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FROM FARMS TO PHARMACEUTICALS: 
MULTIPLE COMPARISONS ENTERS THE 21ST CENTURY 

Peter H. Westfall, Mail Stop 2101, Texas Tech University, Lubbock, TX 79409 

ABSTRACT 
The subject of multiple comparisons has early roots in statistical methods that were applied in 
agricultural sciences, often using simple methods with questionable properties popularized by no 
less than R.A. Fisher. More recently, problems of multiple comparisons have surfaced in the 
pharmaceutical sciences. In the extremely competitive and highly regulated pharmaceutical 
environment, it has become essential to take multiple comparisons more seriously, and to use 
more sophisticated methods. In this paper I describe the need for considering multiple 
comparisons, with special reference to the recent shift in approach to multiple comparisons in the 
pharmaceutical industry. I also offer speculations about the effect of this shift on how multiple 
comparisons will come to be viewed the 21 5t century. 

1. INTRODUCTION: MY PERSONAL JOURNEY FROM FARMS TO 
PHARMACEUTICALS WITH MULTIPLE COMPARISONS 
I am a farm boy. My parents had a walnut orchard in the northern Sacramento Valley of 

California, and as a kid I would slog through mud with irrigation pipes, spray dangerous­
sounding chemicals around the tree trunks, and swat at deerflies in the blazing sun. 

As a student at the University of California at Davis, I was an "aggie." I saw plenty of 
applications to agriculture in my classes and in the consulting lab at UCD. A lot of it was 
standard stuff-blocks and treatments. Of course, there was always the problem of deciding 
which treatments differed from which other treatments. This is the fundamental issue addressed 
by multiple comparisons procedures (MCPs); it is applicable in all areas of scientific research, 
agriculture or otherwise. 

Alan Fenech, my Ph.D. advisor and main mentor at UCD (and one of my the best teachers) 
was always concerned with MCPs, and was instrumental in sparking my interest in the subject. 
In an introductory class on ANOV A, he taught that it was not o.k. to test the most extreme means 
using the ordinary two-sample t-test. But it had seemed like such a good idea to me. After all, if 
one wants to show significance, why not test the hypothesis that is most likely to produce 
significance? Later, in advanced classes in linear models and multivariate analysis, I became 
enamored with Scheffes projection theorem, and even attended an American Mathematical 
Association conference as a Pi Mu Epsilon (an undergraduate mathematics fraternity) delegate to 
give a presentation on it. 

My Ph.D. dissertation (Westfall, 1983) and subsequent early research concerned variance 
components models, which can be applied to farms through animal breeding studies, but which 
are not directly related to MCPs. One paper I published was quite out of character, involving 
multiple comparisons with multivariate binary data using the bootstrap (Westfall, 1985), with 
biomedical application. 

Soon after this publication, the pharmaceutical industry came calling in the person of Stan 
Young, then at Eli Lilly in Indiana. He thought the multivariate binary multiple comparisons 
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could be easily applied to animal carcinogenicity studies. False positives in animal 
carcinogenicity studies had been problematic (Fears et al., 1977), and the bootstrap procedure 
seemed to be a promising solution. Following my presentation at the 10th Midwestern 
Biopharmaceutical Statistics conference (Westfall, 1987), a consortium of pharmaceutical 
companies decided to fund the development of software to perform the analysis. The software 
was to be donated to SAS Institute, and was initially called "PROC MBIN" in 1989 (Westfall et 
al., 1989), which computed bootstrap multiplicity-adjusted p-values for multivariate binary data. 
Later, the software was extended to the continuously distributed case, so the name was changed 
to PROC MTEST (Westfall et al., 1990). When SAS Institute decided to adopt the software in 
1992, the name again had to be changed since there were already a number of SAS utilities 
called "MTEST." We decided to change the name to "PROC MULTTEST." Today PROC 
MUL TTEST is a mature software product, having gone through nearly a decade and a half of 
extensive testing and updating, and is discussed in three books (Westfall and Young, 1993, 
Westfall et aI, 1999, Westfall and Tobias, 2000). Since the inception ofPROC MUL TTEST I 
have consulted regularly with various pharmaceutical companies about matters relating to 
multiple comparisons in clinical data, pre-clinical data, and most recently, genetics. 

So, that concludes my journey from Farms to Pharmaceuticals. What have I learned? 
I have learned that multiple comparisons is a subject that has attracted considerable attention 

over the history of statistics, and which remains controversial even to this day. Based on my 
experiences, my contention is that {{the discipline afstatistics matters ta science, then the theory 
and methods of multiple comparisons are extremely important. Stating the contrapositive, I 
would contend that if theory and methods of multiple comparisons are unimportant, then our 
discipline of statistics has no relevance to science. 

I say these things from a practical perspective, not a theoretical one. For years, Stan Young 
and I have collected reports of likely false positives in the scientific literature and in the popular 
press which are likely false positives resulting from a careless approach to multiplicity. I have 
also consulted with pharmaceutical companies where approval of a multi-million dollar drug 
might rest on issues related to multiple comparisons. And finally, the multiple testing issues in 
genetics that have recently emerged will require us all to acknowledge the multiplicity problem, 
and to adopt strategies to manage it. 

In this paper I give an overview of the multiple comparisons issues, and some emerging 
strategies for managing the problem. I will finish with a discussion of latest trends in MCPs, and 
attempt to gaze into the crystal ball to see what the 21 st century might hold for us. Particular 
application will be given to pharmaceuticals, wherein much of my experience lies, as well as 
genetics, which increasingly influences the statistical science of both farms and pharmaceuticals. 

2. WHY BOTHER WITH MULTIPLICITY? 
Multiplicity is pervasive in all experiments. Rarely does a study hinge on one and only one 

test. Multiple measurements all types are always analyzed in statistical studies, as the cost of 
additional measurement is miniscule compared to the cost of an additional observation. This is 
as it should be - I do not suggest that information not be collected, or not be analyzed. Rather, 
appropriate caution should be taken in data interpretation, with recognition of the fact that 
multiplicity effects are as real as the effects of flawed designs, confounding and the like. 
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At a recent conference, Juliet Shaffer said, "Multiple Comparisons and Multiple Testing 
problems are some of the most important issues facing practicing statisticians today. I am 
surprised more people aren't working in this area." I echo her sentiment. Everyone seems to 
know about the multiplicity problem, but are some statisticians afraid to admit it publicly for fear 
that the public will come to distrust results of statistical studies? 

NEWS FLASH 
THE PUBLIC ALREADY DISTRUSTS THE RESULTS OF STATISTICAL STUDIES! 

The following claimed "associations" were taken from newspapers and popular press: (a) 
cellular phones are "associated" with brain tumors, (b) power lines with leukemia (more recently 
overturned by the scientific community), (c) vitamins with IQ, (d) season of the year with mental 
performance (but only in men!), (e) abortions with breast cancer (but not spontaneous 
abortions), (f) remarriage with cancer, (g) electric razors with cancer, and on and on. A careful 
reading of these articles suggests that failure to manage multiplicity effects caused the scientists 
the report the given associations. 

There are examples from clinical trials: An article in the Wall Street Journal (King, 1995) 
reported that a drug company's stock dropped 68% when apparently "significant" results from 
preliminary Phase II clinical studies failed to replicate in the Phase III trial. The "significant" 
results were found in a subgroup analysis that failed to consider the multiplicity problem. In a 
similar example reported in Statistical Science (Fleming, 1992), a conclusion that pre-operative 
radiation therapy improves survival of colon cancer patients was likewise based on a subgroup 
analysis. In each of these two examples, further data collection revealed that the initial 
"significant" results were likely to be Type I errors resulting from the multiplicity effect. 

A final example is from a very controversial epidemiology study. Needleman et al. (1979), 
stated that lead in drinking water adversely affected IQ's of school children. While high levels of 
lead are indisputably toxic, the study aimed to prove that variations in levels of lead well below 
the accepted" safe" level were in fact associated with mental performance. Emhart et al. (1981), 
in a critical review of their finding, claimed that the statistically significant conclusions were 
"probably unwarranted in view of the number of nonsignificant tests." Emhart, et al. essentially 
repeated the study and found no evidence for decrease in IQ. As it turns out, it was only after 
data manipulation that significant Lead/IQ associations were found. As reported in Palca (1991), 
"the printouts show[ ed] that Needleman's first set of analyses failed to show a relationship 
between lead level and subsequent intelligence tests." 

How are the scientists so easily fooled by data analysis? It is well known that statistical 
conclusions can be wrong. However, they commonly blame faulty experimentation, study 
apparatus, patient population, and the like, and completely ignore multiplicity. I suspect that the 
reason lies in the probabilistic underpinnings of the multiplicity issue. In my experience, 
scientists tend to think deterministically. Probability is a difficult concept for many otherwise 
knowledgeable scientists, and what is not well understood tends to be downplayed by those with 
great expertise in other areas. 

To educate our scientific colleagues about the multiplicity problem, we can teach them that 
multiplicity is an EFFECT. Scientists know about treatment effects, covariate and confounding 
variable effects, even more complicated effects of like nonresponse, missing data, and 
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measurement error. These are essentially fixed effects, though, while multiplicity is a random 
effect. If we emphasize that multiplicity is as likely a source of faulty conclusions as any of the 
usual fixed-effect suspects, then perhaps scientists will take notice. 

The cost of measuring additional variables on an experimental unit is usually very small 
relati ve to the cost of the unit itself, leading to data sets with myriads of variables. This fact, 
coupled with ease of statistical computations provided by modern software, as well as the 
"publish or perish" imperative in universities and medical research centers, can lead easily to the 
discovery of results that are, in reality, nothing but spurious artifacts caused by the multiplicity 
effect. Many users do not perceive that the problem exists, and routinely sift through large 
complex data sets with increasingly user-friendly software, searching for "significant" (and 
therefore publishable) results. 

Statisticians are often discouraged from promoting proper use of multiple comparisons and 
multiple testing adjustments because they will result in fewer publishable results. I know this 
from personal experience: in a consulting project, the scientist told me that my services were no 
longer needed after I solved his problem using multiplicity-recognizing methods (the solution 
appears in Westfall, 1985). 

3. DIFFERING APPROACHES 
Much of the controversy about MCPs stems from the wildly divergent approaches to 

handling the problem that have been proposed in the literature. There are suggestions not to 
perform any sort of mUltiplicity adjustment (Saville, 1990; Rothman, 1990; Bailar, 1991; Cook 
and Farewell, 1996). On the other hand, there is a large literature on methods for handling 
multiplicity problems. For brevity, I shall simply reference books by Miller (1981), Hochberg 
and Tamhane (1987), Westfall and Young (1993), Hsu (1996), and Westfall et al. (1999). In 
these books and in their references are ample arguments for considering various levels of 
multiplicity adjustment. 

While it is impossible in this space to elucidate all of the issues relating to the multiple 
inference problem, here are a few of the main concerns: 
• Multiple comparisons procedures result in more conservative inferences. 
• Which error rate should we control: familywise error rate (FWE, e.g., as controlled using the 

Bonferroni procedure), comparisonwise error rate (CER, no multiplicity adjustment), or false 
discovery rate (FDR, described below)? 

• Assuming we adopt a method for controlling error rates over families (e.g., FWE or FDR), 
what shall we use for a "family" of tests? 

• How do the relative consequences of Type I and Type II error enter the picture? 
• Should we "avoid" the problem by using Bayesian methods? 
• What are you trying to prove (or not prove)? 

Let me relay some personal experiences regarding this last bullet point, derived from my 
involvement in the pharmaceutical arena. 

Pharmaceutical companies are regulated by the US Food and Drug Administration (FDA), 
which is charged with assuring that pharmaceutical products are sale and eflective. Initially, 
PROC MULTTEST was conceived as a tool for analyzing safety data, namely, animal 
carcinogenicity data. These companies were very interested in this technology, since the 
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conservativeness of the methodology makes it less likely that the study data will show 
carcinogenicity when the drug truly has no effect. On the other hand, the FDA was not 
enamored with the technology, because it could mask potential tumor effects. 

Later, it was discovered that PROC MUL TTEST could be used as a tool for analyzing 
efficacy data from clinical trials as well. When I presented this application to pharmaceutical 
companies, I found little interest, for the following reason: such an application would make it 
more difficult to establish efficacy of their products. On the other hand, I found FDA 
representatives were quite receptive to the idea of using PROC MUL TTEST for the analysis of 
clinical efficacy data! Clearly, the researcher's and reviewer's perspectives are quite different. 

4. THE NECESSITY OF MULTIPLE COMPARISONS PROCEDURES 
The conservativeness of MCPs is perhaps the main reason that practicing scientists would 

like to just ignore the subject. In the prevailing climate of "publish or perish," scientists feel that 
MCPs can put them at a disadvantage. T.A. Ryan posted the following on the internet, 

5 

I believe that the cost of Type I errors is badly underestimated. To the researcher, Type II errors have 
great personal cost -- he can't get his paper published or he misses his promotion. Our treatment of 
data,however, ought to be based upon the cost to science -- is it really important if we m iss a small 
effect? Isn't it more important to find the big ones? The cost of Type I error includes a lot of time 
wasted by researchers trying to explain a non-existent effect. The falsely "significant" finding can 
result in a furor of activity which gradually peters out because there wasn't really any effect to work 
on. In practical research a Type I error can mean the use ofa treatment which really does no good. 
This is surely an important cost. 

We statisticians must accept much of the blame for cavalier attitudes toward Type I errors. 
When we teach practitioners in other scientific fields that multiplicity is not important, they 
believe us, and feel free to thrash their data set mercilessly, until it finally screams "uncle" and 
relinquishes significance. The recent conversion of the term "data mining" to mean a statistical 
good rather than a statistical evil also contributes to the problem. 

As a result of our failures to communicate the problems with multiplicity, scientists often do 
not recognize the role of probability in the interpretation of results of studies. A recent article in 
Science (Vol. 290, 15December 2000, p. 2031) reports on a follow-up study that failed to 
replicate a genetic association found in a previous study. The article cites study differences, and 
possibly protocol differences, but failed to acknowledge that the original significance could 
easily have been a Type I error. (In genetic studies, the multiplicity problem is rampant, with 
myriads of genes to be tested, and even multiple tests within genes, e.g., for dominant, recessive, 
and additive allelic effects, see Westfall et aI, 2001). 

What are we doing wrong in our education of scientists? Has "probability" become a dirty 
word? Have we become so enamored with computer-based analyses that we have stopped 
teaching the fundamental importance of probability for the interpretation of statistical data? 

If we train our clients to understand randomness as an effect, then they should have fewer 
problems grasping the idea that data dredging is likely to turn up artifacts. We can use simple 
simulation studies (in addition to the probability calculations) to drive this concept home. Often, 
in my consulting practice, I have clinicians roll two I O-sided dice, one black and one white, each 
having digits 0-9. Together these give you a "p-value": the black die gives the tenths and the 
white one gives hundredths; for example Black=3 and White=6 gives p-value = 0.36. The 
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participants roll 120 times, and enter the data in a grid that is labeled with different clinical 
outcomes in different patient subgroups. At the end of the "experiment", they are to write up the 
"results" of their studies. There are always interesting stories to tell about the "effect" of the 
drug based on the pattern of the significant p-values! Understanding that randomness is the true 
effect helps practicing scientists recognize that randomness is also an effect in their real studies, 
especially in analyses of large, complex data sets. 

5. SOME MCPS FOR CLASSICAL "FARM" PROBLEMS 

5.1 The CRD and RCBD: Simultaneous Intervals 
The completely randomized design (CRD) and randomized complete block design are the 

"classical" cases where MCPs are taught. "Tukey's Method" in particular is highly 
recommended for confidence intervals in such applications: Assume either model, in the 

balanced case, with sample means J( (an average ofn observations). i=l, ... ,g, and S2, an 

independent estimate oJ (j"2 using v degrees of freedom (df). The Tukey simultaneous confidence 
intervals for pairwise differences between the group means !-li -!-lj are given by 

Xi - Xi ± CIXS~l/ n , where Ca denotes the I-ex quantile of the Studentized range distribution with 

g groups and v df. These intervals are exact: the simultaneous coverage rate is 100(l-ex )%. 
In the unbalanced case, the exact critical values for the simultaneous intervals no longer can 

be obtained from the Studentized range distribution. However, because the joint distribution of 

{
X - X - (Jl - It ) } 

the pivotals I ~ j I j is a known multivariate t distribution, free of unknown 
s 1 I ni + II n i 

parameters, the exact critical value can be computed with relative ease, either by simulation or 
by using accurate quasi Monte Carlo methods. See Westfall et aI. (1999) for further details. 

5.2 Closed Testing and a Note on Fisher's Protected LSD 
As a researcher at the Rothamstead station, R.A. Fisher recognized the importance of the 

multiple comparisons problem, and suggested the "Fisher's Protected LSD" procedure. The 
method is seemingly sensible: When testing a collection of hypotheses, one first tests the global 
intersection hypothesis, and if this is significant, then one proceeds to test all the remaining 
hypotheses, unadjusted for multiplicity. Fisher made many wonderful contributions to the 
subject of statistics, but this was perhaps his worst, for two reasons. First, it fails to control 
FWE. If a single hypothesis is quite "non-null," while all others are truly nulls, then the method 
will, with high probability, reject one or more true nulls. Second, the method encourages lazy 
thinking about multiple comparisons. One must carefully distinguish "partial nulls" from 
"complete nulls" (Hochberg and Tamhane, 1987, p. 3). To develop methods for managing 
multiplicity requires that we think from all possible partial null perspectives rather than complete 
null perspective. 

In the pharmaceutical industry, methods based on "closed testing" (Marcus et aI., 1976) 
procedures are increasingly popular because they can be tailored to individual problems, and 
because they are known to control the FWE under all possible partial null configurations. 
Fisher's protected LSD is a closed testing procedure only in the case of all pairwise comparisons 
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with three groups, and fails in more general cases. It is likely that the popularity of the method 
will fade, as people become more aware of its problems. 

The following diagram illustrates the closed testing hierarchy. 

Closed Testing for Pairwise Comparisons: 
4 Groups 

7 

U sing the closed testing procedure, in order to declare, say ).11 different from ~l2, one would 
have to have (a) a significant (unadjusted) comparison, and (b) significant (unadjusted) tests for 
all composite hypotheses that include the ).11=).12 hypothesis. Use of any valid test (e.g., F test, 
range test) for the intermediate hypotheses will result in a method that controls FWE. The Fisher 
protected LSD method leaves out the entire middle layer and therefore does not control FWE. 

The closed testing paradigm leads to stepwise procedures that have more power than the 
simultaneous confidence interval methods for detecting differences. On the other hand, there are 
usually no simple confidence interval equivalences for closed testing methods. To gain power 
for detecting differences, one must sacrifice the specificity of the interval-based inferences. 

5.3. MCPs in more Complex "Farm" Applications 
Recent developments in computing capabilities, software and closed testing methods have 

greatly expanded the scope of applications for which powerful MCPs are readily available. The 
SAS/ST A T software PROC MIXED allows one to fit a variety of models in split plot, repeated 
measures, and spatial designs with complex error structures, often involving multiple error terms. 
Littell et al. (1996) give numerous examples. 

We have become fairly comfortable with standard, approximate univariate analyses for such 
models, and this is the first step towards deciding what to do in the multiple inferences case. 

Suppose one has a set of estimated parameters {e} i ' i= 1, ... ,k, obtained, say using the 

ESTIMA TE statement of PROC MIXED. To obtain simultaneous confidence intervals, one may 
(a) use the standard intervals (perhaps using Satterthwaite approximate dts), but with Bonferroni 
levels a/k. To improve upon Bonferroni, one typically needs to involve the correlation matrix of 
the parameters, which can be obtained by outputting the estimated covariance matrix and 
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converting it to a correlation matrix. In that case the vector of pivotals {( 0, - e,) / s.e( O,)} can be 

considered approximately multivariate t-distributed, with the estimated correlation matrix, and 
where the df may be obtained via Satterthwaite approximation. The appropriate critical value for 
the simultaneous confidence intervals then can be obtained (at least by simulation) as the (I-a) 

quantile of the distribution of maxi {I (0, - e,) / s.e( 0,) I}. This approach is discussed further by 

Westfall et al. (1999), who provide a macro "%SimIntervals" to automate the analysis. 
If more power is desired, the given estimated multivariate t distribution can be used in 

conjunction with closure-like ideas. Shaffer (1986) describes a closure-related step-down 
method that utilizes logical constraints among the specific contrasts of interest, and Westfall 
(1997) carried the analysis further by simulating critical values from the multivariate t 
distribution, rather than using Bonferoni's method. This approach is also discussed in Westfall et 
al. (1999), who provide a macro "%SimTests" to automate the analysis. 

6. THE INFLUENCE OF THE PHARMACEUTICAL INDUSTRY: THE ICH GUIDELINES 
Recent developments in multiple comparisons have been largely spurred by people working 

in the pharmaceutical industry. This industry is both highly competitive and regulated. 
Competition pressure encourages the pharmaceutical companies to present their data in the best 
light possible. Why should a company pre-specify whether to compare absolute outcomes, or 
change in absolute from baseline, or percentage change from baseline, or baseline covariate­
adjusted outcome? Why not consider all four tests and pick the one with the smallest p-value? 
Putting the company in the straightjacket of having to pre-specify which of the four measures to 
use puts them at a competitive disadvantage; after all, a competitor who is developing a similar 
drug certainly will put its analysis in a similar "best light," gaining stronger claims, and perhaps 
greater profits. 

Regulatory agencies are aware that profit motives sometimes can hinder scientific 
objectivity, and have long encouraged the use of multiple comparisons concepts for the analysis 
of clinical trials data. Their concerns were recently formalized with the publication of the "ICH 
guidelines" (Guidelines 11.E9 Statistical Principles for Clinical Trials: Availability 
International Conference on Harmonisation of Clinical Trials 
http://www.fda.gov:80/cder/guidance/91698.pdf). With regard to multiple comparisons, these 
guidelines state the following: 

From Section 5.6, Adjustment of Significance and Confidence Levels: 
When multiplicity is present, the usual frequentist approach to the analysis of clinical trial data may 
necessitate an adjustment to the Type I error. Multiplicity may arise, for example, from multiple 
primary variables ... , multiple comparisons oftreatments, repeated evaluation over time, and/or 
interim analyses ... details of any adjustment procedure or an explanation of why adjustment is not 
thought to be necessary should be set out in the analysis plan. 

From Section 2.2.2, Primary and Secondary Variables: 
To avoid multiplicity concerns arising from post hoc definitions, it is critical to specify in the 
protocol the precise definition ofthe primary variable as it will be used in the statistical analysis. 
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From Section 2.2.3, Composite Variables: 
[Using composite scores] addresses the multiplicity problem without requiring adjustment to the 
Type I error. The method of combining the multiple measurements should be specified in the 
protocol ... 

From Section 2.2.5, Multiple Primary Variables: 
The effect [of using multiple primary variables] on the Type I error should be explained because of 
the potential for multiplicity problems ... 

From Section 5.7 Subgroups, Interactions, and Covariates: 
Any conclusion oftreatment efficacy (or lack thereot) or safety based solely on exploratory 
subgroup analyses is unlikely to be accepted. 

From Section 7.2.2. Safety data: 
The evaluation of the reality of these potential adverse effects should take into account the issue of 
multiplicity arising from the numerous comparisons made .... 

9 

Since the publication of these guidelines, the various drug companies and clinical research 
organizations with which I have consulted are taking multiple comparisons much more seriously. 
They are pre-specifying endpoints, and they are putting particular multiple comparisons and 
multiplicity management methodologies directly into their protocols. 

7. MULTIPLE COMPARISONS IN THE 21 ST CENTURY 
The various genome projects (human, animal and plant) that are underway are likely to be the 

primary driving force for research in MCPs, at least for the immediately foreseeable future. 
Another current trend is "data mining," which has gone from being a "dirty word" to a word that 
makes some business executives think "competitive advantage." And, while we must be 
especially cautious in the interpretation of "significant" effects culled from such large studies, we 
must also allow ourselves the flexibility to hunt for effects in the large bodies of data that are 
increasingly available. 

Genetics is an extremely important application area where large data sets and data mining 
issues arise. We will soon have data sets with thousands of people, with genotype data on 
thousands of genes for each individual. There is growing awareness that the more complex 
diseases involve interactions among multiple genes; increasing the dimensionality enormously. 
If only 1,000 genes are typed for an individual, then there will be 499,500 gene pairs to consider 
via two-way interactions. And this assumes that genotypes are binary; in reality genotypes are at 
least three-level (aa, Aa, AA), with many more levels for the common case where there are 
multiple alleles A"A2, ... ,Ak at a locus, rather than simple "a" or "A." In the more complex case 
with k alleles, there are k(k+ 1 )/2 possible genotypes per gene. Considering the number of 
possible genotypes per gene, as well as possible interactions between different genes, the 
multiplicity problem becomes enormous. 
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7.1 What kind of error control is needed? 
In such studies where the number of tests might easily run into the millions, strict control of 

error rates becomes less desired. In all probability, such analyses are exploratory, and further 
study will be needed to confirm the results. However, even in such cases, some control over 
false significances is desired: analysts would like to have some assurance that "most" of the leads 
that they chase down will not be dead ends. 

The False Discovery Rate (FDR) criterion popularized by Benjamini and Hochberg (1995) 
provides such control. Supposing there are k null hypotheses tested, let R=number of hypotheses 
rejected, and let V =the (unknown) number of erroneously rejected ones. Define VIR =0 in case 
R=V=O. Then FDR is defined as FDR = E(V/R). 

The idea here is to choose a method with FDR:S;u, so that, among those hypotheses rejected, 
the number of "false leads" is expected to be low. In the genetics screening testing, this makes 
sense: if one finds 1,000 significant associations, one can allow that 50 or so might be false 
leads. FWE control is more stringent. One would find many fewer associations, say 100; but on 
the other hand one would be able to claim with confidence that all 100 are real and repeatable. 
The FDR method allows that more significances are mistakes, with the counterbalancing benefit 
that one will find more true effects with and FDR-controlling method than with an FWE­
controlling method. 

While FDR is quite reasonable for use in large, exploratory studies, FWE control is likely to 
remain the norm for smaller, confirmatory studies, as is the case with definitive clinical trials. 
The following conversations between statistician and pharmaceutical client illustrates some of 
the difficulties with FDR use in such cases. 

Conversation 1: About False Discovery Rate (FDR). 
Statistician: If you control FDR, then you may assume most of your significant results are real. 
Client: Then how many are false? 
Statistician: It's random. But the average percentage of claims that are false is 5%. 
Client: Average percentage? Now I've heard it all. Why do you statisticians always have to be 
so convoluted? O.K., tell me what "average percentage" means. 
Statistician: Well, you're right, it does take a little explaining. Say we perform the study, and 
find 7 significances. Unknown to us, one of these happens to be a mistake. The percentage of 
false claims in that study is then 1 in 7, or 14.2%. Now, suppose we had performed another 
study, under identical situations, but with a different patient randomization, and we found 5 
significances. Unknown to us, there were no mistakes. Then the percentage of false claims in 
that study is 0 out of 5, or 0%. And in a third study, say we got 1 mistake out of 30 
significances, or 3.3%. The average percentage for these three is now (14.2% + 0% + 3.3%)/3, 
or 5.8%. FDR is the average percentage over all possible patient randomizations, and if you 
control FDR, then that average percentage will be less than 5%. 
Client: What about the studies where there are no significances found at all? In those studies, 
you have a percentage of 010? How are those counted in the average? 
Statistician: Well, that is a fuzzy point. To make things mathematically tractable, we count 
those percentages as zeros. 
Client: There you go again. Well, I won't worry about what "tractable" means, but let me ask 
you this. Since I will only make a claim about significance in those studies where I find a 
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significance, is it fair to include those O's in the average? Because if you exclude them, then the 
average percentage will be higher. 
Statistician: Well, yes, that's true. 
Client: So that brings me back to the original question: In a study where I find some significant 
results, how many are mistakes? 
Statistician: It depends. 

Conversation 2: About Familywise Error Rate (FWE). 
Statistician: If you control FWE, then you may assume that all of the significant results are real. 
Client: O.K. 

8. BAYESIANISM: THE 21 ST CENTURY'S ANSWER TO THE MULTIPLICITY 
PROBLEM? 

Perhaps another reason that multiplicity effects have not been sufficiently recognized is that 
some in the Bayesian statistical community have argued that the problem is not nearly so bad as 
the frequentists would claim. Bayesians have long held that the appropriate response to the 
problem is to adopt an appropriate prior distribution that effectively "shrinks" the most extreme 
observed effects toward the mean, thereby making them, in a sense, "less significant" (Lindley, 
1990). While frequentist methods are similar in the sense that the significances of the most 
extreme effects also are downplayed, or "shrunk," the degree of shrinkage of the frequentist 
methods is orders of magnitude more extreme than that of the Bayesian methods using the 
"usual" priors. 

For experiments where multiplicity adjustments are considered appropriate, the "usual" 
Bayesian priors are inappropriate. In these situations, Bayesians have been using the wrong 
priors, and have been therefore deceiving themselves. 

It happens that there are a number of reasonably close similarities between the methods when 
the appropriate class of priors is used. 

So, when are multiplicity adjustments considered appropriate? The usual argument for 
considering multiplicity adjustment is as follows: "What if all (or many) null hypotheses are 
true? In that case, the usual p::;.05 decision rule will result in too many Type I errors." 

The statement "What if all (or many) null hypotheses are true?" actually is a statement about 
prior plausibility of the collection of null hypotheses. And, as shown by Westfall et al. (1997), 
and Westfall et al. (1999, chapter 13), there are certain correspondences between frequentist 
multiplicity adjustment and Bayesian posterior probability value under the case where the event 
{all (or many) null hypotheses are true} is assigned a moderate prior probability. 

The use of prior on null hypothesis is controversial, as some will argue that no effects are 
truly null. I essentially agree with this position; however, the appropriate Bayesian response is to 
use a mixture prior that sharply concentrates probability near zero. Berger and Delampady 
(1987) explain very clearly that the use of point masses provides a more convenient and 
reasonably approximate solution to the tests that result from such continuous mixtures. Thus, 
point mass priors are appropriate for hypothesis assessment, even when it is allowed that no 
effects are truly mathematically null. 

Such priors can also be motivated easily when one considers safety endpoints in clinical and 
pre-clinical pharmaceutical trials. For most safety endpoints, there is a relatively high prior 
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probability of no treatment-related effect. There is usually no a priori reason to suspect that 
compound X is, for example, associated with malignant brain gliomas in Sprague-Dawley rats; 
however, this test must be performed as part of the carcinogenesis bioassay. Neither do we 
suspect (in general) that compound X causes athlete's foot, nevertheless, this effect must also be 
tested and reported, should such adverse incidents be observed. The typical Bayesian prior, 
which puts a normal distribution over the distribution of possible effect sizes, is simply wrong 
for these applications, because it does not particularly distinguish the zero point. 

Thus, if Bayesians are to provide the answer for the multiplicity problem, then they must 
• Use the correct priors (including point masses), and 
• Evaluate robustness to choice of multivariate prior 

We are seeing some use of point mass priors in high dimensional situations (Efron et aI, 
2000); however, robustness remains problematic. Even simple changes to prior assumptions can 
lead to drastically different posterior inferences (Gonen and Westfall, 1998). 

While Bayesian methods provide a useful and coherent paradigm for examining and 
resolving the multiplicity problem, they are not a panacea. In a way, the problem is compounded 
on the Bayesian side: not only does one have to select the family of tests, one also has to select 
of multivariate prior for that family, perhaps allowing point masses and arbitrary correlation 
structures. Frequentist inferences may be non-robust to the specification of a "family" of 
inferences, but the same can be said for Bayesian inferences, in duplicate: Bayesian methods are 
sensitive to the specification of the "family" and to the choice of prior over that family. 

9. FUTURE EDUCATION IN MCPS 
Our most important task is to educate our clients about the nature of the multiplicity problem. 

Simple methods for multiplicity management may be fine. These may be as simple as 
recognizing the difference between confirmatory and exploratory studies, and teaching people 
how to write sentences like,"These results were derived from a purely exploratory analysis, 
where (describe extent of exploration here). Future studies are needed to confirm the existence 
of the associations that we have identified." 

If some exploration is needed, and if the client wishes to state that the results are 
confirmatory, then formal multiplicity adjustment procedures are required. These methods must 
have been stated in the data analysis plan, prior to data collection, otherwise the analysis must be 
relegated back to exploratory status. If one analyzes data-driven hypotheses, then the analysis is 
exploratory (with notable exceptions for the Scheffe-type and greatest root-based methods.) 

Let me relate one final anecdote regarding failure of education in regards to mUltiplicity, and 
I confess that this is my own failure, since the student had taken his statistics courses from me. 
In a study relating soil characteristics to cotton yield, he performed a regression analysis, but the 
overall model F was insignificant. Not pleased, he then divided the field into four yield 
categories, from lowest to highest, and performed a discriminant analysis. This analysis 
provided him with a univariate discriminant function involving the various soil measurements. 
He then proceeded to test for differences between the four yield grades using an ANOVA F-test 
on the discriminant function. Now he was much happier: the F test was highly significant! 

The multiplicity aspect behind this anecdote is that the discriminant function is actually the 
result of infinite data snooping: it is the linear combination that is selected to maximize the 
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univariate F. Of course, we all recognize that there are other appropriate multivariate tests to use 
in this instance, specifically Roy's greatest root (or its equivalent). But the larger issue is this: 
our clients use such "selection" techniques all the time, sometimes automatically (as in the case 
of the cotton yield study), sometimes by hand (try it different ways, and pick the winner). Our 
task is to advise our clients that a different distribution must be used whenever selection is 
performed, whether or not we recognize the particular form (e.g., Roy's greatest root) that the 
distribution must take. We are guilty of abiding by a double standard if we require use of Roy's 
greatest root in one case involving selection, but wink and say "no adjustment necessary" in 
other cases involving selection. 

10. CONCLUSION 
It is up to everyone of us to come to grips with the multiplicity issue, as it is fundamental. 

The subject is indeed controversial, but if we shy away from it for that reason, we are doing a 
disservice to our profession. We need to train users in this area so that they understand its 
nuances. Ultimately, coming to a personal recognition and reconciliation of the multiplicity 
issue will make us all better statisticians. 
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