20 × 20 ft near the center of each 1-acre plot was designated for crop yield and growth measurements. Samples were taken for dry matter production at V3-V4 (approximately 3 weeks after planting), R2, R4, and R6 growth stages. Yield was determined from the center 4 rows (10 × 20 ft) of the subarea designated for plant measurements in each plot.

Results and Discussion

In 2015, the residual effects of turkey litter and fertilizer amendments affected soybean yield, stand, and pods/plant (Table 1). The two treatments which had previously received a high application rate of turkey litter based on N requirements, regardless of tillage system, resulted in greater yields than from plots that had received low rates of turkey litter (P-based), commercial fertilizer, or no fertilizer N or P. Stand count was lower and the number of pods/plant was greater where N-based turkey litter had been applied than in the other residual treatments. Dry matter production was unaffected by residual treatment until pod formation and fill at the R4 and R6 growth stages. At R6, dry matter production was greatest where turkey litter had previously been applied on an N-basis (high rate) and incorporated.

<table>
<thead>
<tr>
<th>Residual amendment†</th>
<th>Yield (bu/a)</th>
<th>Stand (×1000 plants/a)</th>
<th>Seed weight (mg)</th>
<th>Pods/plant</th>
<th>Seeds/pod</th>
<th>Dry matter (lb/a)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control</td>
<td>39.1</td>
<td>110</td>
<td>103</td>
<td>37</td>
<td>2.1</td>
<td>370 1790 3790 4970</td>
</tr>
<tr>
<td>Fert-C</td>
<td>46.0</td>
<td>117</td>
<td>126</td>
<td>40</td>
<td>2.1</td>
<td>530 2760 4450 6490</td>
</tr>
<tr>
<td>TL-N</td>
<td>58.5</td>
<td>91</td>
<td>109</td>
<td>66</td>
<td>2.3</td>
<td>430 2630 4920 7720</td>
</tr>
<tr>
<td>TL-N-C</td>
<td>65.3</td>
<td>117</td>
<td>121</td>
<td>49</td>
<td>2.4</td>
<td>750 3060 5770 10040</td>
</tr>
<tr>
<td>TL-P-C</td>
<td>43.8</td>
<td>112</td>
<td>124</td>
<td>33</td>
<td>2.3</td>
<td>420 2440 3760 5220</td>
</tr>
<tr>
<td>LSD (0.10)</td>
<td>11.6</td>
<td>8</td>
<td>NS</td>
<td>13</td>
<td>NS</td>
<td>NS 880 1350</td>
</tr>
</tbody>
</table>

† Control, no turkey litter or N and P fertilizer with no tillage; TL-N, N-based turkey litter application with no tillage; TL-N-C, N-based turkey litter application incorporated with conventional tillage; TL-P-C, P-based turkey litter application and supplemental N application incorporated with conventional tillage; Fert-C, commercial fertilizer only incorporated with conventional tillage.