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ANOTHER LOOK AT NEW GMA ORTHOGONAL ARRAYS 

YINGFU Ll and TIMOTHY WITTIG 

South Dakota State University 

Abstract 

Non-regular factorial designs have not been advocated until last decade clue to 
their complex aliasing structure. However, some researchers recently found that the 
complex aliasing structure of non-regular factorial designs is a challenge as well as an 
opportunity. Li, Deng, and Tang (2000) studied nOll-regular designs and generated a 
collection of non-equivalent orthogonal arrays using a generalized miniumm aberration 
criterion, proposed by Deng and Tang (1999). Some new orthogonal arrays they found 
cannot be embedded into Hadamard matrices. In this paper, we study these orthogonal 
arrays from the angle of projection. vVe show that these new GMA orthogonal arrays 
are also superior to the top designs obtained from Hadamard matrices when evaluated 
hy the criteria of model estimability and design efhc:ienc:y. 

}(e:1J WOTYiS and phmses: non-regular design, gcncrajizccl minimum aberratiun, model cstima­
IJility, design efficiency, Hadamard matrices, orthogona.l alTays. 
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1 Introduction 

Two-level fractional factorial designs are most commonly used in practice. These designs can 
be generally classified into two broad categories: regular designs and non-regular designs. 
Regular designs, found in most classic textbooks on experimental designs, have two charac­
teristics: their run sizes must be the power of 2 and their confounding patterns among the 
effects are completely determined by their defining relations. In contrast to regular designs, 
non-regular designs have flexible run size of multiples of 4, but their confounding patterns 
are very complex. Besides the advantage of flexible run size, non-regular designs have been 
showed that their complex confounding relations can be exploited to detect some interaction 
effects, which would otherwise have been missed if regular designs had been used. 

Non-regular designs used in practice and research are almost all chosen from Hadamard 
matrices due to their good properties. A Hadamard matrix H of order n is an n x n matrix 
with entries -1 and + 1 such that the product of the transpose of Hand H itself is n 
times the identity matrix. However, two issues naturally arise in association with selecting 
fractional factorial designs from Hadamard matrices. First, there exist fractional factorial 
designs that cannot be embedded into Hadamard matrices. Vijayan (1976) studied the 
embedding problem of Hadamard matrices and showed that a fractional factorial design can 
be embedded into a Hadamard matrix if there are at most four missing columns. He further 
conjectured that if the number of factors Tn 2: n/2 - 1, then the fractional factorial design 
can be embedded into a Hadamard matrix. However, counter-examples in Li, Deng and 
Tang (2000) disproved his conjecture. Second, the complete set of non-equivalent Hadamard 
matrices is only available for order 28 or lower. In fact, for orders 16, 20, 24, and 28, the 
numbers of non-equivalent Hadamard matrices are 5, 3, 60, and 487, respectively (Spence, 
1995). By equivalent Hadamard matrices (or designs), we mean that one Hadamard matrix 
(or design) can be obtained from the other by permuting rows, permuting columns, switching 
the signs of a column, or a combination of these ways. It is not difficult to see that it is 
impractical to examine all of these non-equivalent Hadamard matrices even if the complete 
set were available for higher order. 

Li, Deng and Tang (2000) studied fractional factorial designs obtained from orthogo­
nal arrays and found that some top fractional factorial designs, ranked by the criterion of 
generalized minimum aberration, cannot be embedded into Hadamard matrices. By an or­
thogonal array with two-level "+1" and "-1", we mean an n x Tn matrix with entries +1 
and -1 such that the occurences of four level combinations (+1,+1), (+1,-1), (-1,+1) and 
(-1,-1) in every two columns of the matrix are the same. If we mathematically treat each 
column as a vector, then the dot product of any two column vectors in an orthogonal array 
is zero. An orthogonal array can be regarded as a (fractional) factorial design consisting of 
n treatment combinations with Tn factors. Therefore, we will speak of orthogonal arrays and 
factorial designs interchangeably in this paper. 

In this paper, we study those top orthogonal arrays that cannot be embedded into 
Hadamard matrices from the angle of projection. We show that these new orthogonal arrays 
are superior to the top designs obtained from Hadamard matrices when further evaluated 
by the criteria of model estimability and design efficiency. For simplicity, we will focus on 
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designs with 20 runs. Section 2 provides a brief review of design selecting criteria such as gen­
eralized minimum aberration and its related confounding frequency vector, design efficiency, 
and model estimability. The results of comparing the new designs with those obtained from 
Hadamard matrices are given in Section 3. 

2 Design selecting criteria 

One important problem in (screening) experimental designs is how to choose a good design 
given the number of factors m and the run size n. For regular factorial designs, Box and 
Hunter (1961) introduced resolution, a concept that compares and assesses designs by the 
occurences of worst confounding. Fries and Hunter (1980) proposed a minimum aberration 
criterion to further distinguish two designs with same resolution by using the concept of 
the word-length pattern. The run size of a regular design must be a power of two and the 
defining relations of the regular design completely specify the aliasing pattern. 

Non-regular factorial designs have a complex aliasing structure but a flexible nm size of 
multiples of 4. Some researchers recently have found that the complex aliasing structure of 
non-regular factorial designs is a challenge as well as an opportunity. For example, Hamada 
and Wu (1992) showed that the complex aliasing structure of Plackett and Burman designs 
can be exploited to detect some interaction effects that would otherwise have been missed if 
regular factorial designs had been used. 

In order to systematically compare and assess non-regular designs, Deng and Tang (1999) 
proposed a generalized minimum aberration criterion, a natural generalization of the tradi­
tional minimum aberration. This criterion is based on the confounding frequency vector, a 
concept that generalizes the word-length pattern for regular designs. 

Suppose D is a two-level (regular or non-regular) factorial design with n runs and m 
factors. This design D can also be regarded as a set of Tn columns D = {Cl' ... , err.}. For 
any subset of D, say, 8 = {VI"'" vd, define 

n 

Jk (8) = I L Vii ... Vik I, 
i=1 

where Vij is the it" component of column vector Vj. For example, assume we select 3 columns 
'Ih = {+1, +1, +1, +1, -1, -1, -1, -IP, V2 = {+1, +1, -1, -1, +1, +1, -1, _1}t, and V3 = 
{+1, -1, + 1, -1, +1, -1, +1, _1}t from a design D with 8 runs as a subset 8 = {VI, V2, V:3}, 

where d is transpose of vector c. Then the three-factor-interaction column VI . V2 . V:3 = 

{+1, -1, -1, +1, -1, +1, +1, _1}t is the elementwise product of VI, V2, and V.3, that is, the 
first element "+1" of VI . V2 . V:3 is the product of the first elements of VI, V2, and V:3, and 
second element "-I" of VI . V2 . V3 is the product of the second elements of VI, v2, and V3, 

and so on. And then J3 (8) is the absolute value of the sum of 8 elements of the interaction 
column VI . V2 . V3, so J3 (8) = 0 in this case. 

It is easy to check that for regular factorial designs Jk (s) equals either 0 or n, with 0 
corresponding to orthogonality and n to full aliasing. However, for non-regular factorial 
designs Jk(s) is between 0 and n. In fact, Deng and Tang (1999, 1998) showed that if n is a 
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multiple of 8, then lk (s) is also a multiple of 8; and if n is a multiple of 4 but not 8, then ,h (s) 
is a multiple of 8 for k = 1 aT 2(mod4) and a multiple of 8 plus 4 for k = 0 aT 3(mod4). 

119 

We list all possible values of lk(s) in decreasing order and denote the frequency distrib­
ution of lk(s) for all possible s out of k columns in D by [fkl, fk2,"', .h'l+l]' where .i'kj is 
the frequency of lk(s) taking the /h largest possible value and g = [n/S], the integer part of 
n/S. Since LJ~i .i'kj = C(m, k), the number of combinations of choosing k out of m factors, 
it insufficient to consider the first g entries. For example, for a design with 20 runs, 1:3 (s) 
takes only three possible values 20, 12, 4; in this design there are totally 20 (the number of 
combinations of choosing 3 out 6) possible ways to select out 3 columns; and each possible 
three-column corresponds to one .h(s) equal to 20, or 12, or 4. Therefore, we only need to 
record the frequencies of J.3(S) equal to 20, or 12. Let 

The confounding frequency vector of D is given by 

F(D) = [F3 (D), F4 (D),· . " Fr,,(D)]. 

since F1(D) = F2(D) = 0 due to the orthogonality among columns of design. 
For any two designs Dl and D2 with the same run size and the number of factors, let T be 

the smallest integer such that F,.(Dd =f. F,(D2). Design Dl is said to have less generalized 
aberration than design D2 if F,.(D 1 ) < Fr·(D2), which are compared element by element from 
the first entry to last and the component of F,.(D 1 ) gets small value first. A design is said 
to have generalized minimum aberration (GMA) if there exists no other design having less 
generalized aberration. Clearly this criterion reduces to the traditional minimum aberration 
for regular designs. However, the generalized minimum aberration criterion can compare 
and assess any two factorial designs no matter whether they are regular or non-regular. 

As we know, a generalized minimum aberration design has the "smallest" confounding 
frequency vector. One simple way to construct the generalized minimum aberration design 
is to completely search all possible designs and then calculate and compare their confound­
ing frequency vectors. For example, Deng and Tang (1998) studied designs constructed 
from Hadamard matrices of orders 12 and 16, and Deng, Li and Tang (2000) assessed and 
compared designs constructed from Hadamard matrices of orders 16, 20 and 24. 

In Hadamard matrices, not only any two columns but also any two rows are orthogonal. 
This property may prevent Hadamard matrices from generating some good designs since 
the main requirement of factorial designs is the orthogonality among columns. Therefore, 
Li, Deng and Tang (2000) turned to construct designs directly from orthogonal arrays and 
found some top designs indeed cannot be embedded into Hadamard matrices. 

Using a main effects plan based on a given number of factors and run size, the selected 
design usually is projected onto low dimension after screening out unimportant factors. It 
is hoped that the selected design has some other optimal properties, such as, the projected 
design has higher design efficiency and better model estimability. 

For a design D with n runs and m factors, we can check the properties of X t x X, 
where X = [Xl: X 2 ], Xl is the original design D and X 2 is the n x f matrix given by 
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f two-factor-interactions. The model estimability of a design D can be measured by the 
vector (II(D), I 2(D), ... , IF(D)), where If (1::::: f ::::: F), is the number of times that X t x X 
is singular when the added f two-factor-interactions go through all K = C(F,.f) possible 
cornbination choices, and F = C(m, 2) is the total number of possible two-factor-interactions 
from design D. 

For example, assume that D is a design with 4 factors, that is D = Xl = {CI' C2, C3, C4}. 
There are totally F = 6 two-fact or-interactions from design D. If we want to consider the 
model with four main effects and f = 2 two-factor-interactions, that is, Y = ;JlCl + ;J2C2 + 
;J3C3+;J4C4+;Jsdl +;J6d2, where d1, d2 are two different two-factor-interactions, then there are 
totally K = 15 (the number of combinations selecting 2 out of 6 total two-factor-interactions) 
different models and X 2 = {d 1 , d2 }. Therefore, X = [Xl, X 2 ] and Y = X;J. By least square 
method, we obtained the estimate of;J as (xt X)-l xty if X t X is non-singular. On the other 
hand, if X t X is singular, we cannot obtained the estimate of;J since (X t X)-I does not exist. 
We use h(D) to record the number of times that xtx's are singular among the 15 models. 
Therefore, if If = 0, then the design can clearly estimate any f two-factor-interactions. 

Efficiency of a design D can be measured by D f = 2:X2 det( X;,X) / K, where (1 ::::: f ::::: F), 
X 2 goes through all K = C(F,.f) possible models when f two-factor-interactions are added 
into the main effects model. 

In next section, we will compare and assess the top designs with 20 runs that cannot be 
embedded into Hadamard matrices and those obtained from Hadamard matrices. We show 
that these new GMA designs are in general superior to the designs obtained from Hadamard 
matrices when further evaluated by the criteria of model estimability and design efficiency. 

3 Results 

Li (2000) provided catalogs of orthogonal arrays with many combinations of different run 
sizes and the number of factors. For simplicity, we just list several designs that we use in 
this paper in the following Table 1, where label m.k means that the orthogonal array with 
20 runs has m factors and is ranked kth in the catalog of non-equivalent orthogonal arrays 
with 20 runs and m factors, and the star * by the rank indicates that the design cannot 
be embedded into Hadamard matrices of order 20. Based on the discussion in Section 2, 
for designs with the run of n = 20, J3 , J4 and h take possible values 20, 12, 4. But we 
only record the frequencies of values 20 and 12 in F3 , F4 and F7 . However, it is proved that 
Jk i- 20 and Jk i- 16 for n = 20. Therefore, in this section, F.3, F4 , and F7 are the frequencies 
of J3 = 12, J4 = 12, and h = 12 in the confounding frequency vector, respectively. For 
similar reason mentioned above, Fs and F6 are the frequencies of ,h = 8 and J6 = 8 in the 
confounding frequency vector, respectively. 

Designs 6.h and 7.h are generalized minimum aberration designs by the GMA criterion. 
For convenience of recording, we code each run of a design as a binary number by changing 
level "-I" as 0 and keeping level "+1" as 1. We then convert these binary numbers into 
common numbers and sort them from smallest to largest. Therefore, a design with n runs 
and 'm facotrs can be represented by a sequence of n common numbers between 0 and 2m - 1. 
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The integer codes for designs in Table 1 are given in Table 2. 
Except for designs 6.h, 6.2*, and 7.h, other designs in Table 2 can also be obtained 

from Hadamard matrices of order 20. Designs 6.3 and 7.2 are best designs with 6 or 7 
factors obtained from Hadamard matrices, according to GMA criterion. As we know that 
there are three non-equivalent Hadamard matrices of order 20 (Hall, 1965). For convenience, 
we list the column numbers for the designs based on the third Hadamard matrix HM3 (see 
appendix) in Table 3 due to the fact that a complete catalog of non-equivalent designs from 
three non-equivalent Hadamard matrices can also be obtained from HM3. 

Let us take a look at each design from the point of views of design efficiency and model 
estimability. First, we calculate the design efficiency when f two-factor-interactions are 
added into the main effects model. When the added f two-factor-interactions go through all 
possible models, we get the (average) design efficiency recorded in Table 4. For convenience, 
we only record the design efficiencies for models with 1 to 6 two-factor-interactions. Secondly, 
for simplicity, we only record the largest f such that If = 0 as I. I tells the maximum number 
of two-factor-interactions the design can clearly entertain. For example, we select column 1 
to 6 from HM3 as a design (6.34). We add any 3 two-factor-interactions into the main effects 
model and there are 455 possible models with 3 two-factor-interactions and 6 main effects. 
This design's efficiency is D3 = 0.1408754 and its I = 3 indicates each of 455 models can 
clearly estimate all 6 main effects as well as 3 two-factor-interactions. Table 4 tells us that 
the designs 6.1*, 6.2*, and 7.1* have higher design efficiencies than other designs. The model 
estimabilities do not follow the ranking specifically in Table 4. For example, the design 6.1 * 
can clearly estimate at most 6 two-factor-interactions, while design 6.4 can clearly entertain 
np to 11 two-factor-interactions. However, if we check them from the whole catalog of designs 
with same runs and same number of factors, the model estimabilities in general match with 
the GMA ranking. That is, higher ranking design usually has better model estimability. For 
example, if we happen to select first 6 or 7 columns from HM3 (after dropping column 0) as 
a design with 6 or 7 factors, they are lowest ranking designs (6.34 and 7.71) and they have 
lowest design efficiencies and worst model estimability. 

If not every main effect is significant, we usually project the design onto a lower dimension. 
We wish to select a design with the property that the projected designs also ha.ve the high 
design efficiency and good model estimability. Design efficiency and model estimability of 
projections from 6 factors onto 5 factors and 4 factors are recorded in Table 5 and Table 6, 
respectively, where freq indicates the number of projections having the same design efficiency 
and model estimability. From Tables 5 and 6, we see that designs 6.1 * and 6.2* ha.ve higher 
design efficiencies and better model estimability. For example, the projections onto 5 columns 
from designs 6.1 * and 6.2* have almost uniformly higher design efficiencies, while there are 
at least two out of six projections from other designs having lower design efficiencies. Any 
projection onto 4 columns can estimate all 6 two-factor-interactions plus 4 main effects. 
All 15 projections onto 4 columns from designs 6.1 * and 6.2* have uniformly highest design 
efficiencies, and projections from other designs may have much lower design efficiency. Again, 
if we happen to choose the first 6 columns as a design (6.34), their projections always have 
lowest design efficiency and worst model estimability. 

Therefore, if we are mainly interested in main effects, pIns a few two-factor-interactions, 

Conference on Applied Statistics in Agriculture
Kansas State University

New Prairie Press
https://newprairiepress.org/agstatconference/2001/proceedings/10



122 Kansas State University 

and design efficiency is a major concern; or if we know that not all 6 factors are significant, 
then designs 6.1 * and 6.2* are the best candidates. On the other hanet if the design efficiency 
is not a problem (e.g. some industrial experiments can be controlled to have little error), 
and we are interested in all main effects and as many as possible two-factor-interactions, 
then design 6.4 is a better choice. 

For designs of 20 runs and 7 factors, we can draw a very similar conclusion in that 
GMA design 7.1 * has higher design efficiency and better model estimability. Design 7.1* is 
a better candidate for an experiment in which we are interested in main effects and two­
factor-interactions as well as design efficiency. 

4 Summary 

In this paper, we study top orthogonal arrays that cannot be embedded into Haclamacl 
matrices from the angle of projection. We show that these new GMA orthogonal arrays are 
also superior to the best designs obtained from Hadamard matrices when their projections 
are further evaluated by the criteria of model estimability and design efficiency. 
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Appendix 

Table l' Rankings and Confounding Frequency Vectors for designs with 20 runs 
Hank h 1'4 1'5 1'6 1'7 
6.1* 0 0 4 1 
6.2* 0 0 5 0 
6.3 0 1 2 1 
6.4 0 1 3 0 
6.5 0 2 1 0 
6.42 4 3 3 0 
7.1* 0 2 11 1 0 
7,2 0 3 7 3 0 
7.3 0 3 9 1 0 
7.4 0 4 5 3 0 
7.5 0 4 7 1 0 
7.71 7 7 9 3 0 

Table 2: Designs and their corresponding codes 
Design Code for Kun 
6.1'" 1 278 14 19 20 25 28 31 36 3741 42 4748 51 545861 
6.2* 0378 14 18 21 252831 36 3741 43 4648 51 54 58 61 
6,3 o 1 2 12 15 21 22 26 27 29 37 39 40 43 46 48 51 54 57 60 
6.4 o 1 2 13 14 20 23 25 26 31 36 39 41 43 46 50 51 53 56 60 
6.5 o 1 2 13 14 20 23 25 27 30 37 38 40 43 47 50 51 53 56 60 
6.42 3 3 4 4 8 23 26 26 29 29 39 41 41 46 46 48 49 50 52 63 
7.1 * 251516293841515662737483849496103108117123 
7.2 1 2 4 27 28 41 46 50 55 61 75 77 80 87 94 100 103 106 113 120 
7.3 1 2 42728404751 5461 747781 8794 101 102 107 112 120 
7.4 1 2 426 29 41 47 51 54 60 75 76 80 87 95 101 102 106 113 120 
7,5 04725 26 42 45 51 5461 75 76 81 87949798 111 116 120 
7.71 6 6 9 9 16 47 53 53 58 58 79 83 83 92 92 97 98 100 104 127 
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Table 3: Designs and their corresponding columns from HM3 
Design Corresponding columns 
0.;) 
6.4 
6.5 
6.42 
7.:2 
7.3 
7.4 
7.5 
7.71 

Kank 
6.1'1' 
6.2* 
6.3 
6.4 
6.5 
6.42 
7.1' 
7.2 
7.3 
7.4 
7.5 
7.71 

6.2* 

6.3 

6.4 

6.5 

6.34 

1 :2 4 7 1:2 1~ 

1 2 4 7 8 16 
1 2 4 7 8 12 
1 2 3 4 5 6 
1 :2 4 ( tl 1:2 
1 2 4 7 8 12 
1 2 4 7 8 12 
1 2 4 7 10 12 
1 2 3 4 5 6 

Table 4: Designs and their design efficiency and model estimability 
/=1 
0.84 
0.84 
0.84 
0.84 
0.84 
0.584 
0.8 
0.8 
0.8 
0.8 
0.8 
0.48 

0.88 
0.88 
0.688 
0.688 

f=2 f=3 
0.6838857 0.5379578 
0.6851048 0.5404469 
0.6760838 0.5193773 
0.6773029 0.5220149 
0.6699886 0.5044562 
0.3064686 0.1408754 
0.6089143 0.4380934 
0.604221 0.4280921 
0.6058057 0.4313735 
0.6011124 0.4213044 
0.6026971 0.4246428 
0.2011429 0.0708331 

f=4 f=5 
0.4073439 0.2955829 
0.410421 0.2983218 
0.3790878 0.2614436 
0.3825658 0.2648278 
0.3559964 0.2333675 
0.054526 0.0166398 
0.2955392 0.1850405 
0.2822535 0.1714216 
0.2864791 0.1756154 
0.2731391 0.1621145 
0.2774673 0.1663903 
0.0197101 0.0038647 

. 5 0 
0.0552117 

f=6 
0.204407 
0.2060656 
0.1692147 
0.1716673 
0.1404592 
0.0035355 
0.1061121 
0.094626 
0.0980504 
0.0869272 
0.0903616 
0.0004019 

l~ 

16 
15 
17 

7 

1 
6 
9 
9 
11 
9 
3 
5 
5 
5 
5 
5 
3 

3 

Conference on Applied Statistics in Agriculture
Kansas State University

New Prairie Press
https://newprairiepress.org/agstatconference/2001/proceedings/10



Applied Statistics in Agriculture 125 

Table 6: Design efficiency and model estimability of projections onto 4 columns 
Design f=1 f=2 f=3 f=4 f=5 f=6 freq 

6.1 * 0.92 0.83712 0.75264 0.6679429 0.58445 0.5035262 15 
6.2* 0.92 0.83712 0.75264 0.6679429 0.58445 0.5035262 15 

6.3 
0.92 0.83712 0.75264 0.6679429 0.58445 0.5035262 14 
0.92 0.77312 0.577536 0.3743416 0.2160067 0.1140851 1 
0.92 0.83712 0.75264 0.6679429 0.58445 0.5035262 14 

6.4 
0.92 0.77312 0.577536 0.3743416 0.2160067 0.1140851 1 
0.92 0.83712 0.75264 0.6679429 0.58445 0.5035262 13 

6.5 
0.92 0.77312 0.577536 0.3743416 0.2160067 0.1140851 2 
0.92 0.77312 0.577536 0.3743416 0.2160067 0.1140851 3 

6.34 0.76 0.55808 0.395264 0.2700083 0.1782579 0.1140851 12 

Table 7: The third Hadamard matrix HM3 of order 20 
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 
1 1 1 1 1 1 1 1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 
1 1 1 -1 1 -1 -1 -1 -1 -1 1 1 -1 -1 1 1 -1 -1 1 1 
1 1 1 -1 -1 1 -1 -1 1 1 -1 -1 1 1 -1 -1 -1 -1 1 1 
1 1 1 -1 -1 -1 1 -1 1 1 -1 -1 -1 -1 1 1 1 1 -1 -1 
1 1 1 -1 -1 -1 -1 1 -1 -1 1 1 1 1 -1 -1 1 1 -1 -1 
1 1 -1 -1 1 1 1 1 1 1 1 1 1 1 1 1 -1 -1 -1 -1 
1 1 -1 1 1 1 -1 -1 1 -1 1 -1 1 -1 -1 1 1 1 1 -1 
1 1 -1 1 1 1 -1 -1 -1 1 -1 1 -1 1 1 -1 1 1 -1 1 
1 1 -1 1 -1 -1 1 1 1 -1 1 -1 -1 1 1 -1 1 -1 1 1 
1 1 -1 1 -1 -1 1 1 -1 1 -1 1 1 -1 -1 1 -1 1 1 1 
1 -1 1 -1 1 1 1 1 1 1 1 1 -1 -1 -1 -1 1 1 1 1 
1 -1 1 1 1 -1 1 -1 1 -1 -1 1 1 1 1 -1 -1 1 1 -1 
1 -1 1 1 1 -1 1 -1 -1 1 1 -1 1 1 -1 1 1 -1 -1 1 
1 -1 1 1 -1 1 -1 1 1 -1 -1 1 1 -1 1 1 1 -1 -1 1 
1 -1 1 1 -1 1 -1 1 -1 1 1 -1 -1 1 1 1 -1 1 1 -1 
1 -1 -1 1 -1 -1 -1 -1 1 1 1 1 -1 -1 -1 -1 -1 -1 -1 -1 
1 -1 -1 -1 1 -1 -1 1 1 -1 -1 -1 -1 1 -1 1 -1 1 -1 1 
1 -1 -1 -1 1 -1 -1 1 -1 1 -1 -1 1 -1 1 -1 1 -1 1 -1 
1 -1 -1 -1 -1 1 1 -1 -1 -1 1 -1 1 -1 1 -1 -1 1 -1 1 
1 -1 -1 -1 -1 1 1 -1 -1 -1 -1 1 -1 1 -1 1 1 -1 1 -1 
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Table 8: Design efficiency and model estimability of projections onto 6 columns 

Design f=1 f=2 f=3 f=4 f=5 f=6 freq I 

0.84 0.6851048 0.5404469 0.410421 0.2983218 0.2060656 1 9 

0.84 0.6838857 0.5379578 0.4073439 0.2955829 0.204407 1 6 
7.1 * 

0.84 0.6777905 0.5230682 0.3840443 0.2665376 0.1734532 4 5 

0.84 0.669501 0.5033669 0.3544888 0.2317712 0.1390879 1 9 

0.84 0.6773029 0.5220149 0.3825658 0.2648278 0.1716673 2 11 

7.2 0.84 0.6760838 0.5193773 0.3790878 0.2614436 0.1692147 3 9 

0.84 0.6699886 0.5044562 0.3559964 0.2333675 0.1404592 2 5 

0.84 0.6777905 0.5230682 0.3840443 0.2665376 0.1734532 2 5 

0.84 0.6773029 0.5220149 0.3825658 0.2648278 0.1716673 2 11 

7.3 0.84 0.677059 0.5214613 0.3818411 0.2641921 0.1713531 1 5 

0.84 0.6710857 0.5065964 0.3584032 0.2351371 0.1410647 1 5 

0.84 0.6699886 0.5044562 0.3559964 0.2333675 0.1404592 1 5 

0.84 0.677059 0.5214613 0.3818411 0.2641921 0.1713531 1 5 

0.84 0.6760838 0.5193773 0.3790878 0.2614436 0.1692147 2 9 

7.4 0.84 0.6699886 0.5044562 0.3559964 0.2333675 0.1404592 1 5 

0.84 0.669501 0.5033669 0.3544888 0.2317712 0.1390879 2 9 

0.84 0.6632838 0.4878809 0.3305194 0.2032821 0.1114051 1 5 

0.84 0.6777905 0.5230682 0.3840443 0.2665376 0.1734532 2 5 

0.84 0.677059 0.5214613 0.3818411 0.2641921 0.1713531 1 5 

7.5 0.84 0.6710857 0.5065964 0.3584032 ,0.2351371 0.1410647 1 5 

0.84 0.6699886 0.5044562 0.3559964 0.2333675 0.1404592 2 5 

0.84 0.6632838 0.4878809 0.3305194 0.2032821 0.1114051 1 5 

0.584 0.3064686 0.1408754 0.054526 0.0166398 0.0035355 4 3 
7.71 

0.584 0.303299 0.1365723 0.0513457 0.0151561 0.0031279 3 3 
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Table 9: Design efficiency and model estimability of projections onto 5 columns 
Design f=1 f=2 f=3 f=4 f=5 f=6 freq I 

0.88 0.7588978 0.6403413 0.5277115 0.4239022 0.3311439 9 10 
0.88 0.7573333 0.636928 0.5232581 0.4199097 0.3292768 6 10 

7.1 * 0.88 0.7418311 0.5946027 0.4485534 0.3138455 0.1992111 2 5 
0.88 0.7391289 0.5888683 0.4415753 0.3085909 0.1984397 4 10 
0.88 0.7588978 0.6403413 0.5277115 0.4239022 0.3311439 6 10 
0.88 0.7573333 0.636928 0.5232581 0.4199097 0.3292768 6 10 

7.2 0.88 0.7418311 0.5946027 0.4485534 0.3138455 0.1992111 1 5 
0.88 0.7391289 0.5888683 0.4415753 0.3085909 0.1984397 8 10 
0.88 0.7588978 0.6403413 0.5277115 0.4239022 0.3311439 6 10 
0.88 0.7573333 0.636928 0.5232581 0.4199097 0.3292768 6 10 

7.3 0.88 0.7418311 0.5946027 0.4485534 0.3138455 0.1992111 3 5 
0.88 0.7391289 0.5888683 0.4415753 0.3085909 0.1984397 6 10 
0.88 0.7588978 0.6403413 0.5277115 0.4239022 0.3311439 3 10 
0.88 0.7573333 0.636928 0.5232581 0.4199097 0.3292768 6 10 

7.4 0.88 0.7418311 0.5946027 0.4485534 0.3138455 0.1992111 2 5 
0.88 0.7391289 0.5888683 0.4415753 0.3085909 0.1984397 10 10 
0.88 0.7588978 0.6403413 0.5277115 0.4239022 0.3311439 3 10 
0.88 0.7573333 0.636928 0.5232581 0.4199097 0.3292768 6 10 

7.5 0.88 0.7418311 0.5946027 0.4485534 0.3138455 0.1992111 4 5 
0.88 0.7391289 0.5888683 0.4415753 0.3085909 0.1984397 8 10 
0.688 0.4357689 0.2495829 0.1257293 0.0530946 0.0170648 9 3 

7.71 0.688 0.4353422 0.2499243 0.1273021 0.0552117 0.0186882 12 3 

Table 10: Design efficiency and model estimability of projections onto 4 columns 
Design f=1 f=2 f=3 f=4 f=5 f=6 freq 

0.92 0.83712 0.75264 0.6679429 0.58445 0.5035262 33 
7.1 * 0.92 0.77312 0.577536 0.3743416 0.2160067 0.1140851 2 

0.92 0.83712 0.75264 0.6679429 0.58445 0.5035262 32 
7.2 0.92 0.77312 0.577536 0.3743416 0.2160067 0.1140851 3 

0.92 0.83712 0.75264 0.6679429 0.58445 0.5035262 32 
7.3 0.92 0.77312 0.577536 0.3743416 0.2160067 0.1140851 3 

0.92 0.83712 0.75264 0.6679429 0.58445 0.5035262 31 
7.4 0.92 0.77312 0.577536 0.3743416 0.2160067 0.1140851 4 

0.92 0.83712 0.75264 0.6679429 0.58445 0.5035262 31 
7.5 0.92 0.77312 0.577536 0.3743416 0.2160067 0.1140851 4 

0.92 0.77312 0.577536 0.3743416 0.2160067 0.1140851 7 
7.71 0.76 0.55808 0.395264 0.2700083 0.1782579 0.1140851 28 
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Table 11: Design 6.1* 
1 ~ ::s 4 5 {j 

1 1 1 1 -1 1 
1 1 1 -1 1 -1 
1 1 -1 -1 -1 -1 
1 1 -1 -1 1 1 
1 1 -1 1 1 -1 
1 -1 1 1 1 1 
1 -1 1 -1 -1 1 
1 -1 1 -1 1 -1 
1 -1 -1 1 -1 -1 
1 -1 -1 1 -1 1 

-1 1 1 1 -1 -1 
-1 1 1 1 1 1 
-1 1 1 -1 -1 1 
-1 1 -1 -1 1 1 
-1 1 -1 1 -1 -1 
-1 -1 1 1 1 -1 
-1 -1 1 -1 -1 -1 
-1 -1 -1 -1 1 -1 
-1 -1 -1 -1 -1 1 
-1 -1 -1 1 1 1 

Table 12: Design 7.1 * 
1 ~ ::s 4 5 () 7 
1 1 1 1 -1 1 1 
1 1 1 -1 1 -1 1 
1 1 -1 -1 -1 -1 -1 
1 1 -1 -1 1 1 1 
1 1 -1 1 1 -1 -1 
1 -1 1 1 1 1 -1 
1 -1 1 -1 -1 1 1 
1 -1 1 -1 1 -1 -1 
1 -1 -1 1 -1 -1 1 
1 -1 -1 1 -1 1 -1 

-1 1 1 1 -1 -1 -1 
-1 1 1 1 1 1 -1 
-1 1 1 -1 -1 1 1 
-1 1 -1 -1 1 1 -1 
-1 1 -1 1 -1 -1 1 
-1 -1 1 1 1 -1 1 
-1 -1 1 -1 -1 -1 -1 
-1 -1 -1 -1 1 -1 1 
-1 -1 -1 -1 -1 1 -1 
-1 -1 -1 1 1 1 1 
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