January 2016

Preventative Control of Brown Patch with Select Fungicides

E. Alderman
Kansas State University, ejalderman@ksu.edu

J. Reeves
Kansas State University, jakereeses@ksu.edu

J. Hoyle
Kansas State University, jahoyles@ksu.edu

Follow this and additional works at: https://newprairiepress.org/kaesrr

Part of the Horticulture Commons, and the Plant Pathology Commons

Recommended Citation
Alderman, E.; Reeves, J.; and Hoyle, J. (2016) "Preventative Control of Brown Patch with Select Fungicides," Kansas Agricultural Experiment Station Research Reports: Vol. 2: Iss. 4. https://doi.org/10.4148/2378-5977.1215

This report is brought to you for free and open access by New Prairie Press. It has been accepted for inclusion in Kansas Agricultural Experiment Station Research Reports by an authorized administrator of New Prairie Press. Copyright January 2016 Kansas State University Agricultural Experiment Station and Cooperative Extension Service. Contents of this publication may be freely reproduced for educational purposes. All other rights reserved. Brand names appearing in this publication are for product identification purposes only. No endorsement is intended, nor is criticism implied of similar products not mentioned. K-State Research and Extension is an equal opportunity provider and employer.
Preventative Control of Brown Patch with Select Fungicides

Abstract
Preventative applications of Velista and Heritage Action fungicides will decrease the percentage of brown patch observed in a perennial stand of tall fescue.

Keywords
turfgrass, disease, Brown Patch

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.
Preventative Control of Brown Patch with Select Fungicides

Evan Alderman, Jake Reeves, and Jared Hoyle

Summary. Preventative applications of Velista and Heritage Action fungicides will decrease the percentage of brown patch observed in a perennial stand of tall fescue.

Rationale. Tall fescue [*Lolium arundinacea*] is one of the most predominantly used cool-season turfgrass species in the transition zone. Its deep root system and coarse textured leaves lend to its ability to withstand drought, heat, and wear stress. Although it is well adapted to survive the summer months in Kansas, it can be susceptible to injury from disease. Brown patch [*Rhizoctonia solani*] is a disease that can damage leaf tissue, shoots, and the crown of tall fescue during the summer months. This disease is most prevalent during periods of high humidity, high temperature (above 80 °F), and high nitrogen levels. During the mornings mycelia can be seen forming a “smoke ring” around the affected area. Applications of preventative fungicides have proven to be a successful management strategy in reducing the occurrence of brown patch incidences in tall fescue stands. With new fungicide formulations coming out every year, testing is needed to demonstrate the efficacy of these fungicides in reducing potential injury from disease.

Objectives. Evaluate Heritage Action and Velista for preventative control of brown patch in a perennial stand of tall fescue.

Study Description. A field study was initiated June 18, 2015 at the Kansas State University Olathe Horticultural Research Center in Olathe, KS on turf-type tall fescue maintained at 3 inches. The study was conducted as a randomized complete-block design, with three replications. Fungicides applied during this study were Heritage Action (Azoxyystobin and Acibenzolar-S-methyl) and Velista (Penthiopyrad). Field study consisted of: an untreated control, Velista applied at 0.3 and 0.5
oz/1,000 ft\(^2\), and Heritage Action applied at 0.2 oz/1,000 ft\(^2\). Visual percent brown patch incidence was rated on a 0 to 100% scale every three weeks beginning at trial initiation. Means were separated according to Fisher’s Protected LSD test when \(P \leq 0.05 \).

Results. All applications of the preventative fungicides resulted in minimal observations of brown patch. Six weeks after treatment application (WAT) Velista applied at 0.3 oz/1,000 ft\(^2\) and 0.5 oz/1,000 ft\(^2\) and Heritage Action resulted in 5%, 7%, and 0% brown patch incidence, respectively, when compared to an untreated control (43% brown patch incidence) (Table 1). Heritage Action performed best during this study with brown patch only being observed 9 WAT (0.3%). From this research, to decrease the chances of a brown patch incidence, it is recommended to apply a preventative fungicide before conditions are favorable for this disease. Repeat applications may be needed to ensure seasonal coverage.

Table 1. Percent brown patch incidence on tall fescue with the application of preventative fungicides

<table>
<thead>
<tr>
<th>Treatment</th>
<th>0 WAT†</th>
<th>3 WAT</th>
<th>6 WAT</th>
<th>9 WAT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control</td>
<td>0</td>
<td>0</td>
<td>43.3 a§</td>
<td>13.7</td>
</tr>
<tr>
<td>Velista 0.3 oz/1,000 ft(^2)</td>
<td>0</td>
<td>0</td>
<td>5.0 b</td>
<td>14.3</td>
</tr>
<tr>
<td>Velista 0.5 oz/1,000 ft(^2)</td>
<td>0</td>
<td>0</td>
<td>6.7 b</td>
<td>5.3</td>
</tr>
<tr>
<td>Heritage Action 0.2 oz/1,000 ft(^2)</td>
<td>0</td>
<td>0</td>
<td>0.0 b</td>
<td>0.3</td>
</tr>
</tbody>
</table>

† Percent brown patch incidence was visually rated on a 0-100% scale where 0% = no brown patch observed and 100% = plot completely affected by brown patch.
‡ Indicates weeks after treatment application.
§ Means in a column followed by the same letter are not significantly different according to Fisher’s protected LSD test, \(P \leq 0.05 \).
Figure 1. Digital images of research plots 9 WAT, see Table 1 for the mean percent brown patch cover for each corresponding treatment.