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A model, termed the PET model, is used to estimate body temperature in cattle challenged 
by hot cyclic chamber temperatures. The model is based on Newton's law of cooling, driven by 
an estimated sinusoidal function. In practice, it is often difficult to maintain hot sinusoidal 
fluctuations in chamber temperatures. However, it is possible to model cyclic chamber 
temperatures using a discrete Fourier series. By increasing the precision in estimating the cyclic 
temperature driving function, we can more precisely estimate the parameters in the PET model. 
Simulation studies were performed to investigate the effect of under- and over-parameterization 
on accuracy of estimates, performance of a number of model selection criteria, and on nonlinear 
behavior such as intrinsic and parameter-effects curvature, bias, excess variance, and skewness. 
Our results will help researchers decide how to model ambient temperatures producing heat 
stress in cattle and improve estimates for evaluating management strategies. 

1. Introduction 

The performance, health, and well-being of cattle are strongly influenced by climate. 
Managing cattle to reduce the impact of hot weather remains a challenge. There is a need for 
further development of an environmental management system to guide feeder cattle managers in 
making strategic and tactical decisions prior to and during hot weather. To enhance our 
understanding of cattle response to high temperature, we use statistical models to describe their 
responses (i. e. body temperature change) to weather changes and quantitatively characterize an 
animal's state of well-being. 

Researchers have pointed out that, under heat stress, the cattle body temperature (T B) 
changes cyclically following the air temperatures (Ta) [1] and Ta is thought to be the principal 
driving force for TB. To estimate TB, we assume that Ta affects TB following ''Newton's law of 
cooling": the rate of change in animal body temperature, from the body core to its surface, is 
proportional to the difference in temperature between the body core and its environment, or 
written in a one-parameter mathematical model: 

aT B = K (Ta - T ) a t B . 
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Thus, T B can be solved as: 

T B = Ke - Kt fot e Kt T a dt T - Kt + B 0 . e where T Bo=initial T B I. 

In this expression, TB is determined by the ambient temperature Ta and time t. Thus modeling Ta 
is a critical first step to estimate T B. 

Predicting naturally varying environmental air temperature is difficult. However, for our 
experiment, where animals are housed in controlled cyclic (i.e. sinusoidal, 33±7°C,) conditions, 
Ta may be easily estimated by a sinusoidal function. 

The PET (Parkhurst, Eskridge and Travnivek) model has been built based on this 
assumption [2]. In this model, Ta is fitted first with a sinusoidal function, then T B is predicted by 
solving equation I. 

However, it would be very useful to find a model for the relationship between T Band Ta that 
does not require knowledge of the specific form for Ta. In practice, it is often difficult to 
maintain hot sinusoidal fluctuations in chamber temperatures. This causes problems in predicting 
TB. Fourier's series can be used to address this issue. The question is, whether the Fourier series 
brings significant improvement in T B prediction. 

In this study, the PET model is extended by modeling Ta with a Fourier series. This gives a 
series of Ta models with a different number of parameters (i.e., with one more "period", there 
will be two more parameters in the model - refer to materials and methods). In order to know 
how many periods are needed for the Fourier series to adequately model Ta, several model 
selection criteria are investigated. However, the selected model is only known to be favored by 
the model selection criteria, it is not known whether it performs better than other candidate 
models. Thus, it is necessary to compare the selected model with under- and over-parameterized 
(less and more periods) models. 

Simulation studies are conducted to evaluate the importance of using a Fourier series on 
modeling T B and address questions including model selection and model comparison. 

2. Methods 

1. Ta and T B modeling 
(1) Model Ta with a sinusoidal function (PET model). 

First, Ta is modeled by a sinusoidal function: 

T a = f1 + a sin lw (t - cp ) J TI. 

Then, this Ta function is substituted into equation I. With three more parameters, A, y and T BO, 
and then T B is solved for as: 
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where, 

So = (Yf.1a + ,1)( ekt 1) I K, 
and 

S1 = y a [e kt sin( co(t rp) 8) + sin( corp + 8)]. 

~K2+co2 

The three additional parameters in the model are defined as: 
a scaling factor y, which can be thought of as the proportion of variance in T B comparable to 

variance in Ta; 11 = TB - yTa where 11 is the gradient between mean TB and mean Ta adjusted 

for y; and Too, the steer body temperature at t = 0, is the starting value set for the PET model. 

Under ideal conditions, when Ta is a well-controlled sinusoidal function, this method results 
in good T B estimation. However, practically it is very difficult to maintain precise sinusoidal 
fluctuations in chamber temperatures, so the PET model needs to be improved to be more useful 
in practice. This improved model, which we now call the extended PET model, does not depend 
on a specific analytic function of Ta, and may provide a basis for extending the application to 
real weather heat challenge. 

(2) Extended PET model: Fourier series. 
Next, Ta is modeled as: 

n 

T a = f.1 a + L a i sin ~ m (t - qL)] 
i = 1 

This is an alternative form of the classic expression of Fourier series. Consequently, T Bean 
be solved as: 

T B = e - Kt [T B 0 + K (S 0 + S)] 

So = (Yf.1a + !J.)( ekt -1) / K 
where 

a. 
S='LSi=rI 1 

~K 2 + (i{(})2 

[ e kt sin( i {() (t - cjJ . ) - () . ) + sin( i {(}cjJ . + (};)] 
1 1 1 
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and 

IW 
cos () i = 

K 

..J(iw ) 2 + K 2 

3. Model Selection 

Since a discrete Fourier series is used to model the Ta curve, we need to know how many 
period terms are adequate for the "best model" and find a "stop-criterion". Introduction of more 
periods into the model improves the fit for Ta; however, for this data set, when more than three 
periods are used in fitting Ta, there is no obvious improvement in estimating TB. More generally, 
in order to choose the best model from the set of candidate models, we need to know when to 
stop adding periods to the Fourier series in fitting Ta. Model selection criteria that are evaluated 
include: 
(1) Mean Square Error (MSE), (2) Information criteria and (3) Nonlinear behavior 

For the information criteria, n is the number of observations and m is the total number of free 
parameters in the model. 

A. Akaike Information Criterion [3] 

Ale = n(log a2 + 1) + 2m 
B. Akaike Information Criterion C (AlCc) [4] 

AlCc = nlog 8 2 + n(m + n)/(n - m - 2) 

= AlC+2(m+ l)(m+ 2)/(n-m -2) 

C. Consistent AlC (CAlC) [6] 

CAlC = n(log a 2 ) + m[ (logn) + 1 J 

D. Schwarz Bayesian Criterion (SBC) [7] 

SBC = n(log 6- 2 ) + m log n 

E. Hannan and Quinn Criterion (HQ) [8] 

HQ = n(log 8 2 ) + 2m log(log n) 
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Since linear approximation is used as the calculation method in the nonlinear regression, we 
need to check the nonlinear behavior for each of the candidate models. If the linear 
approximation is poor, the parameter estimates may be unreliable. 

On the other hand, we may also consider those "nonlinear behavior" statistics as criteria for 
model selection - a '1>etter" candidate model would have "less serious" or "more acceptable" 
nonlinear behavior than its competitors (this hypothesis also needs to be tested by simulation 
studies). . 

The nonlinear behavior criteria include: 
A. Curvature Index 

Bates and Watts [9] suggest that if the curvatures, both intrinsic and parameter-effects 
curvature, are large (i.e., > 0.4), then the linear approximation may not be reliable. 
B. Box's Bias [10] 

In nonlinear regression, the discrepancy between the true value of the parameter and its 
estimate are generated from two sources - the model and the nonlinear procedure. Box's bias 
measures the latter one. The smaller the measure of Box's bias, the less serious nonlinear 
behaviors the model has. In the study, the percent bias is used, which expresses bias as the 
percentage of the true parameter value (the desired value is 0). 
C. Relative Excess Variance [11] 

In nonlinear regression, the estimated variance of parameters may be divided into two parts: 
one from the model (called asymptotic variance); the other from the nonlinear procedure (called 
excess variance). Relative excess variance measures the proportion of excess variance to 
asymptotic variance. A small value of relative excess variance is preferred (the desired value 
should be less than 1). 
D. Skewness [12] 

This statistic checks if the parameters are symmetrically distributed. A small value IS 

preferred; zero skewness indicates a symmetric distribution. 

4. Simulation Studies 

The purpose of the simulation studies is to identify the "best" model selection criteria for the 
extended PET models and to compare different period models to evaluate the under- and over­
parameterization effects. We want to know whether the Fourier series extension is really an 
important improvement to model T B. 

The procedure for the simulation study is: 
(1) Simulation Design: Ta is simulated under four different conditions: (A) two structures-

2 and 3 periods; (B) two levels of variances for each structure - large variance 0.8 and small 
variance 0.005. TB then is obtained by solving the extended PET model equation, with two levels 
of variance - large variance 0.05 and small variance 0.005. A total of 8 situations (2 Ta 
structures by 4 variance conditions) were investigated. For each situation, 500 sets of data (Ta -
TB) were generated; 

(2) Select the "best" model selection criteria: Four extended PET models (with 1, 2, 3 or 4 
periods in the Ta structure) were used to fit each set of generated data. Model selection criteria 
were calculated for each set of data and evaluated by the percentage of times they successfully 
selected the "correct" model. 
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(3) Model comparison: the under- and over-parameterization effects were investigated by 
checking the distribution of each parameter (in the T B model) estimated from different period 
models; examining bias, excess-variance and skewness for each parameter; comparing the 
curvature and the relative efficiency between models. 

5. Results and Discussion 

1. Select the "best" model selection criteria. 
In this study, two questions are of interest: 
A Which type of criteria (MSE, information criteria or nonlinear behavior measurements) is 

more likely to select the "correct" model; 
B. Within the "best" type criteria, which one or ones are better able to select the correct 

model (> 95% of the time); 
MSE is not a good criterion for model selection. When the designed period is two, the 

frequency for MSE to select the true (2 period) model is only about 54%. Though this conclusion 
is from simulation studies under condition I (high Ta variance and low TB variance), this pattern 
holds for all other conditions. 
Our results show that the information criteria (Figure I) perform well over a wide Ta - T B range, 

while the nonlinear behavior measurements (Figure 2) do not work well when the variation ofTB 

is relatively large (selecting the over-parameterized model). This result indicates that the 
information criteria are a better criteria for selecting the correct model. 

Figure 2 also indicates that for the two Ta structures we investigated, the AlC criteria (AlC, 
AlCc and CAlC) select the correct model over 95% of the time, regardless of the Ta structure 
and variance of Ta and T B. The performance of SBC is conditional on Ta structure - when Ta is 
generated with two periods, SBC works well; when the Ta model is more complex (3 periods in 
structure), the chance for SBC to select the correct model drops lower than 95%. In all cases, HQ 
does not work well ( < 95%) - both SBC and HQ are not good criteria for our study. It can be 
shown that the penalty parts of the five information criteria are different. The AlCc has the 
highest penalty while HQ has the lowest. In our simulated data, it seems that (Figure I) the 
criteria with large penalty (i.e. AlC, AlCc) select the true model more frequently than the criteria 
with small penalty (i.e. HQ). 

2. Model comparison. 
Once a Ta model has been chosen by model selection criteria, we are interested in knowing 

whether the selected model really has advantages over other candidate models. We compare the 
four candidate models, including the selected one, by investigating the curvature and relative 
efficiency of each model. Also, we check the distribution, the bias, the excess variance and the 
skewness of the same parameters in different models, exploring the effects of under- and over­
parameterization. 

A Criteria evaluating the model: 
(AI) Curvature 
Intrinsic curvature (Figure 3) and parameter effects curvature (Figure 4) both show that the 

under-parameterized models have serious curvatures. However, no obvious difference can be 
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detected between the selected model and the over-parameterized models. For true period = 2, the 
1 period model is the under-parameterized model, 3 and 4 period model are the over­
parameterized models. For true period = 3, the 1 and 2 period models are the under­
parameterized model, 4 period model is the over-parameterized model. 

(A2) Relative Efficiency 
We evaluate the models by applying the idea of relative efficiency. The estimated variance 

of each model with a different period is compared to the designed variance of the true model. It 
is expected that, the closer to truth the candidate model is, the closer to 1 its relative efficiency 
will be. Figures 5 and 6 show that the under-parameterized models have relative efficiency much 
larger than 1, while the over-parameterized models and the selected models have relative 
efficiency very close to 1. However, there is a slight tendency for the relative efficiency of the 
over-parameterized models to depart from 1 as the number of periods in the model increases (the 
mean of the relative efficiency increases from the true model to the over-parameterized models). 

B. Parameter estimation. 
(B. 1) Parameter distribution and bias for estimates 
Figures 7 and 8 show the distribution of the parameter K and its Box's bias for the estimates, 

respectively. The results are obtained under condition 1, but this pattern is similar for all other 
conditions (Table 2). Note that the estimates of the parameters are biased when the under­
parameterized model is used. Over-parameterized models do not give more accurate estimates 
than do the selected model. They appear to be more strongly biased than the selected model, 
though the difference is small and hard to detect. 

(B.2) Relative excess Variance and Skewness 
Figures 9 and 10 show relative excess variance and skewness for the estimates of the 

parameter K, respectively. 
It is obvious that the parameter estimates obtained from the under-parameterized models are 

not reliable - the relative excess variance is way beyond the acceptable value of 1 and the 
skewness measurement is poor. 

Though not obvious, there is some evidence that shows the selected model is also a little 
"better" than the over-parameterized models. The mean of the relative excess variance and the 
skewness of the parameter estimates from the selected model are closer to the preferred value 
than those from the over-parameterized models. This indicates that, with more parameters, the 
over-parameterized models are not able to give more accurate and precise estimates for the 
parameters than does the selected model. This conclusion holds true for all other conditions. 

6. Summary 

The extended PET model derived from this study is a necessary and useful extension of the 
PET model (which is basically the 1 period model in the Fourier series), and leads to more 
precise and less biased estimation of T B. Furthermore, this model does not require any prior 
information on any specific structure in Ta. Theoretically, any Ta curve can be modeled by a 
Fourier series. This is very useful when analyzing field data, where Ta has more complicated 
structure than chamber data; 

In this study, AlC, AlCc and CAlC are preferred for model selection purposes. They have 
been shown to select the true model more frequently than other candidate criteria (i. e. MSE, the 
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nonlinear behavior statIstIcs and other two information criteria, SBC and HQ). The power 
(probability of selecting the correct model) is greater than 95% for all conditions. 

The under-parameterized models are much worse than the selected model. The conclusion is 
based on comparisons of model curvatures, model relative efficiency and parameter estimates. 
Over-parameterization does not seem to hurt TB prediction seriously, though some evidence 
shows that the over-parameterized model does produce a little more bias, higher excess variance, 
heavier skewness, larger relative efficiency and more serious curvatures than the true model. At 
the very least, the over-parameterized models do not produce better predictions ofTB. 

The following procedure is recommended for predicting T B given the heat stress condition 
Ta: The first step is to fit Ta by applying a Fourier series, with different periods. Then, select the 
''best'' model using model selection criteria AlCc. Finally, obtain the Ta parameter estimates and 
solve the extended PET model equation to obtain predicted T B . 
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Comparison of model selection criteria (Designed Period = 2 ) 
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Figure 1. Simulation study on Information Criteria. 
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Comparison of model selection criteria (Designed Period = 3 ) 
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All information criteria perform well, except HQ. AlC and its derivatives are the best criteria 
(for all conditions, the chance of selecting correct model> 95%). Condition 1: high Ta 
variance and low T B variance; Condition 2: high Ta variance and high T B variance; Condition 
3: low Ta variance and low TB variance; Condition 4: low Ta variance and high TB variance. 

Parameter Effect$ Curvature 
D.""igned Period = 2. VarTa=O.Oas, VarTb=O.005 

Parameter Effecto;. Curvature 
model = 2, VarTa=O.006. V ..... Tb=O.OS 

Figure 2. Simulation study on Parameter Effects Curvature. 
When variance ofTB is small (VarTB=O.005, left column), this criteria selects the corrected 
model above 95% of the time; when variance ofTB is large (VarTB=O.05, right column), this 
criteria does not perform well. Other nonlinear behavior criteria share the same pattern. 
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Intrinsic Curvature (DP = 2; Con = 1) 
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Figure 3. Intrinsic Curvature of different period model for "true" period = 2 (left column) and 
'~rue" period = 3 (right column). 
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Figure 4. Parameter Effects Curvature of different period model for "true" period = 2 (left 
column) and '~rue" period = 3 (right column). 
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Designed Period = 2, Condition 1 
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Designed Period = 3, Condition 1 
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Figure 5. Relative efficiency for Ta modeling (condition 1). The relative efficiencies obtained 
under other conditions share this pattern. 
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Figure 6. Relative Efficiency for TB modeling (Condition 1). The relative efficiencies 
obtained under other conditions share this pattern. 
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Figure 7. The distribution of K (under condition 1). 
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Figure 8. The percent Box's bias of the estimates of K (under condition 1). 
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Figure 9. Relative excess variance for estimates of K (under condition 1). 
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Figure 10. Skewness for the estimates of K (under condition 1). 
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