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ABSTRACT 

From plant and animal breeding studies to industrial applications, the intraclass correlation co­
efficient (p) is used to measure the proportion of the total variation in the responses that may be 
attributed to a particular source. Confidence intervals for p are used to determine the optimal 
allocation of experimental material in one-way random effects models. Assuming the sample size 
is fixed, the authors investigate the number of groups and the number of observations per group 
required to minimize the expected length of confidence intervals. Examples are used to illustrate 
the selection of the best design. Both asymptotic and exact results suggest that practitioners 
should allocate no more than four experimental units per group. 

1 Introduction 

One-way random effects models are a collection of designs that have a wide range of appli­
cability. For example, an apple grower may be interested in estimating how much of the 
variability in the weights of apples is due to the variation of trees in an apple orchard. In 
an industrial application (see Vangel, 1992) where a product is manufactured in batches, 
this model serves as a tool to highlight how the batch variability influences the variability 
in the finished goods. In one-way random effects models the variance components, which 
we denote by (ii and (i~, are the variances of two sources that contribute to the variation 
of the responses. If (ir is the variance due to trees in the apple orchard, (i~ is the variance 
of the apples within a tree, and all the effects combine linearly, the intraclass correlation 
coefficient is p = (iii ((ii + (i~). 

In many instances the practitioner would like to accurately estimate p while being 
constrained by a limited sample size. When resources are restricted, the investigator must 
judiciously select the number of groups and/or the number of measurements per group. 
In other words, for a given sample size, the investigator wants the best one-way random 
effects design to estimate p. See Burch and Harris (2002) for a review of literature related 
to this topic. 

Unlike previous literature, we consider confidence intervals for p as a measure of the 
quality of the design. For equal-tailed intervals having a fixed level of confidence, short 
intervals are desirable as they indicate with a high degree of certainty plausible values of 
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p. We investigate the optimal allocation of resources in terms of number of groups and 
number of observations per group to minimize the expected length of confidence intervals 
for p. In the apple orchard example, this equates to the following scenario: Suppose 100 
apples can be picked from trees in an apple orchard. How many trees and how many apples 
per tree should be picked to obtain a short confidence interval for p? 

The paper is organized as follows. Section 2 provides background information and in­
troduces the notation used in the one-way random effects model. In Section 3, confidence 
intervals for p and the computational aspects associated with the expected length of con­
fidence intervals for p are examined. Section 4 gives examples to illustrate the optimal 
allocation procedure described in this paper. Optimal designs are based on asymptotic 
and exact computations of the expected length of confidence intervals for p. Section 5 is 
discussion and summary. 

2 The One-Way Random Effects Model 

Consider the one-way random effects model given by 

Yij = /-l + Ai + eij, (1) 

where i = I, ... , a, j = I, ... , bi, and L:f=l bi = n. Yij is the yth observation associated with 
the ith class (or group) of factor A. The a groups of A in the model are assumed to be 
randomly selected from some large population of groups. Furthermore, a random sample of 
size bi has been obtained from the ith group. eij is often referred to as random error. It is 

assumed that A i,!j N(O, ai), eij i,!j N(Q, aD, and that Ai and eij are mutually independent. 
In addition, aI 2:: 0 and a~ > o. /-l is a fixed but unknown quantity that represents the 
overall mean of Yij. 

Since Var(A) = aI and Var(Yij) = Var(Ai) + Var(eij) = ai + a~, the parameter 
p = (JU(aI + (J~) is the proportion of the variation in the Yi/s attributed to factor A. 
Also note that observations within the same group are correlated since C ov (Yij, Yip) = 
(JI, and observations from different groups are uncorrelated. In this manner p may also 
be interpreted as the correlation between two observations within the same group. By 
definition, 0 ::; p < 1. In the apple orchard example, if Yij is the weight of the jth apple 
selected from the ith tree, (JI is the variation due to trees in the orchard, and a~ is the 
variation due to apples on a tree, then p is the proportion of the total variation in apple 
weights accounted for by the trees. p is also the correlation between weights of apples from 
the same tree. 

Since p is a function of variance components, and the objective is to select the design 
which provides the most information about p, we begin by examining the properties of a 
set of quadratic forms used to estimate the variance components. The number of quadratic 
forms and their corresponding distributions depend on the underlying model structure. 
Using matrix notation, model (1) becomes 

Y = 1/-l + ZA + e (2) 
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where Y is a n x 1 vector of responses, 1 is a n x 1 vector of ones, A and e are random 
vectors of length a and n, respectively, and 

Z (3) 

nXn. 

where Ib; is a bi x 1 vector of ones. 
The quadratic forms may be obtained by diagonalizing the variance-covariance matrix 

of H'Y, a linear transformation of the observations, where H is a n x (n - 1) matrix 
whose columns span the space orthogonal to the space spanned by the column of ones and 
satisfies H'H = In~l' Note that H'Y rv N(O, O"~In-l + O"iH'ZZ'H) is a n - 1 dimensional 
vector whose distribution does not depend on {L. Let 0 ~ .6.1 < '" < D.d be the distinct 
eigenvalues of H'ZZ'H having multiplicities r1, ... , rd, respectively. There are at most a 
unique eigenvalues. There exists an (n - 1) x (n - 1) orthogonal matrix P such that 
P'(H'ZZ'H)P = Diag(D.1' ... , .6. 1 , ... , D.dJ ... , .6.d) = D where each .6.m is repeated rm times, 
m = 1, ... , d. Then P'H'Y rv N(O, O"~In~l + O"iD) and P~H'Y rv N(O, (O"~ + O"i .6.m)Irm)J 
m = 1, ... , d where P = [Pl, ... , P d] and each matrix Pm corresponding to .6.m is of size 
(n - 1) x rm. It follows that Qm = Y'(HPmP~H')Y and 

(4) 

where m = 1, ... , d. By construction, Ql, ... , Qd are independent. A complete description of 
the distributional theory associated with the quadratic forms in a one-way random effects 
model is described by LaMotte (1976). Burch and Iyer (1997) discuss the theory used to 
construct the quadrati'c forms and associated eigenvalues in a more general setting. 

The total variation in the observations, given by L:f=1 L:;~1 (Yij - yl where Y .. is the 
overall sample mean, may be partitioned (see LaMotte, 1976) as 

a bi 

LL (Yij - yl 
a ~ a 

'" '" (y. _ y)2 + '" b.(y. _ Y )2 L L IJ l. L I l. .. 

i=l j=l i=1 j=l i=1 

(5) 

Of particular interest is the fact that .6.1 = 0 if at least one bi > 1. The zero eigen­
value signifies that there is replication in the experiment (multiple observations per group) 
and thus an estimate for O"~ is readily available. For the one-way random effects model, 

Q1 rv 0"~x2(r1) with rl = n - a. In addition, L:f=l L.;~1 (Yij - Yi.)2 = Q1 and it follows that 

L:f=1 bi(Yi . - Y.l = Q2 + ... + Qd, which is distributed as a linear combination of scaled 
chi-squared variates. The analysis of variance table for anyone-way random effects model 
of the form (1) is given in Table 1. 
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In general, for a balanced one-way random effects model having a groups and b = n/ a 
observations per group, d = 2 with ~1 = 0, rl = a(b - I), ~2 = b, and r2 = a - 1. 
For unbalanced designs having two distinct group sizes, there are at most three nonzero 
eigenvalues and closed-form solutions exist for ~m and rm. For other unbalanced designs, 
numerical routines are needed to find d, ~m' and rm. 

3 Confidence Intervals for p 

3.1 Exact Intervals for p 

For the general one-way random effects model given by (1), an exact confidence interval 
for p may be obtained by recognizing that 

d Q d 

m~2 l+P(A:-l/ m~2 rm 

Q1/r 
I-p 1 

(6) 
m=2 

where F(d/I, dh) denotes the F-distribution with dfl numerator degrees offreedom and dh 
denominator degrees of freedom. See Burch and Iyer (1997) for alternative quantities which 
may used to construct confidence intervals for p. In general, the quantity in (6) is preferred 
since Q2, ... , Qd are used to build the numerator and Ql is used to build the denominator. 
In other words, the quantity in (6) partitions (Ql, ... , Qd) into Ql and Q2, ... , Qd, which is 
consistent with the division of the total variation into the "between groups" and "within 
groups" sources in Table 1. 

Let Fo./2 and F1-o./2 be the 0:/2 and 1 - 0:/2 percentiles of the F distribution having 
numerator and denominator degrees of freedom equal to 2::;"=2 ri = a-I and rl = n - a, 
respectively. A 100(1-0:)% confidence interval for p is given by (L(Q), U(Q)) where 

(7) 

and Q = (Ql, ... , Qd). 
When d = 2, as is the case for the balanced model (or unbalanced models with a = 2) 

the endpoints of the confidence interval for p are available in closed-form. Thcy are 

L(Q) 

U(Q) = 

a(b - 1)Q2 + (a - l)(b - 1)F1-o./2Ql 

a(b - 1)Q2 - (a - 1)Fo./2Ql 

a(b - 1)Q2 + (a - l)(b - 1)Fo./2Ql· 

(8) 

(9) 

When d > 2, however, the endpoints must be obtained via numerical methods. In either 
casc, computing the expected length of the confidence interval, E[U(Q) - L(Q)], can be 
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cumbersome. Fortunately, a procedure given by Pratt (1961) can be used to accomplish 
this task. 

Comparing the expected lengths of confidence intervals for p from different one-way 
random effects designs will serve as a way to ascertain which designs yield the most precise 
inference about p. Designs which result in short intervals indicate more efficient use of the 
experimental material. Since expected length depends on the value of the parameter, one 
design may not be uniformly better than another design. 

3.2 Asymptotic Intervals for p 

Approximate confidence intervals for p are based on the asymptotic distribution of the 
point estimator of p. The asymptotic properties of the ANOVA estimator of p can be 
determined using regularity conditions. Burch and Harris (2001) show that 

p aSJeP N (p, V (p) ) 

where V(p) is the asymptotic variance of p given by 

where 

V(p) = 2(1 - p)2 (Ap2 + Bp + C) 
(n - a)(a - 1) tJ.2 

A 

B 

C 

(n - a)Var(tJ. *) + (n - 1)(tJ. - 1)2 

2(n - 1)(tJ. - 1) 

n-1 

(10) 

(11) 

(12) 

(13) 

(14) 
- d d * d -2 and tJ. = Lm=2rmtJ.m/Lm=2rm, Var(tJ. ) = Lm=2rm(.6.m -.6.) /(a -1). See Donna and 

Koval (1982) for further discussion of the ANOVA estimator of p. For a balanced design, 
the asymptotic variance of p reduces to 

~ 2(n - 1)(1- p)2 (1 + p(b _1))2 
V(p) -

- (n - a) (a - 1) b2 
(15) 

This formula was first derived by Fisher (1925). 

A 100(1-a.)% asymptotic confidence interval for p is given by p±Za/2VV(p) where V(p) 
indicates that p in (11) is replaced by p and Za/2 is associated with the a. /2 percentile of the 
standard normal distribution. The expected length of the asymptotic confidence interval 
for pis 2Za / 2VV(p). The asymptotic results rely on a normally distributed estimator whose 
distribution is not constrained to the unit interval. This may result in an interval whose 
endpoints fall outside the parameter space. While truncation issues are not addressed in 
the approximate method, they are dealt with in the exact method since the probabilities 
in (7) are unaffected by truncation. Truncation is particularly common when p is small, so 
the asymptotic results may not be accurate for these cases. However, asymptotic intervals 
are easy to calculate and do provide guidance in finding optimal designs. 
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4 Examples 

The following examples illustrate the decision making process to implement the optimal 
allocation procedures described in this paper. In some cases a candidate design may not be 
uniformly optimal over the parameter space. The dependence on p may be eliminated by 
computing the average expected length with respect to p (a measure of the overall quality 
of the design), or the maximum expected length with respect to p (a measure of the worst 
case scenario associated with the design). 

4.1 Fixed Sample Size: Find Best Balanced Design 

Suppose that the total sample size is fixed and that many balanced one-way random effects 
models are possible. The objective in this case is to find the best balanced design to estimate 
p. Returning to the apple orchard example, consider the case where n = ab = 100. That is, 
100 apples are to be picked with the condition that the same number of apples are picked 
from each tree. Table 2 lists the possible balanced designs for this scenario. 

The seven designs in Table 2 are compared to one another in terms of the expected 
length of confidence intervals for p using the exact calculations. Figure 1 displays the 
expected lengths of the 90% confidence intervals for p where 0:/2 = 0.05. There does not 
exist a single design that has a uniformly minimum expected length across the parameter 
space. For example, if p is greater than 0.65, then Design 1 results in a confidence interval 
with minimum expected length. However, Design 1 does not fair as well as other designs if 
p < 0.65. 

Additional criteria may be used to determine the design of choice. For example, a 
minimax criterion would select the design with the minimum maximum expected length. 
A minimum average expected length criterion, where the averaging is over the possible 
parameter values, may yield a desirable design. For instance, one may select the design 
that minimizes 

1 I E [U(Q) - L(Q)] dp. (16) 
o 

It is interesting to note that when the minimax or minimizing (16) criteria are employed, 
then Design 2, having 25 groups with 4 measurements per group, is the design of choice. 

The expected lengths shown for the various designs in Figure 1 indicate that many 
groups with few measurements per group are desirable. In this example one would certainly 
not select, say, b > 5. This leads to the possibility that depending on the sample size, 
optimal balanced one-way random effects models have 2 ::; b ::; 5. To quantify this result, 
consider Figure 2. This figure displays that optimum choice of b as a function of sample size 
for balanced designs using 90% confidence intervals. Exact as well as asymptotic results 
are provided. Results are shown in terms of minimizing the maximum expected length. 
Similar results are obtained (although larger sample sizes are required) using the minimum 
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average expected length. Using either criterion, as the sample size increases, the best b 
increases from 2 to 3 to 4 and remains at 4 as the sample size goes to infinity. 

Asymptotic confidence intervals for p are computed using 

E [U(Q) - L(Q)] = 2ZO./2VV(p) 
,-------

( 
2(n - 1) 1 - P ) 

2ZQ
/ 2 n(n - b)(b - 1) 1 + p(b - 1) . 

(17) 

This simple equation is due to the fact that d = 2, Var(Lli) = 0, and Ll = b for any 
balanced one-way random effects model. As was the case using exact results, there does not 
exist a single design that has a uniformly minimum expected length across the parameter 
space. The average expected length of a confidence interval for a particular design using 
asymptotic theory is 

1 1 ! E [U(Q) - L(Q)] dp 2Zo./2! VV (p)dp 
o o 

2Zo. 2 (~~ b + 2 ) . 
/ 6 Y ~ ,;n=bv1J=1 

(18) 

The asymptotic confidence interval comparisons yield tractable results as Ii VV (p)dp is 
minimized when 

b = 2(2n + 1). 
n+5 

(19) 

If one considers the minimax approach, the maximum value of VV(p) is minimized when 

b =~. 
n+3 

(20) 

Using either criterion, the optimal design when there are several balanced designs to chose 
from is b = 4 as the sample size goes to infinity. In other words, four observations per group 
provides more information about p than does any other balanced design using asymptotic 
results. 

4.2 Fixed Sample Size: Find Best Design 

In this section we consider balanced as well as unbalanced designs. For a fixed value n, we 
seek the best overall design for estimating p. It is not always the case that the best design 
is a balanced design. Results using both asymptotic and exact calculations are presented. 

For a fixed sample size, there does not exist one design that is uniformly better than 
another design since the asymptotic variance of p given by (11) depends on the value of 
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p. Theoretical results based on the asymptotic approach are difficult to obtain. A search 
of all possible designs numerically (for a given 17,) reveals a consistent pattern. A heuristic 
way to state this rule is to select a design with as many groups of size 4 as possible, with 
the proviso that any remaining groups mnst be of size 3. For example, 17, = 114 could 
be distributed as 28 groups of size 4 and one group of size 2, which would maximize the 
number of groups of size 4, but this design violates the rule that remaining groups be of 
size 3. The unbalanced design of 27 groups of size 4 and two groups of size 3 outperforms 
the best balanced design, which is 38 groups of size 3. 

As \'.'as the case using the asymptotic approach, t.heoretical results based on exact 
calculations are not easy to produce. Whereas the asymptotic results indicate the optimal 
design has primary group sizes of four and secondary group sizes of three, exact calculations 
suggest smaller group sizes are needed for smaller sample sizes. In particular, designs having 
primary group sizes of 2 or 3 may be bett.er for small sample sizes. Howcver, these designs 
do not significantly outperform the design recommended using the asymptotic method. 

Consider the example presented in Vangel (1992) with n = 25 for which there are 
unbalanced designs that outperform the balanced design having a = 5 and b = 5. Figure 
3 displays the expected lcngths of the 90% confidence intervals for p where n/2 = 0.05 for 
selected designs. The values of bi are listed next t.o each expected length curve. The designs 
having group sizes of 2 and 3, or 3 and 4, uniformly outperform the balanced design. The 
best design using the asymptotic minimax rule is (3, 3, 3, 4, 4, 4, 4). The best design using 
the exact results is (2, 2,3, 3, 3, 3, 3, 3, 3). The percent relative difference of the maximum 
expected length for design (3, 3, 3, 4, 4, 4, 4) compared to design (2, 2, 3, 3, 3, 3, 3, 3, 3) 
is only 1.3%. 

5 Summary and Conclusions 

We have presented rules for determining optimal designs based on expected length of con­
fidence intervals for the intraclass correlation coefficient p. For simplicity, our recommen­
dations are based primarily on theoretical results obtained from the asymptotic normal 
approximation to the ANOVA estimat.or of p. We have also performed extensive exact 
calculations of expected lengths for various sample sizes to bolster these conclusions. 

If the total sample size is fixed, then optimal allocation of experimental units in a one­
way random effects model depends on p. In the absence of knowledge of p, we suggest two 
methods; averaging of expected lengths over p or considering the maximum expected length 
over p. Using asymptotic results, both methods suggest a group size of 4. In general, 17, 

will not be divisible by four, so a balanced design with groups of size four is not possible. 
In those cases we suggest selecting an unbalanced design having primary group sizes of 4 
and secondary group sizes of 3. 
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Table 1: ANOVA Table for the One-way Random Effects Model 

Source elf SS 
Between Groups a-I Q2 + ... + Qd 

a. 
Within Groups L b; - a Ql 

;-1 
a. a b, - 2 

Total L bi -1 L L (Yij - Y..) 
;=1 i=1 j=1 

Table 2: Balanced Designs when n = 100 

Design a b 
1 50 2 
2 25 4 
3 20 5 
4 10 10 
5 5 20 
6 4 25 
7 2 50 
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Figure 1: Comparing Balanced Designs when n = 100 
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5~ 
D Asymptotic Results 

... Exact Results 

4 0···0 .. [J 

3 

2 

Sample Size 

Figure 2: Optimal Group Sizes for Balanced Designs 
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Figure 3: Comparing Balanced and Unbalanced Designs when n = 25 
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