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A COMPARISON OF SOME METHODS TO ANALYZE REPEATED MEASURES 
ORDINAL CATEGORICAL DATA 

by Yaobing Sui and Walter W. Stroup 
Department of Biometry, University of Nebraska, Lincoln, NE 68583-0712 

Abstract: Recent advances in statistical software made possible by the rapid development of 
computer technology in the past decade have made many new procedures available to data 
analysts. We focus in this paper on methods for ordinal categorical data with repeated measures 
that can be implemented using SAS. These procedures are illustrated using data from an animal 
health experiment. The responses, measured as severity of symptoms on an ordinal scale, are 
recorded for test animals over time. The experiment was designed to estimate treatment and time 
effects on the severity of symptoms. The data were analyzed with various approaches using 
PROC MIXED, PROC NLMIXED, PROC GENMOD, and the GLIMMIX macro. In this paper, 
we compare the strengths and weaknesses of these different methods. 

1. Introduction 

Consider an experiment in which three treatments are compared. There are r blocks of three 
animals each, formed using criteria relevant to the experiment. Within each block, one animal is 
assigned at random to each treatment. Animals are measured at "week 0," the time the treatments 
first take effect, and again at weeks 4 and 12. The variables measured include weight, presence or 
absence of disease symptoms, and severity of symptoms, classified as "worse," "no change," or 
"better." This type of experiment is called a repeated measures experiment. The focus of this 
paper is on repeated measures analysis of the last two types of data in the above list: categorical 
data that are either binary or ordinal. 

Repeated measures data, also known as longitudinal data, come from experiments in which 
observations are made on subjects at regular, planned times. These experiments have two or 
more treatments and are set up using familiar designs: randomized complete or incomplete block 
designs, if blocking is appropriate, row-column designs such as Latin Squares, when appropriate, 
or completely randomized assignment of experimental units to treatments when blocking is not 
required. Repeated measures designs are widely used throughout the life sciences. 

Repeated measures analysis is fairly well understood for normally distributed data, but less 
so for categorical data. However, recent developments in methodology and statistical computing 
software have greatly increased the number of tools available to categorical data analysts. The 
purpose of this paper is to review these tools, what we currently know of their advantages and 
disadvantages, and what we still need to learn about them. 

Regardless of whether the observations are normally distributed, or categorical, or have 
some other distribution, a general approach to repeated measures analysis based on the linear 
mixed model uses the following general form: 

observation = between subject systematic effects + between subjects random variation 
+ within subjects systematic effects + within subjects random variation 

For non-normal data, a function of the observation, e.g. the link function in a generalized linear 
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mixed model, often replaces the literal observation in the above model. 
In the example that begins this section, the between subjects systematic effects are for block 

and treatment, the between subjects random effects correspond to block x treatment random 
effects - i.e. the between subjects model is identical to the model one would use for a randomized 
complete block analysis of variance. The within subjects systematic effects are the main effects 
of time and the treatment x time interaction. Within subjects random variation - formally, block 
x time within treatment variation - is essentially whatever is left unexplained, i.e. variation 
among the measurements at different times on the same experimental unit not explain by 
systematic effects already specified. 

Formally, for normal errors, the model equation is: 
Y ijk =J..l+'t i +rj +b'j +W k +( 'tW) ik +e ijk , 

where Yijk is the observation on the ith treatment, jth block at the kth week (or, more generally, 
time), Il is the intercept, -rj is the ith treatment main effect, rj is the jth block effect, bij is the ijth 

block-treatment random effect, assumed i.i.d. N(O, (J~ ), wk is the kth time main effect, (-rW)jk is 

the ikth time-treatment interaction effect, and eijk is the ijkth within subject error. The eijk are 
assumed multivariate normal and, at least potentially, correlated. 

There are two main distinguishing features of repeated measures analysis: 
1. The primary objective is to see if changes over time are the same for each treatment, i.e. to 

assess the time x treatment interaction. 

2. The errors, eijk' are correlated. Specifically, let e ij '= [e ijl , e ij2 ' ••• , e ijK ] be the vector of 

within subjects errors, where K is the number of time periods observed. Then 

e ij - M V N (0, L) , where ~ is the covariance matrix reflecting the correlation structure. 

The vector e'= [e(\, ... ,e(" ... ,e;\,,,.,e;,l is thus distributed with a block-diagonal covariance 

matrix, i.e. e - M V N (0,/ ar ® L) , where a is the number of treatments. 

With normal errors, repeated measures analysis can be implemented with mixed model software 
such as PROC MIXED. The main issues in using PROC MIXED for repeated measures analysis 
involve choosing an appropriate covariance model for ~, realistically approximating the error 
degrees of freedom for various tests, and adjusting for potential bias of standard errors and test 
statistics that result from estimating the components of ~. Readers seeking more detail on the use 
of PROC MIXED for repeated measures analysis are referred to Littell, et. al. (1996). Carlin and 
Louis (1996) discussed covariance model selection issues. Kenward and Roger (1997) discussed 
standard error bias and degree of freedom issues and presented approximations now available 
with PROC MIXED. Guerin and Stroup (2000) presented an extensive simulation study 
documenting the small sample behavior of PROC MIXED under various options. 

Models with non-normal errors, including categorical data, require some modifications. To 
make these modifications more understandable, one can re-express the normal errors model in 
terms that make it more amenable to the required changes. Specifically, define the linear mixed 
model in terms of the distribution of the random models effects and in terms of the conditional 
distribution of the observations given the random model effects. Specifically, 

y lu - M V N ( X ~ + Z u , R) and u - M V N (0, G ) . 
The linear mixed model is a model of the conditional mean of the observation vector, y, given the 
random effects, u. For non-normal data, one adapts the generalized linear model approach used 
for categorical models such as logistic regression and log-linear models. Specifically, drop the 
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100 Kansas State University 

assumption of multivariate normality for ylu and use XP+Zu to model a function of the 
conditional mean, E(ylu), called the link function in generalized linear models. This results in the 
generalized linear mixed model (GLMM), widely discussed in the statistical literature of the 
1980's through the present. See, for example, Breslow and Clayton (1993). The GLMM is thus 
described as follows: 
1. The distribution of the random effects: u - MVN(O,G) 
2. The conditional distribution of the observations, y, given the random effects, u. For 

categorical data, this distribution is typically assumed Poisson (for log-linear models fit to 
contingency tables), binomial (for logistic models), or multinomial (for extensions of logit 
models when there are more than two categories). Quasi-likelihood methods allow the use 
of GLMM-based analysis even when one can only specify the expected value and variance 
of ylu rather than the distribution per se. 

3. The inverse link, E(Ylu) = h(XP+Zu). The inverse link may be the inverse of the link 
function, or the inverse link may be a set of functions, as is the case for some multinomial 
models. With the latter case, there is no one-to-one relationship between the conditional 
mean and the link. When a one-to-one relationship does exist, the GLMM can be described 
in terms of the link function, that is, ll=XP+Zu, where ll=g[E(Ylu)] is the link function. 

For the randomized complete block design with repeated measures described above, the GLMM 
would thus be 

Yl ilk =~+'t i +r} fbi} +CO k +( 'tCO) ik 

where llijk is the link function, g[E(Yi;k I bij )], and the terms of the right-hand side of the model are 
defined as they were with the linear mixed model given previously. Alternatively, one can use the 
inverse link E(Yjjkl bjj ) = h[,u+rj +rj +bij +Wk +(rw)jkl 

Several options exist in SAS for fitting categorical repeated measures models. PROC 
GENMOD can be used to fit log-linear models. For binomial data only, GENMOD can also fit 
certain GLMM's for repeated measures using the method of generalized estimating equations 
(Zeger, et. al. 1988), commonly referred to as GEE's. The GLIMMIX macro can also fit repeated 
measures GLMM's to binomial data. GLIMMIX uses a pseudo-likelihood approach (Wolfinger 
and O'Connell, 1993) that is similar to the quasi-likelihood approach described by Breslow and 
Clayton (1993), but somewhat more general. GLIMMIX is not as restrictive as the GENMOD 
GEE option in terms of the types of covariance models available. PROC NLMIXED, introduced 
in SAS Version 8, can estimate repeated GLMM's for multinomial data in addition to models for 
binomial data. It uses a maximum likelihood algorithm based on Gaussian quadrature. With 
some programming ingenuity, NLMIXED can fit a certain covariance matrices, although 
convergence can be an issue with more complex structures. 

The next section describes in more detail SAS-based methods useful for categorical 
repeated measures data, with a focus on ordinal data. Section 3 presents an example from an 
animal health experiment. Section 4 presents some tentative simulation results. These will be 
pursued in far more detail in work now in progress. 

2. Review of Methods 

Table 1 shows the data for the experiment described at the beginning of Section 1 in 
contingency table form. Each cell contains the number of animals in a given treatment x week x 
response category combination. This section describes the methods available in SAS to analyze 
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these data. 
The simplest categorical data analysis approach is to compute the Cochran-Mantel-Haenszel 

statistic to test treatment x response category association. A statistically significant result 
constitutes evidence of a treatment effect, assuming that the association does not change over 
weeks. SAS PROC FREQ can compute the Cochran-Mantel-Haenszel test. It can also compute 
the Breslow-Day statistic for no three-way treatment x response category x week association (i.e. 
no change in treatment x response association over weeks) if the treatment x response table is 2 
x 2, but not for the more general case, such as the 3x3 shown here. See Agresti (1996) for a more 
in depth discussion of the contingency table approach. 

Alternatively, the contingency table approach can be implemented using a log-linear model. 
For the above example, the log-linear model is 

10 g (A ijk ) =)..l + 't i + CD j + ( 'tCD ) ij +c k + ( 'tc ) ik + ( 'tCDc ) ijk 

where Aijk is the expected count of the ijkth treatment x week x response category combination, 
and r, cu, and c refer to treatment, week, and response category effects, respectively. The two 
effects of primary interest are the three-way association effects and, assuming the three-way 
effects, (TUJc);jk' are zero, the two-way treatment x response category effects. The test of 110: all 
(TUJc)ijk=O is equivalent to the Breslow-Day test, but more general because it is not restricted to 
2x2 treatmentxresponse category cases. The test of 110: all (TC)ij=O is equivalent to the Cochran­
Mantel-Haenszel test. PROC GENMOD can do all the required computations for the log-linear 
model. 

While the log-linear model is easy to compute, the contingency table approach may not take 
correlation among repeated measurements on the same experimental unit into account 
realistically. Agresti (1996) presents the logic of the contingency table approach when there are 
two times, but the logic does not necessarily extend to three or more times. Approaches using 
GEE's or other GLMM methods with more flexibility in specifying the covariance structure are, 
at least in theory, preferable. 

In SAS,for binary data only, GEE's can be implemented using the REPEATED option in 
PROC GENMOD. This approach is limited in that it assumes no random model effects. The 
model thus 

llijk =)..l+'t i +rj +CD k +( 'tCD) ik 

where llijk is usually either the logit or probit link, and 1", r, and curefer to treatment, block, and 

week effects, respectively. The logit link is defined as logit(1t ijk )=IOg( 1tijk ), where TI ijk is the 
1-1t ijk 

probability of the outcome of interest occurring for the ijkth treatmentxblockxweek combination. 

The probit link is defined as probit(TIijk)= <I> -1 (7t ijk) ,where <1>-1 is the inverse cumulative 

standard normal distribution. The observations are assumed to have a covariance matrix R=DPD, 

( 
7ti'k (1- 7t n )] 

where D=diag J J, and nijk is the number of Bernoulli trials observed on the ijkth 

nijk 

treatmentxblockxweek combination. The form of D given here is specific to the binomial 
distribution. In general, D a diagonal matrix whose elements are the variance functions with for 
each treatmentxblockxweek combination. P is a working correlation matrix. Working correlation 
matrices are not true correlation matrices, but their structure follows common correlated error 
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structures in linear mixed models, e.g. compound symmetry, first-order autoregressive, etc. See 
Diggle, et. al. (1994) for more about working correlation matrices and GEE's. Vonesh and 
Chinchilli (1997) provide a comprehensive discussion of modeling issues for repeated measures. 

Also for binary data only the GLIMMIX macro can implement GLMM's using a pseudo­
likelihood algorithm, essentially a generalized linear model adaptation of the mixed model 
algorithm used in PROC MIXED. This approach is similar to the GEE's in the REPEATED 
option in PROC GENMOD, except that GLIMMIX allows for separate random model effects in 
addition to the working correlation structure. For example, GEE's allow AR(1) correlation only, 
but no separate estimate of random between subjects effects, the bij effects in the above GLMM 
for the example in Table 1. This is important, because within subject correlation and between 
subject variation are often distinct effects. Guerin and Stroup (2000) demonstrated, for example, 
that failing to estimate separate AR(1) correlation and between subject error variance 
components can seriously impair control over type I error in repeated measures analysis of 
normally-distributed data. We expect this to be true for non-normal data as well. Hence, 
GLIMMIX should have an advantage over the GENMOD REPEATED option in these cases. 

The logistic and probit capabilities of GLIMMIX and GENMOD are mainly limited by the 
restriction of binomial data only. For multinomial responses, multi-category logit and probit 
models exists, but cannot be estimated by GENMOD or GLIMMIX. For ordinal data used in 
Table 1, one can fit cumulative logit or cumulative probit models. The cumulative logit model 
defines c-1 logits, where c is the number of response categories. For three categories, "worse," 
"no change," and "better", code the responses as -1, 0, and 1 respectively and define the two 
logits as 

cumulative logit for category "worse (-1)" = 1-1 = !Og( 7r-l J and 
1- 7r-l 

cumulative logit for category "no change (0)" = 10 = 109( 'IT_I + 'ITo 1 
1 - ( 'IT -1 + 'IT 0 ) 

where 1t_l' 1to, and 1tl are the probabilities of a -1,0, and 1 (worse, no change, or better) 
respectively. Then fit the models 

I_I =ll-I,ijk =)l-I +1: i +r; +bij +co k +(1:COLk to the logit l_j, and 

10 =11 O,ijk =Il 0 +'t i +rj +bij +(0 k +( 't(O) ik to the logit lo· 

The parameters of the model are defined as in previous GLMM's, except for the intercepts. The 

intercept ~-l is for logit (j and the intercept for logit lo is ~O=~_1+0, where 0>0. The inverse link 

functions that allow one to compute the probabilities are thus 

~ exp(~_I) 
71: I ~ 

- l+expCll_l) 

~ expC~o) eXPCl1_l) 
71:0 = l+expCl1 o) l+expCl1_l ) 

~ [exP(11 0 )] 

71:1=1- l+exp(l1 o) 

In standard categorical data analysis, this is also known as a proportional odds model. PROC 
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LOGISTIC can be used to estimate proportional odds models for fixed effects data with no 
repeated measures structure. However, for the mixed model shown here, PROC NLMIXED must 
be used. 

One can replace the logit link with a probit link. Specifically, 
11 ijk = J.! + 't i + r j +b ij +0) k +( 'to) ) ik 

where the various terms are defined as previously, and the inverse links are thus, 
1t-1,ijk = <I> (-11 ijk ) 

1t O,ijk = <l> ( 6 -11 ijk ) - <I> ( -11 ijk ) 

1t i,ijk =1-<1> (8-11 ijk ) 

Details for programming the analysis of this model with SAS PROC NLMIXED are given in the 
SAS/STAT Online Documentation for Version 8, Example 46.3. In some disciplines, such as 
animal breeding, the cumulative probit model is called a threshold model. 

For binomial data, GLIMMIX or NLMIXED can be used to compute GLMM's. The main 
disadvantage of GLIMMIX is that the pseudo-likelihood algorithm may yield biased estimates 
when nijk , the number of Bernoulli trials per experimental unit (treatmentxblockxweek 
combinations in the Table 1 example), is equal to 1 (see Breslwo and Clayton, 1993). Of interest 
in this paper is to determine if the computing algorithm used by NLMIXED is less prone to this 
sort of bias. On the other hand, although NLMIXED can accommodate models with correlated 
errors, such models may require programming heroics. Also, the NLMIXED algorithm is prone 
to convergence problems. While NLMIXED has a vast array of options to improve convergence, 
there is no guarantee that these will be effective. Finally, NLMIXED uses maximum likelihood 
estimation; there is no restricted maximum likelihood option. For normal-errors models, 
maximum likelihood variance component estimates are known to be biased downward, and the 
resulting test statistics that use these variance component estimates are biased upward. Type I 
error rates with maximum likelihood can be atrocious. If this is also true of GLMM' s, 
NLMIXED's usefulness may be seriously limited. 

Table 2 shows a summary of the pro's and con's of the various options available in SAS. 
Table 3 classifies data by number of response categories and by number of times at which 
repeated measures are taken and list the SAS PROC's that have suitable options. 

3. An Example of Results Using the Various Procedures 

Following the design format described at the beginning of Section 1, three treatments, a 
placebo and an experimental treatment applied at a low level (treatment 1) and a high level 
(treatment 2) were compared. The animals were dogs. A total of 199 dogs were observed. The 
placebo and treatment 2 were each observed on 67 animals; two dogs were lost from treatment 1 
and hence only 65 animals were observed. Each dog was observed at week 0, 4, and 12. Note that 
dogs were lost as the experiment proceeded, so the frequencies for the tables at weeks 4 and 12 
have lower counts. The response variables were house training, orientation, activity, sleep, 
response, greeting, and health. Table 1 shows the "house training" variable only. Each variable 
had three response categories: worse (-1), no change (0) , improved (1). For week 0, the response 
was relative to a pre-trial baseline measurement. 

The data were analyzed using the four methods described in Section 2. Table 4 shows the 
results for the variable "house training" of the tests for treatment, time (week), and treatment x 
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time effects obtained from the four methods. The house training is used simply to illustrate 
possible outcomes, similarities, and contradictions that may occur with these methods of 
analysis. 

3.1 Analysis using Log-linear Model 

This analysis used the model given in the discussion of log-linear models in Section 2. The 
following SAS statements generate the analysis: 

croc aenmod data=loalin; 
classes week trt ht: 
model count=weekltrtlht/dist=poisson link=log type1 type3; 

The tests for the treatment, week, and treatmentxweek effects are actually tests of associations 
between these effects and the response category. The tests of primary interest, therefore, are of 
Ho: all ('tc)ij=O (no treatment effect) and Ho: all ("C'WC\jk=O (no treatmentxweek interaction). From 
Table 4, the likelihood ratio X2 for treatmentxweek interaction is 3.81 with a p-value of 0.7029 
and the X2 for the treatment main effect is 15.86 with p=0.0032. Note that in theory there should 
be 4 dJ. for treatment and week (2 d.f. for response category x 2.d.f. for treatment or week) and 8 
dJ. for the treatmentxweek interaction. However, for week and treatmentxweek only 3 dJ. and 6 
d.f., respectively, are shown in Table 4. This is because at week 0, none of the animals on any of 
the treatments, including the placebo, had a response in category 1 ("better"). 

The 4 d.f. treatment main effect, i.e. treatmentxresponse category association, can be 
partitioned into single dJ. contrasts by adding the following statements to the above SAS PROC 
GENMOD statements: 

contrast 'ctl vs trt. -1 vs 0&1' trt*ht 4 -2 -2 -2 1 1 -2 1 1 . , 
contrast 'ctl vs trt. o vs 1 ' trt*ht 0 2 -2 0 -1 1 0 -1 1 : 
contrast ' trt 1 vs 2. -1 vs 0&1' trt*ht 0 0 0 2 -1 -1 -2 1 1 . , 
contrast 'trt 1 vs 2, o vs 1 ' trt*ht 0 0 0 0 1 -1 0 -1 1 . , 

For example, the contrast labeled (p v t) x (-1 v ~O) is the association between the difference 
between placebo and the average of the two treatments, and response category -1 vs categories 0 
and 1. This tests the difference between placebo and the two treatments with respect to the 
likelihood of dogs getting worse versus not getting worse. The X2 value is 9.23 and the p-value is 
0.0024. The other contrasts forming an orthogonal set are also shown. They indicate that the only 
significant component of the treatment x response category association is the contrast just 
described. 

3.2 Analysis using GEE 

GEE analysis uses the REPEATED option of GENMOD, which requires binary data. For 
this example, the "no change" and "better" categories were combined, so the binary response 
became "worse" versus "not worse." The following SAS statements were used to compute the 
analysis: 
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PROC GENMOD DATA=binarv; 
class animal trt week: 
model ht= trtlweek Idist=binomial link=logit type3; 
repeated subject=animal(trt)/type=exch; 

The model corresponded to the GEE analysis in Section 2 with a logit link and a compound 
symmetry working correlation matrix. 

Obviously, some information was lost relative to not combining these response categories. 
However, for the treatment effect on worse vs. not worse, the GEE analysis showed results 
similar to the log-linear model: a non-significant treatmentxweek interaction (p=OA085) and a 
significant treatment main effect (p=O.0174). 

3.3 Analysis using GLIMMIX 

This analysis used the binary GLMM as given in Section 2 with a logit link and a between 
subjects error variance. The following SAS statements were used: 

%include 'c:\Proaram Files\SAS Institute\SAS\V8\Glmm800.sas'; 
%Glimmix (data=binarv1. orocopt=method=reml, stmts=%str ( 

class animal trt week; 
model ht = trtlweek: 

random animal(trt);), 
error=binomial, 
link=logit) ; 

105 

For normal errors models, compound symmetry and between subjects random model effect result 
in the same covariance structure, but this is not true for generalized linear mixed models. As with 
the GEE analysis, the binary worse vs. no worse response variable was used. The results were 
similar: no significant treatmentxweek interaction (p=O.3341) and a significant treatment main 
effect (p=O.0083). Note that GLIMMIX uses an approximate F-test rather than a X2 test. 

3.4. Proportional odds model using NLMIXED 

This analysis used the cumulative logit, or proportional odds, model with a random between 
subjects error effect as described in Section 2. The following SAS statements were used: 

data NLMX binary: set binary: 
t1=(trt='1'): t2=(trt='2'): t3=(trt='3'); 
w1=(week=4): w2=(week=12); w3=(week=0); 

oroc nlmixed data=week4 12: 
oarms bO=O a1=0 a2=0 b1=0 ab11=0 ab21=0 s2w=1 s2s=1 i1=1; 
bounds i1 > 0: 
eta = bO + a1*t1 + a2*t2 + b1*w1 + ab11*t1*w1 +ab21*t2*w1 + wpe; 
if (ht=-1) then z = exp(eta)/(1+exp(eta»; 
else if (ht=O) then 

z = exp(i1+eta)/(1+exp(i1+eta»- exp(eta)/(1+exp(eta»; 
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else z = 1 - exo(i1+eta)/(1+exo(i1+eta»; 
if (z > 1e-S) then 11 = log(z); 
else 11 = -1e100: 
model ht - aeneral(ll): 
random woe - normal(O.s2w) 

subiect=animal: 
contrast 'trt' a1. a2: 
contrast 'week' b1. b2: 
contrast 'trt*week' ab11, ab12, ab21, ab22; 

Kansas State University 

As with GLIMMIX, NLMIXED computes approximate F-statistics. For these data, the analysis 
shows no significant treatmentxweek interaction (p=0.4549) and also no significant treatment 
effect (p=0.1838). These results are distinctly more conservative than the other three methods. 

Note that all four methods showed a highly significant time (week) effect. For these data, 
the important discrepancy was among the tests of treatment effect: all analyses except the 
proportional odds model showed a significant treatment effect. Also, a theoretically inelegant, 
but often used analysis is to ignore the fine points of the multinomial distribution and use -1, 0, 
and 1 as if they were normally distributed data and compute the analysis directly with PROC 
MIXED. For these data, the conclusions were the same for treatmentxweek interaction and 
treatment main effect as obtained with the log-linear model, GEE, and the binary GLMM using 
GLIMMIX. The linear mixed model is sufficiently robust that in many cases it leads to the same 
conclusions as procedures explicitly for categorical data. 

4. A Tentative Simulation Study 

A comprehensive simulation study is in progress. This section reports the basic approach to 
the study and some highly tentative results. Thought tentative, the authors regard the results as 
sufficiently interesting to those who work with categorical data to warrant reporting. 

Three types of simulated binary data were generated. Each data set had two treatments and 
twenty animals per treatment. The between subjects design was a CRD. For each animal, there 
were four repeated measures. All data sets assumed no treatment or time effects. The goal was to 
measure type 1 error rates and the precision of the estimates of treatment and time effects. The 
types of data were determined by the probability of a "success" (1t) and by the variance-working 
correlation structure. The three types were: 
1. 1t = D.1and covariance structure=CS 
2. 1t =0.5 and covariance structure=CS 
3. 1t = 0.5 and covariance structure=AR(l) 
For the types with 1t = 0.5, 500 sets of data were simulated. For the type with 1t=0.1, 100 sets of 
data were simulated. Each data set was analyzed using the four methods described in Section 2. 
For NLMIXED, the model was a generalized linear mixed model with a logit link. Hence, the 
GLIMMIX and NLMIXED computed analyses on the same model and differ only in the 
computing algorithm (pseudo-likelihood for GLIMMIX, Gauss-Hermite quadrature for 
NLMIXED). GEE differed from the GLIMMIX and NLMIXED models in that only a working 
correlation structure could be used rather than the random between subjects error effect plus the 
working correlation. 

Table 5 shows type I error rate based on type3 tests of fixed effects using the 1t=0.5, AR(1) 

Conference on Applied Statistics in Agriculture
Kansas State University

New Prairie Press
https://newprairiepress.org/agstatconference/2001/proceedings/9



Applied Statistics in Agriculture 107 

simulated data. Clearly, treatmentxtime interaction, treatment effect, and time effect were under­
rejected using PROC NLMlXED. Treatmentxtime interaction and time main effect were also 
under-rejected using the log-linear model approach implemented by PROC GENMOD. On the 
other hand, the log-linear model tended to over-reject for the tests treatment effects. These results 
reflect the log-linear model's failure to adequately account for between-subject versus within­
subject variation. Overall, GEE and GLIMMIX did a good job in that their observed rejection 
rates were close to the nominal (X-levels for all tests. For the log-linear model, GEE, and 
GLIMMIX analyses all 500 sets of data converged. With NLMlXED, 32 of 500 sets of data did 
not converge. 

Table 6 shows the average of parameter estimates and their sample variance. As noted 
previously the treatment, time, treatmentx time parameters were set to zero when the data were 
simulated. For the 1t=0.5 data, the intercept parameter was also O. The average parameter 
estimates are very similar for the four methods. The sample variance for each parameter 
estimate, while large for all methods, was smaller for GEE than for GLIMMIX and NLMIXED. 

Simulation results for covariance parameter estimates are only shown for NLMIXED. The 
AR(I) parameters p and a2 were set to 0.75 and 1, respectively when simulating the data. The 
estimated p and a2 are 0.66 and 1.15, respectively, very close to the values used for simulating 
the data. 

5. Discussion and Conclusions 

There is much we do not yet know about the analysis of categorical data analysis with 
repeated measures. Except for the log-linear model, the procedures discussed here are adaptations 
of linear models for repeated measures data used for normally-distributed data. The main 
attraction of this approach is the ability to assess treatment and time effects and to characterize 
between- and within-subject variability in ways that are familiar with other response variables. 
GLMM methods place all response variables, categorical or otherwise, under a common 
methodology. 

While the models have much appeal, the computational methods are just in their beginning 
stages of development, and there is much to understand. For the example data set, all of the 
methods except the proportional odds model computed using NLMlXED would have led to 
similar conclusions. The tests computed by the proportional odds model were noticeably more 
conservative. This observation was borne out by the simulation results. Though tentative, 
NLMIXED yielded a substantially lower rejection rate than either the nominal (X-rate or the other 
procedures. The expected downward bias in variance estimates and resulting upward bias in test 
statistics seen in linear mixed models was not evident in the simulations discussed in Section 4. 
The log-linear model analysis, on the other hand, showed substantial departures from the nominal 
(X-rates consistent with its not taking between- versus within-subject error into account. The GEE 
and GLIMMIX procedures performed rather similarly, although GEE did somewhat better 
despite the fact that it modeled between-subjects variation indirectly through a working 
correlation matrix, rather than directly estimating the variance component is GLIMMIX does. 
This simulation did not include autocorrelated within-subjects effects in conjunction with 
between-subject variation of substantial magnitude, so we do not know how GEE and GLIMMIX 
will compare with more complex covariance situations. At this point, we conclude that trying to 
make a definitive recommendation about how to analyze categorical repeated measures data is 
problematic. 
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Clearly, more work it needed. Further simulations will consider a wider variety of 
covariance situations and include multinomial responses as well. More refined methods of 
analysis, including GEE2 and various Monte Carlo methods exist and more are being developed. 
As yet, these are not available in SAS, but software evolves quickly. These methods need to be 
assessed for their advantages relative to what is currently SAS-accessible, or available in some 
form equally usable to consultants and subject-matter researchers. Until this happens, questions 
about how best to analyze categorical repeated measure data will continue to be controversial. 
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Table 1. Example of Repeated Measures Ordinal Categorical Data in Contingency Table Form 

Week 0 Week 4 Week 12 

Response category ! Trt ~ Plac Trt 1 Trt 2 Plac Trt 1 Trt 2 Plac Trt 1 Trt 2 

Worse 60 59 54 14 5 3 13 10 7 

No Change 7 6 13 34 33 38 25 17 21 

Better 0 0 0 15 22 17 17 28 21 
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Table 2. Advantages and Disadvantages of SAS Procedures 

Log-linear Model 
Advantages 

1. East to implement using PROC GENMOD. 
2. Can be used with any number of response categories 
3. Response category may be ordinal or nominal 

Disadvantage 
1. Unrealistic modeling of within subject correlation for ~3 times of measurement. 

GEE 
Advantages 

1. Can be implemented using REPEATED option in PROC GENMOD 
2. Offers choice of plausible working correlation structures when # times ~3. 

Disadvantages 
1. Limited to binary (2 response category) case 
2. Cannot model between subject error variance and working correlation separately 

GLIMMIX 
Advantages 

1. Very flexible in modeling variation, e.g. permits separate estimates of between 
subject error variance and working correlation 

2. Ease of syntax: similar to PROC MIXED 

Disadvantages 
1. Limited to binary case. 

111 

2. Pseudo-likelihood algorithm vulnerable to bias when N (number of Bernoulli trials 
per experimental unit) is small, especially when N=1. 

NLMIXED 
Advantages 

1. Can be used for binary or multinomial data 
2. Can be programmed to account for between subject error variance and working 

correlation separately 
3. Gauss-Hermite quadrature less susceptible to bias when N small 

Disadvantages 
1. Maximum likelihood only. ML estimates of variance components known to be 

downward biased and hence test statistics biased upward. 
2. Prone to convergence problems. 
3 No CLASS statement makes analysis of treatment and time effects less convenient. 
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Table 3. Applicability of SAS Procedures by Response Type and Number of Measurement 
Times 

Response Categories --+ 

Number of Measurement 
Times 1 

2 

2 

ALL 

GEE (GENMOD) 
GLIMMIX 
NLMIXED 

:<:3 

Log-linear Model 
(GENMOD) 

NLMIXED 

NLMIXED 
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Table 4: Type 3 Tests of Fixed Effects for Analysis of Example Data, House Training 
Response 

Chi-
Method Source DF Sguare Pr> ChiSg 

Log-Linear trt 4 15.86 0.0032 
(p v t) x (-1 v ;:: 0) 1 9.23 0.0024 
(pvt)x(Ov 1) 1 2.66 0.1028 
(tl v t2) x (-1 v ;::0) 1 1.76 0.1821 
(tl v t2) x (0 v 1) 1 2.64 0.1042 

week 3 200.71 <.0001 
week*trt 6 3.81 0.7029 

Working COIT trt 2 8.10 0.0174 
(GEE) week 2 147.29 <.0001 

trt*week 4 3.98 0.4085 

Method Source NDF DDF F Value Pr>F 
BSE+ W COIT trt 2 196 4.92 0.0083 
(GLIMMIX) week 2 334 184.02 <.0001 

trt*week 4 334 1.15 0.3341 
BSE+ W COIT trt 2 198 1.71 0.1838 
(NLMIXED) week 2 198 25.04 <.0001 

trt*week 4 198 0.92 0.4549 
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Table 5. Observed Rejection Rates for Time and Treatment Main Effects and Treatment 
xTime Interaction at a=0.01,0.05,and 0.1 
AR(1) data, TI=0.5 

Analysis* 

Log - Linear 
(GENMOD) 

GEE 
(GENMOD) 

Random BSE 
+AR(1) 

Nominal 
alpha** 

reject_10 
reject_05 

reject 01 
reject_10 
reject_05 
reject 01 
reject_10 
reject_05 

N 

500 
500 

500 
500 
500 
500 
500 
500 

Observed Rejection Rate 
time trt time*trt 

0.070 0.218 0.044 
0.024 0.144 0.016 

0.002 0.054 0.002 
0.116 0.114 0.102 
0.068 0.052 0.046 
0.010 0.010 0.002 
0.144 0.098 0.128 
0.086 0.040 0.086 

reject 01 500 0.022 0.006 0.012 _(GLIMMIX) __ ~~~~ __ ~== ______ ~== ______ -=~=-____ ~~ 
Random BSE 

+ AR(1) 
(NLMIXED) 

reject_10 
reject_05 
reject_01 

468 
468 
468 

* Type of Analysis as described in Section 2 
BSE denotes "between subjects error" 

0.036 0.034 0.038 
0.021 0.015 0.015 
0.011 0.006 0.009 

GEE denotes "Geneeralized estimating equations" with AR(l) working correlation matrix 

** "Reject_IOU denotes nominala-level=O.lO. Nominal a levels are 0.10,0.05, and 0.01 respectively 
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Table 6. Average of Parameter Estimates, AR(1) data, 1t=0.5 
1..1.=0, trt effects=O, time effects=O, trtxtime interaction effects=O, p=0.75, 0 2 =1 

method parameter N Mean Sample Variance 

GEE - GENMOD ~ 500 0.0033085 0.2197468 

TRT 500 -0.0514023 0.4127234 

TIME 500 0.0087798 0.3293952 

TRT*TIME 500 0.0381633 0.6515009 

GLIMMIX ~ 500 0.0038056 0.2822495 

TRT 500 -0.0576805 0.5290325 

TIME 500 0.0018012 0.4432861 

TRT*TIME 500 0.0439123 0.8719174 

NLMIXED ~ 468 -0.0081427 0.2932152 

TRT 468 -0.0524051 0.5110301 

TIME 468 0.0223616 0.4292667 

TRT*TIME 468 0.0187420 0.7501278 

P 468 0.6560738 0.1988518 
(52 468 1.1496017 0.7700970 
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