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Abstract: Papadakis analysis, originally proposed by Papadakis in 1937 belongs to a larger 
class of methodologies called the nearest neighbor analysis which is primarily based on the fact 
that plots in close proximity ("neighbors") are exposed to similar environmental conditions and 
therefore, for a given plot, information from its neighboring plots could be used for adjustment 
of its response for spatial variability. The basic theory behind the application of Papadakis 
methodology to field trials is relatively simple. It is based on an analysis of covariance where 
the covariate is an index of fertility (environment), and the response is some observable trait 
(e.g., grain yield), which is adjusted up or down to reflect the effect due to spatial variability. 
There have been several references in the literature to application of Papadakis methodology to 
field trials where the analysis is routinely carried out on data coming from a replicated design 
within a testing location. The application that is presented here is an exception to the rule in 
that the analysis is conducted on multi-location data with single replication per location. In 
plant breeding industry, a recent trend has been to move towards one-replicate testing system to 
maximize the coverage of the testing environments. Note that for a one-replicate test, no design 
such as a Lattice, can be used for adjustment of the observations for spatial variability. We start 
with describing the theory and methodology behind the proposed Papadakis analysis for multi­
location data. Several practical problems such as impact of missing values on Papadakis 
covariate, choice of homogeneous vs. heterogeneous slope coefficient, and effect of influential 
observations, etc. are discussed and solutions are proposed. Finally, results from several 
validation studies on com yield data, including comparison to lattice adjusted plot values and 
ANOV A on adjusted vs. unadjusted data are presented to demonstrate the benefit from the 
proposed procedure. 

Keywords: Papadakis analysis, NNA, Nearest neighbor adjustment, Spatial analysis, Genotype 
by environment interaction, Plant breeding, Lattice analysis. 

1. Introduction 

Application of spatial methods to the design and analysis of agricultural experiments is 
based on the existence of spatial autocorrelation among neighboring plots at a testing location. 
In the following discussion, we shall use the term "test" and "location" interchangeably to 
denote a testing location with either one or multiple replications. Traditionally, the designs for 
plant breeding experiments have been complete or incomplete blocks, where the means for 
local control is blocking of experimental units. The inherent assumption behind successful 
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blocking is that the fertility pattern within the test is regular and is known to the experimenter. 
However, these assumptions rarely hold in practice for reasons such as irregular or patchy 
fertility pattern, presence of row by column interaction, or extremely large size of the block to 
accommodate a large number of genotypes tested in early generation screening trials. It is 
important to realize that in a trial, the more elaborate the chosen method of local control, the 
worse the consequences are if it fails to achieve its goals (Pearce, 1998). 

2. Spatial and Nearest Neighbor Methods 

One of the objectives of incorporation of spatial methods at the design or the analysis 
stage in a plant breeding trial is similar to that of using local control in the traditional design of 
experiments. However, in many cases, spatial methods of analysis have the advantage of being 
independent of the design used in the trial (Bartlett, 1978). Nearest Neighbor Analysis (NNA) 
methods are spatial methods which rely on the fact that experimental plots in close proximity 
("neighbors") are exposed to similar environmental conditions, and therefore, for a given plot, 
information from its neighbors can be used for adjustment of its response to account for the 
spatial variation. The benefit of using NNA in yield trials is extensively discussed in the 
literature (Bhatti et. al., 1991; Ball et. al., 1993), and the superiority of NNA over the 
traditional Randomized Complete Block (RCB) is now well known (Stroup et. al., 1994). In 
fact, it has recently been shown that spatial methods such as NNA can provide more accurate 
and precise estimate of genotype effect than either complete or incomplete block analyses 
(Cullis et. aI., 1998; Zimmerman and Harville, 1991; Wu and Dutilleul, 1999). 

The mathematical basis for NNA is the simple Markovian model: 

~=P~-I+Gr' (0.1) 

where, ~ is the response from the rth plot, ~-l is the response from the neighboring plot 

(without loss of generality, say, to the left of ~), and Gr is the residual which is uncorrelated 

with y"-l. It is clear that the closer P is to 1, the better the performance of NNA (Bartlett, 
1978). 

3. Papadakis Analysis 

Papadakis analysis (Papadakis, 1937) is a member of NNA based on the theory of 
Analysis of Covariance (ANCOV A) where the covariate is an index of fertility (environment) 
and the response variable is some observable trait (e.g., grain yield) which is adjusted up or 
down to reflect the effect due to spatial variability. As with any other NNA method, Papadakis 
analysis has been routinely applied to data within a trial (location) coming from a replicated 
design (e.g., RCB). Typically, the procedure involves an ANCOV A where the covariate 
corresponding to an observation is constructed using the mean of the residuals of the 
neighboring plots. The definition of neighboring plots will be more explicit in later sections. 
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4. One Replicate Testing System 

A recent trend in the agricultural industry has been to switch to testing programs that 
involve only one replication per location. The intent is to reallocate the plant breeding 
resources so that the number of testing environments (locations) is maximized. In plant 
breeding literature (Johnson et. al., 1992), it is known that conducting yield trials at multiple 
locations is an essential component of any breeding program for developing cultivars with 
stable performance across a broad range of growing locations. In fact, it can be shown that if 
the cost of an additional location is not excessively high relative to that of an additional 
replication, and the error variance is low compared to the variance of genotype by environment 
interaction (GXE), then one-replicate testing actually results in a lower standard error for the 
cultivar mean (Dofing and Francis, 1990). 

In a testing system with single replication per location, the need for spatial methods is 
even greater since no traditional complete or incomplete block designs (e.g., lattice designs) can 
be used for adjustment of cultivar means for spatial variations. For the same reason, Papadakis 
or any other traditional NNA methods, that require replication, can not be applied to data within 
a testing location with one replication. Historically, all applications of Papadakis method to 
yield trials have been within a testing location in the context of replicated designs. In fact, use 
of any spatial analysis that goes across trials over space and time has not been addressed in the 
literature (Brownie et. al., 1993). The objective of the present study is to propose a Papadakis 
analysis method that goes across testing locations with one replication per location. 

5. Across-Location Papadakis Analysis 

In plant breeding industry, a collection of testing locations, each with the same set of 
genotypes, is often referred to as an "experiment". The method that we propose here is applied 
to data coming from multiple locations of an experiment with one replication per location. 
Therefore, for a given trait, the structure of the input data set for the analysis is a two-way 
location by genotype layout with one observation per cell. This data structure corresponds to 
the basic additive model: 

Yij=J..l+hi+Zj+Bij' (0.2) 

where Yij is the observation from the {h genotype at the /h location, J..l is the overall mean 

effect, hi is the effect of the ith genotype, Ij is the effect of the /h location, and Bij is the 

residual. To incorporate Papadakis analysis, a term involving the Papadakis covariate needs to 
be introduced into model (0.2), following which an ANCOV A can be conducted. Similar to the 
traditional intra-location Papadakis analysis, the covariate is constructed by taking the mean of 
the residuals corresponding to the neighboring plots ofthe observation Yij. 
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Spatial Trend and GXE: 
In model (0.2), the residualGij consists of three components: (i) spatial trend, (ii) GXE, 

and (iii) random error. Ideally, Papadakis covariate should be constructed exclusively from the 
pure trend part of the residuals to avoid "contamination" of the covariate by GXE. However, 
separation of the GXE and the spatial trend part is not a trivial problem since effect due to GXE 
could manifest itself as spatial trend and vise versa. To deal with this problem, in the 
developmental phase of this study, an iterative method was developed. The method was a 
combination of NNA and the method of Additive Main Effects and Multiplicative Interaction 
(AMMI) (Zobel et. al. , 1988). This iterative procedure, which we shall refer to as NN-AMMI, 
consisted of the following steps: 

t 

1. Fit an AMMIt model to raw data: Yij = 11 + hi +Ij + L>1ka ik Yjk + Gij' 
k=1 

whereAk is the kth singular value of the matrix of the residuals, and a ik and Yjk' k = 1,2 

are the kth PCA axis with respect to hybrid and location, respectively. 

2. Using the residualsGij from Step 1, construct the Papadakis covariatesxij' 
t 

3. Define Y; = Yij - IiktXikYjk (i.e., separate the GXE part). 
k=1 

4. Fit the NN model to y~, i.e., compute Y; = 11 + hi + Ij + {Jxij + e;. 
5. Compute Y;* == Yij - A - hi - ij - /lxij (A, hi,/j,jj are from Step 4). 

t 

6. Fit the multiplicative model: Y;* = I AkaikYjk + G;* . 
k=1 

t 

7. Define uij = Yij - A -hi -ij - IiktXikYjk using A,hi,/j from Step 4 and ~,tXik'Yjk from 
k=1 

Step 6. 
8. Using uij' construct a new set of values for the covariate xij . 

9. Loop back to Step 3 and Step 4 using parameter estimates from Step 6 and xij from Step 

8. 
10. Continue looping until estimates converge. 

Theoretically, it seemed logical that the above iterative procedure would gradually 
refine the Papadakis covariate to its "purest" form freeing it from the effects due to the 
mUltiplicative factor, i.e., the GXE interaction. However, after applying this method to com 
yield data from Monsanto's testing system, it was observed that even if the procedure 
converged after only two or three iterations, the value of the slope coefficient f3 hardly 

changed after the first iteration. One possible explanation for this phenomenon is that AMMI 
was unable to distinguish between the trend and the GXE part and was therefore erroneously 
including the trend component into modeling of the multiplicative interaction. This real data 
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analysis suggested that NN-AMMI was no better than the pure NNA method. The conclusion 
then was to revert back to the original non-iterative Papadakis method. 

Homogeneous Slope Model: 
The basic homogeneous slope form of the across-location Papadakis method, which we 

propose, is given by the following model: 
Yij = Jl+hj +lj + P ·xij +&ij, (0.3) 

where xij is the covariate corresponding to the observation Yij' P is the slope coefficient, and 

the remaining terms Jl, hj' lj' and &ij have been defined before in Equation (0.2). Similar to 

the intra-test Papadakis method, an ANCOV A can be performed using the model (0.3) for 
obtaining adjusted genotype means and for testing contrasts on genotypes. Alternatively, the 
approach that we follow in this discussion is consistent with the industry practice where 
genotype by location values are stored in a database for further analyses to make inferences on 
varietal selection. 

Following (0.3), the adjustment of genotype values are done by the formula: 
adj _ A 

Yij - Yij - fJ 'Xij (0.4) 

where y~dj is the adjusted value and jJ is the estimate of the slope coefficient. 

6. Model Related Issues 

There are at least two major model related issues which need to be resolved for building 
model (0.3). They are (a) appropriate construction of Papadakis covariate, and (b) possible 
heterogeneity of P with respect to location and/or genotype. 

(a) Construction of the Papadakis covariate: There are two choices for constructing a 
Papadakis covariate, which appear the most in the literature. They are (i) two-neighbor 
covariate and, (ii) four-neighbor covariate. The four-neighbor covariate is based on the 
residuals from all four neighbors (east, west, north, and south directions), where as the two­
neighbor covariate uses residuals either from the east and west neighbors or from the north and 
south neighbors. During the course of this study, several validation studies using com yield 
data from Monsanto's testing system were conducted on all of the above alternative choices of 
covariate construction. The four-neighbor covariate produced the most precise spatial 
adjustment of the observations (see the discussion in the Validation Studies section). 

(b) Heterogeneity of slope coefficient: The assumption of homogeneous slopes is routinely 
tested in general ANCOV A but does not appear to be tested in application of Papadakis 
analysis found in the literature. One explanation may be that, traditionally Papadakis analysis 
has been exclusively applied to within-location RCB data where the number of replications is 
usually small. Therefore, a test of heterogeneity with respect to treatment would have very few 
data points for each level of the treatment and consequently, very low power. As for replication 
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by covariate interaction, typically in an RCB, it is assumed that replication by treatment 
interaction is non-significant, so this might suggest an assumption of no replication by covariate 
interaction. Further, if the assumption of homogeneity with respect to treatment is not routinely 
tested in Papadakis, it probably follows that the assumption of homogeneity with respect to 
block would not be tested either, as the former is usually routine in ANCOV A whereas the 
latter is not. 

In our present application though, the situation is much different. First, there usually are 
a large number of "blocks" (approximately 20-35 locations in an experiment), so testing the 
assumption of homogeneity with respect to the treatment (genotype) would probably not lack 
power. Second, it is usually assumed that our blocks do interact with our treatment (GXE), so 
it might be reasonable to assume heterogeneity of the slope with respect to our blocking factor 
(location) also. 

As noted previously, we are interested in the comparisons among genotypes and not 
among the locations. If a data set is heterogeneous with respect to location and homogeneous 
with respect to hybrid, we can adjust the observation within each location separately using 
different slope coefficients for different locations and still compare the genotypes. 
Furthermore, it can be shown that we can compare the genotypes for any subset of the locations 
(Hendrix et. al., 1982). 

Unlike location, heterogeneity with respect to genotype introduces some problems into 
the implementation of the method. In that case, the value of the covariate at which two 
genotypes are compared can alter the resulting conclusion about their relative performance. 
This would make our proposed use of adjusted data nearly impossible. In fact, the interaction 
of a covariate and the treatment factor of interest introduces problems in the interpretation 
similar to those present when two treatment factors interact and conclusions about main effects 
need to be qualified (Hendrix et. al., 1982). 

Using com yield data on several experiments from Monsanto's testing system, tests of 
heterogeneity of Papadakis slope coefficient were conducted. It was found that the locations 
were heterogeneous with respect to the covariate in every experiment. The p-value for the test 
of homogeneity was almost always equal to zero. On the other hand, test for homogeneity with 
respect to hybrid was significant in approximately 25% of the experiments using a significance 
level of .05. However, the size of the F-statistic for heterogeneity with respect to hybrid was 
usually between 1 and 2, whereas the F-statistic for location heterogeneity was much larger. 
Given that heterogeneity with respect to location is more prevalent and does not cause the same 
problems in interpretation that heterogeneity with respect to hybrid does, from point of view of 
practical application, we propose a model that routinely assumes heterogeneity with respect to 
location and homogeneity with respect to genotype. 

Final Model: 
The final model for across-location Papadakis analysis now becomes: 

Yij=/-l+hi+lj+fJj,xij+&ij, (0.5) 

where fJj is the slope for the /h location, and the remaining terms in the model are as defined 

before in (0.3). As in (0.4), the adjusted response using this model is given by 
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ad} _ pest 
Y i} - Yij - } . Xi}' (0.6) 

where p;sr is the estimate of the slope coefficient for the /h location. 

7. Implementation Issues 

In the following paragraphs, some of the most important implementation issues will be 
discussed. 

(a) Missing values and the criterion of adequate neighbors: Missing values for the Papadakis 
analysis are troublesome in that not only is the plot, whose yield is unobserved, affected but so 
also are the neighboring plots whose covariate cannot be constructed using all four neighbors. 

Examination of the single-replicate yield trial data from the historical Monsanto testing 
system suggested that approximately 30% of the tests each year had at least one missing plot. 
Among the tests with at least one missing plot, most had five or fewer missing plots. One 
should be concerned with not just the number of missing plots but also the pattern in which 
they are missing or the ultimate effect on the analysis. In other words, missing values could be 
positioned throughout a test in such a way that every interior plot still has at least 3 neighbors, 
or they could be positioned such that many plots has two or fewer neighbors. Note that, for a 
given plot, having 3 or 4 neighbors is preferable to having 1 or 2 neighbors because then the 
information about spatial variability will assuredly be available in both vertical and horizontal 
directions. Also note that the border plots have at most 3 neighbors and the comer plots have at 
most 2 neighbors. 

Lack of replication means that a design based missing value estimation procedure can't 
be implemented at the location resolution. A practical solution to this problem is to determine 
some objective criterion in terms of data adequacy and then drop locations from the analysis 
which do not meet that criterion. In the following paragraph, we present an example where 
such a criterion is established in the case of an experiment containing tests of size 7x7, i.e., tests 
with 49 plots. 

Application to 7X7 test: 
To determine a rule for the inclusion or exclusion of a 7x7 test with respect to having at 

least three neighbors for a sufficient number of its interior (non-border) plots, several real data 
analyses were conducted using historical data from Monsanto's com testing system. The first 
analysis showed that, for tests with 4 missing non-comer plots, the average number of 
neighbors per plot was 3.2 and for the tests with 5 missing non-comer plots, the average 
number of neighbors per plot was less than 3. As mentioned before, the presence of a minimum 
of three neighbors for a plot guarantees that its covariate will use spatial information in both the 
vertical and horizontal directions. In a second analysis, only the tests that had at least one non­
comer plot with less than 3 neighbors were considered. Then, for such a test, the average 
number of plots with less than 3 neighbors for different numbers of missing non-comer plots 
was considered. It was found that, for the case of tests with 4 missing non-comer plots, the 
average number of plots with fewer than 3 neighbors was 5.14. The results from the above two 
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analyses jointly point in the direction of not using a test which has 5 or more non-comer plots, 
each with less than 3 neighbors. It is worth mentioning here that since the comer plots can have 
at most 2 neighbors, a test with 5 non-comer plots, each with less than 3 neighbors, will have a 
total of 9 plots with fewer than 3 neighbors. 

(b) Identification of influential observations: Use of the model (0.5) with slope 
heterogeneous with respect to location implies that the number of data points that essentially 
determines the slope coefficient is equal to the number of genotypes at a location. This means 
that a single data point could be quite influential in the determination of the slope coefficient 
for a given location. Therefore, it seems reasonable to screen for highly influential data points 
and remove them prior to the estimation of the slope parameter. Note that the observations 
from those deleted plots can be ultimately adjusted using the fitted model based on the data 
from the remaining plots. 

In practice, for identification of influential observations, the diagnostic statistic, DFFITS 
(SAS PROC REG) is recommended since it highlights points influential in the estimation of 
both the slope and the intercept parameters. Before construction of the across-location model 
(0.5), a regression line is fit to data from each individual location, regressing yield (adjusted for 
the genotype effect) on the Papadakis covariate and then, all data points with a DFFITS value 
greater than some predetermined threshold are dropped before the model fitting is done. 

(c) Negative Papadakis slope: Occurrence of negative slope in Papadakis analysis is not very 
intuitive since it implies, for example, that the response from a plot with a large covariate (i.e., 
in a higher yielding region) will be adjusted up and the response from a plot with a small 
covariate (i.e., in a lower yielding region) will be adjusted down. As a possible explanation of 
this phenomenon, we suggest inter-plot competition (Kempton and Howes, 1981). Note that, in 
the presence of inter-plot competition, a low-yielding plot will be associated with higher 
yielding neighboring plots, and a high-yielding plot will be associated with a lower yielding 
neighboring plots. We claim that negative slopes indicate smaller spatial trend relative to inter­
plot competition. To justify the claim, note first of all that at all locations, there exists some 
degree of spatial trend and some degree of inter-plot competition. Whichever of these two 
components of the residual produces a stronger 'signal' determines the sign of the Papadakis 
slope. It is reasonable to assume that for a given experiment, the amount of inter-plot 
competition is approximately constant across all tests since they all contain the same set of 
genotypes. Conversely, within-test trend or the spatial variability varies from test to test. The 
net effect of the approximately constant background inter-plot competition and the varying 
trend component is reflected in the Papadakis slope coefficient; the slope is large and positive 
when trend is significantly stronger than inter-plot competition and decreases proportionally as 
the trend gets weaker. In the extreme, little or no spatial trend leads to Papadakis slopes which 
have large negative values reflecting presence of only inter-plot competition. 

The hypothesis that inter-plot competition exists to some degree in all tests is further 
substantiated by the following analysis. Using raw data from 55 experiments from Monsanto's 
testing system, Papadakis slopes were computed using covariates based only on row (east-west) 
neighbors and then using covariates based only on column (north-south) neighbors. In 54 out 
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of 55 experiments, the mean slopes (across tests) using the row (east-west) neighbors were 
smaller than the mean slopes using the column (north-south) neighbors. Note that, given the 
extremely elongated shape of the testing plots, the distance between adjacent plots in the east­
west direction is about one-fourth of the distance in the north-south direction and therefore, the 
inter-plot competition is expected to be much stronger between the row neighbors than that 
between the column neighbors. The above relationship between the two types of slopes held up 
both in the tests with positive slopes and tests with negative slopes. In other words, a similar 
degree of inter-plot competition was present in all tests, both with positive and negative 
Papadakis slopes, suggesting that only the amount of trend varied from location to location. 

Another piece of evidence suggesting the presence of inter-plot competition and its 
direct relationship to Papadakis slope was found by analyzing several years of data from all 
experiments with 2-replicate 7X7lattice tests in Monsanto's testing system. The tests were first 
analyzed using lattice analysis on the 2-replicate data and then using the proposed across­
location Papadakis analysis with data from one replication at a time. After completion of the 
analyses, tests were divided into two groups, one with positive Papadakis slope and the other 
with negative Papadakis slope, and then the lattice relative efficiency (RE.) for both types of 
tests were examined. In theory, in the presence of inter-plot competition, the lattice analysis 
should not perform as well in tests with less trend as those with more trend. That is, the lattice 
block adjustments can more effectively adjust out trend, particularly if it occurs along blocks, 
than the inter-plot competition which most likely does not occur along blocks but rather at a 
higher resolution. Therefore, it could be hypothesized that the RE. of lattice would be less in 
tests with negative Papadakis slopes than those with positive Papadakis slopes. The data 
indeed supported this hypothesis. It was observed that the average RE. for tests with positive 
slopes was 127 whereas that for tests with negative slopes was 114. 

The results of these analyses seem to suggest that inter-plot competition always reduces 
the Papadakis slope coefficient and sometimes to such an extent that the Papadakis slope 
becomes negative. 

8. Validation Studies 

Several validation studies to assess the validity of the proposed method were undertaken 
using historical and current yield data from Monsanto Com Research. Some of the studies 
required data from multi-replicate testing system, which were available in Monsanto's com 
testing system from past several years. Details of three of the validation studies are discussed 
below. 

(aJ Comparison with lattice-adjusted plot values: It appears that one of the natural ways of 
assessing the proposed Papadakis analysis would be to consider data from 2-replicate lattice 
designs and then compare the lattice adjusted plot values on one of the replications to the 
Papadakis adjusted values on that replication. Note that lattice analysis uses data from both 
replications for computing lattice adjusted plot values and the lattice adjusted mean of a 
genotype is equal to the mean of the two lattice adjusted plot values corresponding to the two 
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replications for that genotype. On the other hand, the proposed Papadakis analysis is based on 
single replicate data only. Therefore, if we find that the adjustment factors (adjusted value 
minus raw data) from Papadakis analysis are similar to those from lattice analysis, it would 
certainly be an evidence in favor of Papadakis analysis since it requires only half the amount of 
data compared to the lattice analysis. The results of the data analysis indeed supported the 
hypothesis. The average correlation between the adjustment factors from Papadakis analysis 
and lattice analysis was 0.74. 

(b) Cross-Validation: For a given hybrid from a 2-replicate test, we can think of the two 
observed values coming from the two replications as two different estimates of the true yield of 
the hybrid. Therefore, it appears logical to use one of the replications as a predictor of the other 
replication. Without loss of generality, we can use the second replication to predict the first 
replication. For using the second replication as a predictor, we can either use the observation 
(raw data) from the second replication itself or we can do Papadakis adjustment only on the 
second replicate and then use the adjusted second replicate data as the predictor of the first 
replication. The claim is that, between the two predictors, the raw rep 2 and the adjusted rep 2, 
the adjusted rep 2 value will be a "better" predictor of the raw rep 1 value. The word "better" 
here is used in terms of the magnitude of mean squared prediction error (MSPE). 

From Monsanto's com research, data from all experiments from years 1993 through 
1995 were used for this study. For a given year, experiments with 2-replicate lattice tests were 
taken and Papadakis adjustment was done on the second replication. Recall that Papadakis 
analysis is done by experiment. As explained in the previous paragraph, MSPE was computed 
at the test level first using raw rep 2 as a predictor of raw rep 1 ("raw method"), and second, 
using adjusted rep 2 as a predictor of raw rep 1 ("adjusted method"). Then at the test level, the 
percent reduction in MSPE from the raw method to the adjusted method was calculated. The 
percent reduction in MSPE was then averaged first across tests up to the experiment level and 
then averaged across experiments to get an overall figure for the corresponding year. 

The following table summarizes the results. The average percent reduction across the 
three years is weighted by the number of experiments in a year. 

Percent Reduction in MSPE from Raw to Adjusted Method 

Year 

1993 
1994 
1995 
Wt. Avg. 

Number of Experiments 

58 
18 
8 

% Reduction in MSPE 

7.74 
5.73 
6.12 
7.16 

(c) ANOVA: This analysis required only one-replicate data where we used the additive model 
with hybrid and location, first on the raw data and then on the Papadakis adjusted data. The 
MSE's coming from the two ANOVA's were then compared. This method has an added appeal 
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because it is identical to the analysis involved in the current industry practice of "experiment 
processing", which is an ANOVA on location by hybrid values used for selection of hybrids. 

For this study, all experiments with one-replicate tests from years 1996 through 1998 
were taken from Monsanto's corn research. For a given experiment in a year, an ANOVA was 
conducted based on the additive model (0.2) of test and hybrid using two alternative data sets: 
(a) raw data and, (b) Papadakis adjusted data. Using the MSE's from the two alternative 
ANOV A's, reduction in MSE from the ANOV A with raw data to the ANOV A with adjusted 
data was calculated. These percent reductions were then averaged across experiments for a 
year. 

The following table summarizes the results. The average across years is weighted by 
the number of experiments in the corresponding year. 

Percent Reduction in MSE from the ANOV A with Raw Data to the ANOV A with 
Adjusted Data 

Year Number of Experiments %Reduction in MSE 

1996 
1997 
1998 
Wt. Avg. 

55 
56 
62 

12.6 
11.3 
14.3 
12.8 

The three validation studies discussed above certainly add credence to the usefulness of 
the proposed procedure as a means for adjusting the data for spatial variation from one replicate 
testing system. Figures 1 and 2 provide contour plots of corn yield residuals (using model (0.2) 
) before and after Papadakis adjustment in a 7x7 test from Monsanto testing system. Note that 
the spatial pattern in the residuals using raw data is not evident in the residuals after Papadakis 
adjustment is done. 

9. Conclusion 

In recent years, the trend in the plant breeding industry has been to move towards testing 
systems having one replication per location with an objective of reallocating the breeding 
resources to maximize the number of testing environments. In this study, we have shown that 
in experiments containing one-replicate tests, the benefits from Nearest Neighbor Papadakis 
analysis can still be achieved if the traditional intra-location analysis is extended to the 
proposed across-location procedure. Between the two choices of (a) analyzing raw data 
(current industry practice) and (b) analyzing Papadakis adjusted data, the latter is shown to 
provide more precision in comparison of genotype means. The real data validation analyses 
discussed in this study have been done on corn yield only. However, it is expected that the 
proposed method would produce similar benefits for other crops and any other trait as long as 
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the trait under consideration has the tendency to respond explicitly to variation in spatial 
characteristics of the field. 
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Figure 1: Residuals before Papadakis adjustment 
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