Use of a Fungicide to Reduce Stomatal Conductance in Sweet Corn Planted at Different Populations with Limited Irrigation

D. W. Sweeney
Kansas State University, dsweeney@ksu.edu

M. B. Kirkham
Kansas State University, mbk@ksu.edu

Follow this and additional works at: https://newprairiepress.org/kaesrr
Part of the [Agronomy and Crop Sciences Commons](https://newprairiepress.org/kaesrr)

Recommended Citation
Use of a Fungicide to Reduce Stomatal Conductance in Sweet Corn Planted at Different Populations with Limited Irrigation

Abstract
In 2015, increasing seeding rates increased the number of harvested sweet corn ears; however, total fresh weight did not increase above 22,500 seeds/acre. Sweet corn was little affected by limited irrigation or a fungicide applied for stomatal control.

Keywords
sweet corn

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.
Use of a Fungicide to Reduce Stomatal Conductance in Sweet Corn Planted at Different Populations with Limited Irrigation

D.W. Sweeney and M.B. Kirkham

Summary
In 2015, increasing seeding rates increased the number of harvested sweet corn ears; however, total fresh weight did not increase above 22,500 seeds/acre. Sweet corn was little affected by limited irrigation or a fungicide applied for stomatal control.

Introduction
Sweet corn is a potential value-added, alternative crop for producers in southeastern Kansas. Corn responds to irrigation, and timing of water deficits can affect yield components. Even though large irrigation sources, such as aquifers, are lacking in southeastern Kansas, supplemental irrigation could be supplied from the substantial number of small lakes and ponds in the area. However, this may not be enough to improve the water use of the plant. Reducing stomatal conductance and adjusting seeding rate may also help reduce water stress and/or improve water use efficiency. The objective of this study was to determine the effect of limited irrigation, seeding rate, and fungicide applied for stomatal control on sweet corn yield.

Experimental Procedures
The experiment was established in spring 2015 on a Parsons silt loam on the Parsons field of the Kansas State University Southeast Agricultural Research Center. The experimental design was a split-plot arrangement of a randomized complete block with three blocks (replications). The whole plots were a 2 × 3 factorial of two irrigation schemes (no irrigation or 2.5 cm at VT [tassel]) and three fungicide treatments (none or application at either V6 or at both V6 and R1 [silk] growth stages). Subplots were three target populations of 15,000, 22,500, and 30,000 plants/acre. Sweet corn was harvested at R3 (milk) and number of marketable ears, total fresh weight, and individual ear weight was determined. Sweet corn was planted on April 30, 2015 and picked by hand on July 20, 2015.

Results and Discussion
In 2015, increasing the sweet corn seeding rate from 15,000 to 30,000 seeds/acre resulted in greater number of ears harvested; however, total fresh weight was not increased above a seeding rate of 22,500 seeds per acre. Sweet corn was little affected by limited irrigation or a fungicide applied for stomatal control.

1 Kansas State University Department of Agronomy, Manhattan.