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ANOTHER LOOK AT CLARK'S ADIT-SILVER SERIES 

David W. Meek 
USDA-ARS-MWA-National Soil Tilth Laboratory 

Ames, IA 50011-4420 USA 

Abstract 

The empirical semivariogram for Clark's adit-silver series has been the subject of several 
publications. Its use in the literature along with some other discussed considerations makes this 
series a suitable selection for a classroom or workshop semivariogram modeling exercise. My 
emphasis in this exercise is on estimating the scale of fluctuation (8). Alternative unbounded, 
bounded asymptotic, and bounded transitional models are developed via weighted least-squares 
estimation for both regular and integral semivariogram parameterizations (ISV). Results are 
compared with Clark's recommendation along with some other traditional models, non­
parametric models, and ad hoc numerical methods. When a given model fits well using the 
regular method, generally the ISV does also. When a given model fits poorly using the regular 
method, however, generally the ISV form fits much worse, or gives unrealistic parameter 
estimates, or diverges. While an unbounded rational polynomial exponential performs well and 
presents some interesting existence considerations, for practical purposes the series can be 
considered bounded and a hyperbolic tangent is selected as the best performing simple 
parameterization. The ISV for the hyperbolic tangent gives parameter and 8 estimates closest to 
ad hoc independent values for them. In the spirit of non parametric models, however, splined-line 
segments can perform extremely well if parameter parsimony and parameter interpretation are 
not deemed important considerations by a given modeler. 

1. Introduction. 

I work with soil scientists, hydrologists, and other environmental scientists. While some of 
the research projects that I am involved with are from designed experiments, many are not. 
Instead the analysis goals are related to problems with monitoring, sampling, or surveying the 
environment. Often an understanding of intrinsic variability of set environmental point or small 
area measurements is needed. Determination of aggregation domains, distances between 
independent observations, or the equivalent number of independent observations are then some 
of the questions of interest. This last year I was asked to conduct an in-house geostatistics 
workshop; included in it is this semivariogram exercise. I examine a well-known empirical 
semivariogram assuming the intrinsic hypotheses are satisfied, anisotropy is not an issue, etc.; 
the choice of series and reasons for its selection are given in the next section. Issues of 
stationarity and correlation scales for each variable are paramount. Positive-definiteness issues 
are considered via model choice and comparisons. The goal of the exercise is to select the model 
that best fits the series as well as best estimates the scale of fluctuation (a.k.a., correlation scale). 
A basic knowledge of empirical and model semivraiograms is assumed at least on the level of 
Chapter 2 in Clark (1979). A more formal treatment can be obtained in Cressie's (1993) 
Chapter 2. 
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2. Background and Methodology 

2.1 Empirical Semivariogram Selection 

The selected semivariogram example is Clark's (1979) adit-silver spatial series (in 
accumulation units of meters %); Clark lists the series values in Table 2.5 of her book where she 
denotes the lag increment as h and the spatial series as y(h). The complete series, shown Fig. 1, 
exhibits a two-level nested structure with the second level starting at about h = 81 with h in 
meters; thus it could be argued one could use the values of y(h) for h ::; 80. Several published 
works (e.g., Clark, 1979; Shapiro and Botha, 1991; and Meek, 2001), however, have considered 
only the inner series for h ::; 75, hence, this exercise does also. Values ranged from y(1) = 0.42 
to y(66) = 14.17 with "(=8.16 and the following quartiles: Y25 = 5.98, Y50 = 9.34, and Y75 = 10.69. 

Also, as shown in Fig.l, ad hoc regularity tests are done to argue for a suitable intrinsic 
random function (see e.g., p. 59, Chiles and Delfiner, 1999). Using the left-hand axis, continuity 
and differentiability are suggested because y(h)/lhI2 ~O as Ihl ~ 00 and 
y(h)/lhI2 < 0.98/(h+ 1) ::; 0.49. A test for positive-definiteness (see e.g., p. 322 in Isaaks and 
Srivastava, 1989), such as all the eigenvalues being positive for the covariance matrix, cannot be 
done because the original data used to construct the series are no longer available and, were they, 
they could not be released to the public for confidentiality reasons (personal communication 
from I. Clark, 2001). Likewise, a robust version of the y(h) series cannot be derived. Hence, the 
beauty of this exercise. The modeler needs to consider both bounded and unbounded models and 
argue for the final model that is selected. 

2.2 Regression Modeling Procedures 

The underlying modeling task then is to consider some nonnegative-definite functions to 
model a given series with suitable properties. In practice Isaaks and Srivastava (1989) 
recommend choosing from just a few of the best-known models. Shapiro and Botha (1991) point 
out that these forms are not always satisfactory and offer a broad class of nonparametric 
constrained optimization procedures as an alternative. Unfortunately these alternative model 
forms and procedures are unavailable in many geostatistics packages. Moreover they generally 
require mathematical programming software and experience. While ad hoc semiparametric 
methods are another possible alternative (see e.g., Meek, 2001), simple parametric models have 
their appeal and place. Using widely available nonlinear regression programs, other simple 
parametric models or simplified forms of nonparametric models with all the parameters explicit 
can be considered and evaluated. Moreover an analytic expression for the scale of fluctuation 
can generally be readily determined from each suitable model. Hence, for given empirical 
semivariograms, this latter approach may offer a practical compromise both conceptually and 
computationally. 

The first column in Table 1 lists several popular models (see e.g., McBratney and Webster, 
1986) and introduces some possible alternatives. Of course there are other possible models and 
families of models (see e.g., Chiles and Delfiner, 1999; McBratney and Webster, 1986). The 
considered semivariogram models, hereafter denoted g(h) , are listed by name in column 1 of 

Conference on Applied Statistics in Agriculture
Kansas State University

New Prairie Press
https://newprairiepress.org/agstatconference/2001/proceedings/24



358 Kansas State University 

Table 1; by regular formula in column 2; and in integral form in column 3. The integral form is 
discussed in the next paragraph. Gotway's weighted routine and notation (1991) are adapted to 
estimate the parameters. Cressie (1993) argued for the given weighted minimization as a 
pragmatic compromise between the efficiency of generalized least squares (g.l.s.) and the 
simplicity of ordinary least squares. Moreover the method can be used as an initial step in 
obtaining g.l.s. estimators. The weight function, denoted w(h), is simply w(h) = Nh/g2(h) with Nh 
representing the count or number of observation pairs associated with lag h. No count values 
could be included in the actual weight function for this exercise, however, because none are 
listed in Clark's Table 2.5. 

Delay and de Marsily (1994) discuss the integral semivariogram (hereafter, ISV). The ISV 
method fits numerically integrated semivariogram values, known as a cumulative semivariogram 
(CSV), to the integrated form of each semivariogram model. The authors suggest using an ISV 
method when the original data are not from a regular grid and/or the y(h) series values are 
undesirably dispersed. Both problems can make the regular semivariogram difficult to model. 
Clark's series (Fig. 1) may arguably be considered too dispersed because of the small scale 
pattern; hence the ISV parameters are also estimated for each model listed in column 3 of Table 
1. The empirical CSV s are calculated using a trapezoidal rule integration. If need be, the ISV 
can be weighted. Most of the functions included in the ISV forms are available in standard 
regression packages. The regression for the hole-effect ISV, however, requires defining the sine 
integral special function, denoted Si(h). A series expansion can be used (see e.g., Eq. [5.2.14] on 
p. 232 in Abramowitz and Stegun, 1972). In this regression, I defined the general series term 
within a loop and let the number of terms be set by a convergence criterion which was 10-32• The 
routine was tested over a range ofh inputs; the output Si values agreed exactly with tabled values 
to the given number of significant figures but required a larger number of terms per value for 
larger h input values. 

2.3 Background on the scale of fluctuation 

Vanmarcke's book (1983) on random fields defines the concept ofthe scale of fluctuation 
and discusses numerical integration estimation methods for both spatial and temporal fields. The 
example in this paper is for one spatial dimension. Using the common covariance notation [c.f., 
Cressie, 1993], an empirical semivariogram, y(h), is related to the covariagram, CO, by the 
variance relationship 2y(h) = 2(C(0) - C(h)) where h is the separation distance and C(O) is the sill 
with C(O) > O. In tum, the correlogram [a.k.a. autocorrelation/unction] is p(h) = C(h)/C(O). 
While formally yeO) = 0, most often for y(h) from real data sets the limit of a theoretical 
variogram model, g(h), as h -+ 0 is a finite positive value called the nugget; it is denoted Co with 
Co :2 o. When there is a significant nugget effect, the sill in the correlation definition needs to be 
replaced with the partial sill, CpsCO) = C(O) - co' hereafter, denoted Cs for brevity and to keep with 
the given notation. Under regularity conditions (see e.g., Cressie, 1993 or Vanmarcke, 1983), a 
linear scale of fluctuation, 8, is defined as 
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8 =2 f ;(h)dh (1 a) 
o 

where 

p(h) = 1 - (y(h) - co)/cs (lb), 

for an empirical semivariogram or 

p(h) = 1 - (g(h) - co)/cs (1 c), 

for a semivariogram model. 
For common semivariogram models that have sills or asymptotes, 8 can be determined using 

Eq. (1 a) with each g(h) model under consideration substituted in Eq. (1c). For many popular 
models, the integrals of the g(h) expressions are similar to those for the ISV which are listed in 
column 3 of Table 1; for g(h) functions it is defined for, the related correlation functions are 
listed in column 4; and the resulting 8( as) expressions are listed in column 5. Asymptotic models 
like the exponential have no finite range but do have a simple, finite 8 value expressed as a 
function of their as parameter. Also the concept of 8 with the asymptotic models avoids having 
to stipulate a practical range definition such as the location where 95% ofthe sill value is 
achieved [see e.g., pp. 374-375 in Isaaks and Srivastava, 1989]. 

2.4 Evaluation Criteria 

Evaluation is guided by common modeling statistics, common sense, and some ad hoc 
alternative estimates. Let n be the number of values in the series; p be the number of parameters 
in the model; CSS be weighted corrected sum of squares; ESS be weighted error total sum of 
squares; PRESS be the weighted predictive error sum of squares; and MSE be weighted error 
mean square. Some common regression modeling evaluation statistics are the weighted 
coefficient of determination, R2 = 1 - ESS/CSS, its simple jackknife counterpart, 
~ = 1 - PRESS/CSS (see e.g., p. 432 in Montgomery and Peck, 1982), McBratney and 
Webster's (1986) shortened version of the Akaike Information Criterion (AIC,) where 
AlC '" nxln(ESS) + 2xp, and Fuller's (1996) adjusted mean square error (MPE) with 
MPE = MSEx(n+p)/n. For the first two, higher values are better and for the last two, lower 
values are better. Absolute values for any ofthese statistics must be taken with caution because 
the weighted CSS varies somewhat between the different models. The values of~ are not 
reported for purposes of brevity. The statistic is simply used as an additional comparative tool. 
Similarly, the parameter T values and some of the other listed statistics are also considered but 
only comparatively because the values in the series are not independent; hence, they too are also 
omitted from the tabled results for brevity. A more general cross-validation to compare 
predictions, would present inference problems (see e.g. p. 104 in Cressie, 1993). Moreover the 
original adit-silver observations are unavailable for this purpose. 

Ad hoc independent semiparametric estimates for co, cs' and 8 can be employed to obtain 
47.::;8.::;49, with co'" 0.1 and 11.7.::;co+cs.::;12.0 (Meek, 2001). If the series values for 76:>;h:>;80 are 
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included in the later methodology then the estimates are Co :::; 0.1, co+cs :::; 12.0, e :::; 49.2. If 
Shapiro and Botha's (1991) fig. 2 fit is considered valid then by constructing the related 
correlogram, interpolating, then numerically integrating p(h) for the plot, one finds that Co :::; 0, 
Co + Cs :::; 11.6, and e :::; 48. Hence, based on all these estimates and model performance statistics, 
comparisons and selections can be made. 

3. Results and Discussion 

3.1 Clark's Analysis 

Results are summarized in Table 2. Table 2 is rich in information and hence is best carefully 
worked through section by section. The sections are arranged by model/analysis type. When a 
model name appears twice consecutively, the first one is without the nugget parameter, co' The 
values not enclosed by the brackets are for the regular regression analyses, while the values 
inside the brackets are for the ISV analyses. 

Clark's 'eyeball' examination of the series is summarized in the three models listed in the top 
section of Table 2; she selected the spherical model. Her argument is that the spherical model 
interpolates the rising portion better than the exponential model does. The bounded line is a 
preliminary way to get initial estimates for the spherical model. Of consequence for this 
modeling exercise, she sets the standard for the performance of alternative models to meet or 
exceed: R2 = 0.976, AIC = 23.3, and 100 MPE = 1.82. 

3.2 Modeling Evaluation 

In each of the remaining lower sections of Table 2, full inverse variance weighted regression 
estimates for both the regular and ISV model forms are presented. Regression diagnostics (see 
e.g., Ch.3 in Montgomery and Peck, 1982) indicate that the Gotway's (1991) weight function is 
generally suitable for the regular semivariogram models. The ISV models, however, may be 
better estimated with a weaker weight, E2(h) = g(h). The ~ results closely match those for R2 
and are part of the basis for stating the next finding. Generally when a given model fits very well 
using the regular method, the ISV does also. When a given model fits poorly using the regular 
method, however, generally the ISV form fits much worse, or gives umealistic parameter 
estimates, or diverges. In each of the lower sections in Table 2 there is at least one traditional 
g(h) model and one or more of the nontraditional alternatives that were introduced in Table 1 or 
suggested in the methods section. Recall Isaaks and Srivastava (1989) argue for just using the 
few well-known forms. For this series the development of alternative suitable functions, 
however, proves to be worthwhile because they have better overall fits. Importantly, better sill 
and e estimates are obtained, generally each with values higher than those recommended by 
Clark. Relevantly and of particular importance to kriging, the nugget is generally not zero. 
Specific results by model class support these findings. 

Notice that the Gaussian, hole, and rational quadratic models are obviously poor fits, much 
worse than any of the others. In fact, based on the performance statistics only the exponential 
and hyperbolic tangent models are viable asymptotic forms; likewise, the spherical and bounded 
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quadratic are the only traditional transitional forms; 3 and 4 splined-line segments are the only 
forms in the splined-line segments model class; and the rational polynomial exponential is the 
only possible model for the unbounded model class. Five models have R2 '" 0.980 but only the 4 
splined-line segments model with Co is rounded down; the rest are rounded up. The absolute 
interpolation order of the remaining four is 4-splined-lines model without co, the hyperbolic 
tangent with co, the hyperbolic tangent without co, and then the rational polynomial exponential. 
The absolute difference in R2 between the first and last is about 0.0009. Overall, the exponential 
fit interpolates better than the spherical model fit. No Co is presented for the exponential model 
because a fit including it gives a co< 0 estimate. Similarly in the results reported for other 
models, the absence of parameter and statistics means the model either diverged or converged to 
unrealistic parameter estimates, a condition which is generally just co<O. Based on interpolation 
and parsimony, the bounded quadratic model without Co is the best transitional model choice 
while the hyperbolic tangent is the best overall choice of the models listed in the middle two 
sections. 

In the next section forms with splined-line segments are considered. As discussed by many 
researchers, including Cressie (1993) and Shapiro and Botha (1991), there are many implicit 
assumptions involved when modeling y(h). The latter authors addressed some of the underlying 
premises and presented some examples of nonnegative definite functions via nonparametic 
curves fit to the very same selected y(h) example from Clark (1979). The methodology is not 
actually nonparametic but the curve form properties are what are important rather than values of 
the local regression parameters. In the spirit of Shapiro and Botha's (1991) fig. 2 nonparametric 
approach, I parametrically add linear segments to the bounded line model. This approach can 
still be considered a transitional model if the last segment has no slope. I stopped at 4 segments 
because adding one more became difficult and did little to improve the fit which is already better 
in interpolation based on R2 than that for any other model considered in Table 2. The last result, 
however, is at the cost of added parameters which are mostly spent in trying to adequately model 
the rising section of the y(h) series. Although not having the highest R2 value, overall the 
performance statistics for this class of models favor the choice of the 3 splined-line segments 
version, especially given the ISV results. Interestingly the splined-line segments approach may 
offer some interesting insight into a relevant modeling practice. To get starting values for an 
intrinsically nonlinear g(h) model often eyeball or ad hoc methods are used. A popular ad hoc 
estimation procedure for Co takes the intercept from a linear regression, preferably weighted, for 
the first three or more values in the series (notice the parameters should be similar to the first 
segment of a splined-line segments model). Similarly for the far end, the mean of say the last 5% 
or more of the series is used (notice the parameter is essentially the sill for the last segment for a 
splined-line segments model). My semiparametic alternative utilizes these ideas to avoid trying 
to model the rise section altogether (Meek, 2001). 

Finally, consider the results presented in the last section of Table 2. While none of the usual 
conventional unbounded models like the power model fit very well, based on R2 the rational 
polynomial exponential alternative interpolates almost as well as the hyperbolic tangent and the 4 
splined-line segments model. Moreover its AIC and 100 MPE values are the lowest overall. 
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3.3 Model Selection and Discussion 

Selections by model type are shown in Fig. 2. The performance statistics in Table 2 represent 
the average or overall behavior over the entire h series. The local performance of the fit, 
however, is important in some applications. So let's consider the fit on the sill and near the 
origin. The open squares in each frame of Fig. 2 are the series values for 76:::;h:::; so. While the 
models were developed for the series values in 1 :::;h:::;75, the graphs depict the predictions for 
1 :::;h:::; SO. Clockwise from the upper left graph in Fig. 2, the weighted prediction root-mean­
square (RMS) errors between each model's prediction and open square values are 0.13, 0.20, 
0.15, and 0.09, respectively. In comparison, for l:::;h:::;S the respective RMS errors are 0.22, 0.2S, 
0.20, and 0.20. In all of the bounded models the inclusion of Co in the model reduced the local 
RMS error. 

Of these four selected models the bounded quadratic is obviously the poorest choice and so is 
eliminated first. Not surprisingly the 4 splined-line segments model gives the Co and Cs estimates 
that are closest to those inferred from Shapiro and Botha's (1991) fig. 2. Moreover it has the 
highest R2. All versions of the hyperbolic tangent give the Cs or the Co and Cs estimates that are 
closest to my ad hoc values for them; moreover, the 8 estimates are the closest of all to values 
given by the alternative estimators. Based on the comparative performance statistics, however, 
the unbounded rational polynomial exponential and the bounded hyperbolic tangent both look 
like viable choices. Unfortunately, the inclusion of values 76:::;h:::; so in the latter two models 
gives the same overall pattern of comparative results. The rational polynomial exponential 
interpolates the right-most values of the series somewhat better than the hyperbolic tangent but 
remember that the latter form is an asymptotic model with the sill as its asymptote. 

Questions on boundedness and 8 existence are thus at hand. For this series, the performance 
of the rational polynomial exponential certainly allows room for one to play the devil's advocate. 
For practical purposes, however, if a splined-line segments or other suitable model fits the series 
very well then there is a sill at the right-most subinterval ofh. Shapiro and Botha's (1991) 
constrained approach is actually meant to guarantee the curve's behavior. Also remember the 
results of the regularity tests. Alternatively, one can perform some more data analysis. While 
running means for the outer series values tend to increase as the averaging interval is shortened 
and moved to the right (from'" 11.3 for the last 25 to '" 12 for the last 5), the mean seems to 
stabilize in the interval 71 :::;h:::; 79. Analysis of change with smoothed numerical derivatives 
reveals the same behavior as the running mean analysis. Still other ad hoc and more formal tests 
are possible and discussed in many references like Chiles and Delfiner (1999), Cressie (1993), or 
Shapiro and Botha (1991). In reality, however, one cannot say for certain that there is a true 
model or class of models. Rather, empiricism, custom, goals, jUdgement, experience, and 
sometimes software capabilities dictate the choice. When and if possible, prior knowledge of the 
process, its covariance structure model, etc. should be considered. Here consistency of the 
selected model is based on comparison with several different ad hoc analyses. 
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4. Conclusions 

Given its history and properties, Clark's adit-silver series is an ideal choice for a 
semivariogram modeling exercise. For this series, nontraditional unbounded, asymptotic, and 
transitional alternatives to the popular semivariogram models can be formulated and shown to 
characterize the series behavior better than any traditional model does. In future workshops the 
series should include the values for 75s;hs;80. Practical considerations support the choice ofa 
bounded model. All viable options indicate Co + Cs and 8 values higher than those argued for by 
Clark. Additionally most alternatives improve with co>O. Considering the comparative 
performance statistics and parameter estimates, my choice for a bounded model is the hyperbolic 
tangent. The 8 estimates from the nugget form of the ISV for the hyperbolic tangent is closest to 
the argued value from the ad hoc estimators. 
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Table 1. 
Properties of some selected semivariogram models. 
Name gih), ISV p(h) 

Linear 
Power 
Logarithmic 
Rational Quadratic 

Co + hh 
Co + bhl' 
alog(h) 
Co + bh2/(1 + h2/a) 

Gaussian Co + c,(l - exp(-(h/a)2» 
Exponential Co + c,(1 - exp(-(h/aJ» 
Hyperbolic Tangent' Co + c,tanh(h/aJ 
Hole Effect" Co + c,( I - as sin(h/a,)/h) 
Cauchy(p= 1) Co + cJI - (1 + (h/a,),)"') 

Bounded Line {
Co + c,h/a" 0 < h ~ as ) 

c() + cS ' 11 > as 

Bounded Quadratic' {CO + cJ2(h/aJ- (h/a)'), 0 < h ~ a 
Co + c. I s.) 

s' 1 > a~ 

Spherical {
Co + c,(15(h/a)-0.5 (h/as)')' 0 < h <; a, } 

Co + cS ' h > as 

Unbounded Models 

coh + 0.5bh' 
coh + (bhl" ')/(p+ 1) 
a(hlog(h) - h) 
(co + ha)h - ba3i2arctan(h/aY,) 

Asymptotic Models 

(Co + c,)h - c, a, nV,(erf«l2h/a,) - 0.5) 
coh + c,(h + aJexp(-(h/a)-I» 
coh + c, a,log(cosh(h/a» 
coh + cJh - a,si(h/a,) 
coh + c,(h - a,arctan(h/as)) 

Transitional Models 

{ 
coh + 0.5c,hz/a" 

(co + c)h - 0.5c,as' 

O<h,;a,.) 

h> a, 

{ 
coh + cs«hZ/aJ- 0.33(h3/a,'», 0 < h ~ as) 

( Co + cJh - 0.33csa" h > a, 

{ 
coh + C,(0.75(h'/~J-0.125(h4/a,'», 0 < h <; a,) 

(co + c,)h - 0.37)c,a, h > a, 

cxp( -(h/ay) 
exp(-(h/aJ) 
1 - tanh(h/aJ 
as sin(h/a,)/h 
(I + (h/a,)')' 

{ I - h/a" 0 < h ~ as ) 

0, h > as 

{
I + (h/a), - 2(h/a,), 0 < h ~ as ) 

0, h> as 

{
I + 0.5 (h/a,)' - 1.5(h/a), 0 < h ~ a, ) 

0, h> as 

Circular {
Co + c,(l-(2/n)( cos"(h/a,)-(h/a,)(I-(h/a)2f'», 0 < h ~ a, } ~ Co +c,)h+(2c/n)«a,'-h,)V,(2a; +h2 )/3a; -hcos'(h/a,», 0 < h ~ as } {(2/n)( cos'(h/a,)-(h/aJ(l-(h/a,),j"'), 0 < h $ as ) 

Co + c,' h> a, \(co+c,)h, h > as 0, h > a, 

8b 

nYza s 

2a, 
InC 4)a, 
'lin as 

nas 

a, 

2a/3 

3a/4 

8a/3n 

"Model Parameters: Co = Nugget; Cs = Partial Sill (C(O) - co), where ceO) = Sill; as = Range or asymptotic scaling parameter; 8 = Scale of Fluctuation. Note that by definition, yeO) = 0, thus g(O) = () for all models. 
b Note that for 8 from the Gaussian model, nV' ~ 1.772; for the tanh model, In(4) ~ 1.386; for the hole-effect model, Yzn ~ 1.571; for the circular model, 8/3n ~ 0.8488. For 8 to exist tcu the Cauchy model, p>\!,. 
'Notice that formally tanh(x) = 2Iogistic(2x) - I where logistic(x) = 1/(1 + exp( -x». This model is a very simple form of an artificial neural net as well as a common growth curve. Hence the usc of this model invites 

the consideration of other basis functions fi'om Fourier and wavelet series as well as related growth functions. 
d The hole-effect model and related fOlms may also be known as the wave model or the periodic model. 
'The spherical model is really a partialteml cubic polynomial form splined to a plateau (a linear segment without a slope); hence it could be called a Bounded Cubic polynomial. A second degree polynomial form of 

the spherical model, the Bounded Quadratic model listed above may be an intcrestingaltemative to consider for a y(h) model. 
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Tahle 1. 
Properties of some selected semivariogram models. 
Name g(h)" ISV p(h) 

Linear 
Power 
I,ogarithmic 
Rational Quadratic 

co+bh 
Co + bh" 
alog(h) 
Co + hh'/(l + h'/a) 

Gaussian Co + c,(l - exp(-(h/a,)'» 
Exponential Co + c,(1 - exp(-(h/a») 
Hyperholic Tangent' Co + c,tanh(h/a) 
Hole Effed Co + c,(l - a, sin(h/a,)/h) 
Cauchy(p~ I) CO + c,(l - (1 + (h/a)'rl) 

Bounded Line {
Co + c,h/a" 0 < h ~ a, } 

Co + CSl h> as 

Bounded Quadratic' {CO + c,(2(h/aJ- (h/a,)'), 0 < h ~ a 
C + c ' } 

o s' h> a, 

Spherical {
Co + c,(I.S(h/aJ-O.S (h/a)3), 0 < h ~ a, } 

~+~ h>~ 

Unbounded Models 

coh + O.Sbh' 
coh + (bhP+1)/(p+ I) 
a(hlog(h) - h) 
(co + ha)h - ha312arctan(h/aY,) 

Asymptotic Mouels 

(Co + c,)h - c, a, rr"'(erf«l2h/a,) - 0.5) 
coh + c,(h + a,(exp(-(h/a)-l» 
coh + c, a)og(cosh(h/a,» 
coh + c,(h - a,si(h/a,» 
coh + c,(h - a,arctan(h/a,» 

Transitional Models 

{ 
coh + O.Sc,h'/a" 

(co + c)h - O.5c,a" 

O<h~a,} 

h> a, 

{ 
coh + c,(h'/aJ- O.33(h3/a,2», 0 < h ~ a,} 

( Co + cJh - 0.33c,a" h > a, 

{ 
coh + c'. (0.75(h2/aJ-o .. I 25(h4/a;3», 0< h,; a,.} 

(co + c)h - 0.375c,a, h> a, 

exp( -(h/a)') 
exp(-(h/a,» 
I - tanh(h/a) 
a, sin(h/a,)/h 
(I + (h/a,)'Y1 

{
I - h/a" 0 < h s a; } 

0, h> a, 

{
I + (h/a,)' - 2(h/a), 0 < h ~ a, } 

0, h > a, 

{
I + 0.5 (h/a,)' - I.S(h/a), 0 < h ~ a, } 

0, h> a, 

Circular {
Co + c,(I-(2/rr)( cos·1(h/a,)-(h/a)(l-(h/a)'f'», 0 < h ~ a, } {( co+c)h+(2c/rr)«a/-h2f'(2a~ +h2 )/3a; -hcos1(h/a», 0 < h .~ a, } {(2/rr)( cos·1(h/a;)-(h/a)(I-(h/a)'f'), 0 < h ~ a, } 

co+c" h>a, (co+c)h, h>a,O, h>a, 

eb 

n~/'as 

2a, 
InC 4)a, 
'lin; a~ 

rra s 

a~ 

2a/3 

3a/4 

8a/3rr 

'Model Parameters: Co ~ Nugget; cs ~ Partial Sill (ceO) - co), where C(O) ~ Sill; as ~ Range or asymptotic scaling parameter; 8 ~ Scale of Fluctuation. Note that by definition, yeO) ~ 0, thus g(O) ~ 0 for all models. 
o Note that for 8 irom the Gaussian model, rr"' z 1.772; for the tanh model, In(4) " 1.386; for the hole-effect model, 01,11: " 1.571; for the circular model, 8/3rr z 0.8488. For 8 to exist li)r the Cauchy model, p>V,. 
e Notice that fonnally tanh(x) ~ 2Iogistic(2x) - I where logistic(x) ~ 1/(1 + exp(-x)). This model is a very simple form of an artificial neural net as well as a common growth curve. Ilenee the use ofthis model invites 

the consideration of other basis functions n·om Fourier and wavelet series as well as related growth functions. 
d The hole-effect model and related fanns may also be known as the wave model or the periodic model. 
e The spherical model is really a partial term cubic polynomial fonn splined to a plateau (a linear segment without a slope); hence it could be called a Bounded Cubic polynomial. A second degree polynomial li)fm of 

the spherical model, the Bounded Quadratic model listed above may be an interesting alternative to consider for a y(h) model. 
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Figure 1. Clark's complete adit-silver series from Table 2.5 in her book (Clark, 1979). The y(h) units are (m %)2 where h is 
the distance increment in meters. The analyses in this paper concern only the values for 1 :s::h:s::75. 
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Figure 2, Selected models by class. Black circles and lines represent the semivariogram and its models while the gray circles 
and lines represent the corresponding correlogram and correlation function. Open squares are the series values for 76~h~ 80. 
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