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Abstract 

13 

Substantial gains have been made in locating regions of agricultural genomes associated with char­

acteristics, diseases, and agroeconomic traits. These gains have relied heavily on the ability to 

estimate the association between DNA markers and regions of a genome (quantitative trait loci or 

QTL) related to a particular trait. The majority of these advances have focused on diploid species 

(two homologous chromosomes per set), even though many important agricultural crops are, in 

fact, polyploid (more than two homologous chromosomes per set). The purpose of our work is to 

initiate an algorithmic approach for model selection and QTL detection in polyploid species. This 

approach involves the enumeration of all possible chromosomal configurations (models) that may 

result in a gamete, model reduction based on estimation of marker dosage from progeny data, and 

lastly model selection. While simplified for initial explanation, our approach has demonstrated 

itself as being extendible to many breeding schemes and less restricted settings. 
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1 Introd uction 

Detecting and locating genomic regions associated with quantitative traits is known as quantitative 

trait locus (QTL) mapping. The statistical methods (for review see Doerge et at., 1997) employed 

to identify QTL are numerous, and rely heavily on the fact that the organism is diploid (i. e., has 

homologous pairs of chromosomes). In the framework of QTL analysis, diploidy ensures that the 

outcome of meiosis is predictable and that in most breeding schemes, molecular markers are at 

most single dose (one copy) and observable, and thus segregate in the usual Mendelian manner. 

When there are more than two homologous chromosomes per set, the species is referred to 

as polyploid. While most animal species are diploid, many important agricultural crops such 

as sugarcane, cotton, banana, alfalfa, potato, coffee, and wheat are polyploid. Among natural 

species of flowering plants, nearly half are polyploid (Hieter and Griffiths, 1999). Even in animals, 

polyploidy exists. Salmonid fish and specific amphibians display doubling and tripling of their 

ploidy level (Hieter and Griffiths, 1999). 

In some cases, such as the potato, a polyploid species is closely related to a diploid and standard 

diploid QTL analysis can be successful. In other situations, such as sugarcane, there is no closely 

related diploid species making QTL analysis difficult. This difficulty is due to several inherent 

factors. First, the number of possible genotypes per marker and/or QTL are much greater in 

polyploids than diploids simply because of the increased number of chromosomes in the homologous 

set. Second, the number of copies of each marker and/or QTL (known as the dosage) in the parents 

and progeny is not obvious, and are often not observable. Third, the additional doses (copies) of 

a marker can mask recombination information. Fourth, the meiosis process (i. e., pairing behavior 

and outcome of meiosis) of the species is usually unknown. Our task in this paper is to identify 

each of these important aspects of polyploidy and incorporate them into an algorithm for model 

selection process to be used in a single marker analysis for QTL detection. 

1.1 Characteristics of Polyploidy 

The two main characteristics that describe a polyploid are the number of chromosomes in each ho­

mologous set (ploidy level), and the pairing mechanism during meiosis. The pairing of chromosomes 

can range from preferential (always pairing with the same chromosome in the set) to completely 
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random (equally likely to pair with any other chromosome in the set). Unlike the diploid situation, 

where the meiotic process is known to involve the pairing of two homologous chromosomes, the 

process in a polyploid is unpredictable. A common assumption, and the one used throughout this 

paper, is that meiosis is simply an extension of the diploid case and involves multiple pairings of 

homologous chromosomes. During polyploid meiosis, pairs of chromosomes in each homologous 

set align and possibly exchange genetic material (i. e., crossover). Each chromosomal pair then 

contributes one chromosome to the chromosomal set in each gamete. 

The probability of each type of gamete depends on the specific set of homologous chromosomes 

(configuration), the ploidy level, and the pairing mechanism of the organism. Unlike the diploid 

case, the pairing mechanism is important because there are more than two chromosomes in a 

set. Species that display preferential pairing are known as allopolyploids, while species displaying 

random pairing are referred to as autopolyploids. Our work will be based on a preferential pairing 

mechanism, thereby reducing the complexity of polyploidy to essentially that of a diploid. 

In addition to determining the probabilities of each chromosomal pairing during meiosis, the 

ploidy level, k, is important because it determines the possible dosage levels of the marker and QTL 

in both parents and progeny. The dosage, denoted by d, is the number of copies of a particular 

marker/QTL in a homologous set of chromosomes. If we consider a standard diploid backcross 

experimental design, there is at most one dose of each marker and/or QTL. For the polyploid 

situation, as many as ~ copies of a genetic marker and/or QTL can be passed to the gamete. 

The complications of polyploidy have restricted the use of DNA markers for genetic mapping, as 

well as for identifying genomic regions responsible for quantitative traits. Wu et al. (1992) derived 

a theoretical approach for mapping single dose DNA markers in polyploids under the assumption 

of random pairing. Ripol et al. (1997) later developed theory for placing multiple dose markers 

on previously estimated maps comprised of single dose markers, by first estimating the dosage of 

the molecular marker, and then relying on this information to determine its chromosomal pairing 

and relationship to known single dose markers. Furthermore, both da Silva and Sorrells (1996) 

and Guimaraes and Sobral (1999) pointed out that the use of multiple dose markers improves the 

accuracy of detection of pairing homologs and their organization into homology groups. Wu et al. 

(1992), da Silva and Sorrells (1996), Ripol et al. (1997), and Guimaraes and Sobral (1999) have each 
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16 Kansas State University 

made a important contribution toward understanding genome organization and evolution. Equally 

important in understanding history and its organization is the detection of QTL in association with 

multiple dose markers. Some of the first efforts to map QTL in polyploids (sugarcane) were made 

by Sills et al. (1995), and later extended by Guimaraes et al. (1997). In those studies various 

agronomically important traits were associated with single dose markers by means of multiple 

regression model building and maximum likelihood methods. In these QTL analyses the model 

used to develop the likelihood function was limited to single dose markers. To date, no attempt 

has been made to employ multiple dose markers for QTL analyses. 

2 Model Selection for QTL Analysis in Polyploids 

2.1 The Experimental Model 

Let us consider a pseudo-doubled backcross population (Grattapaglia and Sederoff, 1994) that is 

the result of selecting an informative parent, doubling half of its chromosomes to create a non­

informative parent, and then crossing the two parental lines (Figure 1) so that pseudo-double 

backcross progeny result (Grattapaglia and Sederoff, 1994; da Silva and Sobral, 1996). It is impor­

tant to realize that the informative parent's genetic constitution (i.e., dosages) is not known, but 

may later be inferred from the pseudo-backcross progeny. For our purposes, we assume the non­

informative parent marker and QTL dosages are zero. l.From this point forward we concentrate on 

one homologous set of chromosomes taken from a pseudo-doubled backcross polyploid organism. 

The extension to the remainder of the chromosome sets is obvious, and direct. 

In a diploid, the pseudo-doubled backcross suits a standard backcross design initiated from 

two inbred parental lines that differ in the trait of interest. The basic idea of QTL analysis using 

single markers in diploid organisms is to associate observable marker genotypes with measurable 

quantitative traits. Marker genotypes are observable, dosage of the marker and unobservable QTL 

are known to be at most single, and quantitative traits are scored. The statistical methodology 

for doing single marker QTL analysis includes t-tests, regression, and likelihood ratio tests. When 

the likelihood is employed, it is a function of marker genotypes and varying mixtures of normal 

distributions that are controlled in number by the possible genotypes of the unknown QTL, as 
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well as the mating design. With the diploid meiotic process (e.g., chromosomal pairing, crossing 

over, gametic probabilities) well understood, the likelihood function is easily stated as a function of 

probability distributions of marker genotype classification, and numerically maximized with respect 

to parental means, variances, and recombination between the marker and QTL. A test statistic can 

then be calculated for the purpose of detecting/locating QTL. 

Similar to the diploid QTL analysis, we assume only two alleles at each marker and QTL, and 

denote a molecular marker by M and a QTL by Q. Since we focus on a single marker and single 

QTL analysis, each homologous set is a mixture of only four types of chromosomes. These types 

are denoted as MQ (both present), M (only M present), Q (only QTL present), and (/) (neither M 

nor Q present). The number of each type of chromosome will depend on the ploidy level. 

2.2 All Possible Polyploid Models 

In the diploid setting, there is only one model to consider. However, in the polyploid setting, one 

must model aspects of the chromosomal pairing, all possible gametic configurations that may result 

from chromosomal pairing, segregation, and independent assortment, as well as all possible dosages 

for both the marker and QTL. To consider all of the possible polyploid models, we break this process 

down, first focusing on a single homologous pair and then combining the chromosomal contributions 

of each pair. In anticipation of later, more complicated expressions, matrix representations of QTL 

and marker probabilities are used. 

For each pair of homologous chromosomes, the probability of its contribution to the gamete can 

be expressed using a matrix of the form 

c = [ P((/)) 
P(M) 

P(Q) 1 
P(MQ) . 

(1) 

The rows and columns of the matrix C represent the possible dosage levels of the marker and QTL, 

respectively. The elements of the matrix C are probabilities that depend on the configuration of 

the paired chromosomes, and thus are functions of the recombination fraction r. 

Since there are ~ pairs of chromosomes in each homologous set, the probabilities of the overall 

contribution are a function of ~ C matrices. Because each pair, i, independently contributes one 
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k k k 
chromosome to a gamete, the Kronecker product of the 2" Ci matrices yields a 22" x 22" probability 

matrix of each order-specific contribution. Since we are solely interested in the overall contribution, 

we simplify this matrix such that its rows and columns represent the gamete's possible dosage levels 

for the genetic marker and QTL. Each chromosomal pair can contribute at most one copy of the 

marker and QTL, therefore the collapsed (or, simplified) matrix will be of dimension (~+ 1) x (~+ I), 
k k 

instead of 22" x 22". 
k k 

The general algorithmic reduction of the full 2"2 x 22" probability matrix is accomplished by 

multiplying each successive Kronecker product by a matrix Ai; i = 1, ... , ~ and its transpose. 

Each Ai is of dimension 2i x i + 1 and consists of i 12x2 matrices along the main diagonal. The 

elements of Ai may be generalized by 

{
I if r = 2c - 1 or 2c - 2 

arc = 
o otherwise 

r = 1,2, ... , 2i and c = 1,2, ... , i + 1. 

For any allopolyploid the following expression generates all gametic probabilities for allowable 

configurations of maximum dosage ~: 

Preferential pairing, like diploids, allows the most straightforward calculations as there is only one 

set of chromosomal pairs, or equivalently one set of {C i }, so the matrix G represents the gametic 

probabilities for specific ploidy and dosage levels. However, when pairing is random, more than one 

set of chromosomal pairs is possible, and the gametic probabilities for all configurations are more 

extensive. For each set of {Ci}, one could construct the matrices {Cd and produce the gametic 

probabilities as described. The overall gametic probabilities are then obtained by multiplying each 

G matrix by the probability that the set of chromosomal pairs occurs, and summing these matrices 

together. 

With the goal of assessing all possible polyploid models for the situation we are considering, we 

assume the ploidy level of the species has been previously studied and is known in advance, and 

that the dosage of both the marker and QTL is unknown. Realizing that the dosage levels regulate 

the final gametic probabilities, it is necessary to compute the resultant gametic probabilities for 

each possible dosage level of both QTL and marker and then, attempt to find the best model via 

model selection. 
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2.3 Polyploid Model Reduction 

Having formulated all possible polyploid models, we now reduce the potential pool of models by 

estimating the dosage of the observable marker in the informative parent. The progeny that result 

from the pseudo-doubled backcross could be easily described solely by what was passed to them 

from the informative parent, if that information were observable. Even though we know that the 

informative parent has a marker, we do not know the dosage of that marker, denoted dM . Relying 

on the backcross offspring, we can infer the dosage of the marker in the informative parent, which in 

turn provides additional information that reduces the pool of models from which we will eventually 

select the best model. Letting n denote the number of progeny, the probability of observing n0 

progeny with no marker given the informative parent dosage dM is Pr(n0In, dM ) = Bin(n0; n,PdM) = 

C~0)P~!t (l-PdM )n-n0, where PdM = (1/2)dM and represents the probability of a progeny having zero 

copies of the marker when the informative parent has dM copies. This conditional probability is a 

result of our pseudo-doubled backcross design and our assumption of preferential pairing. Under a 

random pairing situation, the procedure would follow similarly, except PdM = (k-';:/f) / (k/2)' 

This probability allows us to infer the dosage, dM , of a marker in the informative parent, via a 

Bayesian approach. A priori we assume each possible dosage level (d = 1, ... ,~) is equally likely 

and compute the posterior probability of each dosage level, Pr(dMln, n0) = 

Bin(n0; n,PdM)/ I:~~21 Bin(n0; n,Pd)' 

If a particular dosage level has a posterior probability greater than an arbitrary cutoff, in our case 

90%, we restrict attention to only those models with that dosage level. If no dosage has probability 

greater than 90%, we select successive dosage levels with the largest posterior probabilities until 

the sum is greater than 90%. By eliminating models that are highly unlikely, given the observed 

number with no marker present, we reduce the potential models that need to be considered. 

2.4 Model Selection and Parameter Estimation 

With the dosage of the marker at least partially resolved, and a potential set of models available, 

the aim becomes to select the single best model that will in turn provide maximum likelihood 

estimates in the single marker QTL analysis. The form of the likelihood is similar to that of the 

diploid case except that there are now ~ + 1 dosage levels of the QTL that provide for ~ + 1 possible 
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phenotypic means. For example, using Im,i to indicate presence of the marker (1, if individual i has 

the marker and 0, otherwise), and denoting Yi as the trait values for individual i, the likelihood is 

where j = 1, ... , k/2 represents the range of dosage for the QTL, P(Qj) is the gametic probability 

of no marker and j copies of the QTL, and P(MQj) is the gametic probability of at least one copy 

of the marker and j copies of the QTL. For an additive dosage effect, the mean of the quantitative 

trait distribution for a specified QTL dosage is /-lj = /-l2 + ja, where /-l2 is the mean of the non­

informative parent and a is the additive contribution for a single dosage of the QTL. The variance, 

0'2, is assumed equal in both parents, but could easily be considered as two separate parameters. 

Utilization of the EM-algorithm (Dempster, Laird, and Rubin, 1977) maximizes the likelihood 

function in a fashion similar to the diploid situation, only now the expectation step (the E-step), 

involves a multinomial rather than binomial distribution. 

3 Simulated Example Demonstrating the Model Selection Process 

As an example of the model selection process, we detail the algorithmic approach using simulated 

data for 50 progeny (Table 1) of an octaploid. The informative parent was double coupled (2 copies 

of both marker and QTL on the same chromosome) with a recombination fraction of r = 0.25. We 

also assumed the quantitative trait, y, was normally distributed with mean 4dQ, where dQ is the 

dosage of the QTL, and variance 1.0. 

3.1 Steps Involved in the Model Selection Process 

3.1.1 Estimating the Marker Dosage 

For this data set, 41 of the 50 progeny had at least one copy of the marker. The posterior probability 

of marker dosage 1 through 4 is 0.000, 0.471, 0.512, 0.017, respectively. Recall that the expected 

fraction of progeny with no copies of the marker, when the parental dosage is dM , is (1/2)dM • Since 

the sum of the posterior probabilities of marker dosage 2 and 3 is greater than 0.90, we restrict our 

search to just these two dosages. 
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3.1.2 Computing the Likelihood For Each Model 

Standard EM-algorithm (Dempster, Laird, and Rubin, 1977) procedures were used to compute 

the maximum likelihood estimates for each of the models considered. The likelihood values and 

parameter estimates were calculated (Table 2). For these data, the model (dM = 2, dQ = 2) had 

the highest likelihood so it would be selected as the model. This configuration is just slightly better 

than the model (dM = 3, dQ = 2), with little difference in the parameter estimates. 

4 Single Marker QTL Analysis in Polyploids 

As demonstrated, the real challenge arising from polyploidy is not the QTL analysis itself, but 

rather the model on which the likelihood function is based. Selection of the single best model to 

represent the polyploid situation under investigation allows one to proceed with such a formulation 

of the likelihood function. This likelihood function, when coupled with a standard test statistic (i. e., 

LOD score or likelihood ratio test) can be used to test various statistical hypotheses concerning 

QTL detection and effect, as well as QTL location. Relying on Monte Carlo res amp ling procedures, 

the distribution of the test statistic can be estimated and the meaning of statistical significance 

understood for the polyploid at hand. For a review of single marker analyses and Monte Carlo 

methods for estimating significance thresholds in a QTL setting see Doerge et al. (1997). Ploidy 

level, marker dosage, and pairing mechanism of homologous chromosomes are expected to add to 

the genetic specificity that complicates the asymptotic distribution of the test statistic. 

5 Results 

A simulation study was performed to assess the power of this model selection procedure. Motivated 

by an example in sugarcane, an octaploid (1 ::; dM, dQ ::; 4) was simulated using the pseudo­

modified-doubled backcross. For each combination of dM , dQ, r, and n (number of progeny), we 

generated 1000 data sets which contained the quantitative trait value and the marker genotype for 

each progeny. The quantitative trait distribution had a common variance of 0"2 = 1.0 and a mean 

which depended on the dosage of the QTL. The non-informative parental mean was set to -2.0 

and each dose of the QTL increased the mean by 2.0 (additive). We investigated four progeny 
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sizes n = 50,100,200, and 500 and three recombination rates r = 0.01,0.25, and 0.35. In total, 

16 x 4 x 3 = 192 different parameter combinations were investigated. 

Each of the 1000 simulated data sets per parameter combination and sample size was analyzed, 

via the procedure described, for the purpose of selecting the best model, and thus formulating the 

likelihood function. Since the estimation of the dosage level is the limiting factor in the process, 

we first consider the effect of dosage estimation on the general process of model selection. For all 

marker dosage, dM, and QTL dosage, dQ, combinations, the probability of correctly identifying 

the dosage levels was 97% or higher when n = 500 and 80% or higher when n = 200. When in 

fact the sample size was 50 or 100 our ability to correctly estimate dosage of marker and/or QTL 

greatly decreased as the dosage level of both marker and QTL increased. This result emphasizes 

the importance of sample size when mapping in polyploids. If one is going to rely on multiple 

dose markers and multiple dose QTL, large sample sizes must be employed. In general, as the 

dosage level of the marker increases, a corresponding doubling of the sample size maintains the 

same level of power to detect the correct model. In this simulation, when dM = 4, there was some 

increase in power over dM = 3 strictly because only models with dM ::; 4 were considered (border 

effect). In situations where the dosage levels were not identified correctly, there was a tendency to 

overestimate both dM and dQ, with the QTL dosage more likely to be identified correctly. This 

overestimation can largely be attributed to the fact that PdM = (1/2)dM. For a given dM, PdM+1 is 

much closer to PdM than PdM-l. Lastly, as the distance or recombination, r, increases between the 

QTL and marker, the probability of correctly identifying the dosage levels decreases. 

When the motivation for model selection in polyploids is to test for QTL detection and/or 

location, the estimate of recombination when coupled with an appropriate map function will supply 

a relational distance between the marker and QTL (i. e., how far the QTL is from the marker). As 

with all maximum likelihood estimation, estimates of r tend to be underestimated when the sample 

sizes are small, and in polyploids this situation is even more pronounced when dM > > dQ, and 

when the linkage is weak (r = 0.35). When sample sizes increase, the power to estimate r correctly 

is greater when, in fact, dQ 2: dM . As is the case in this simulation, preferential pairing ensures 

that each informative chromosome from the informative parent is paired with a null chromosome, 

and as a result, only chromosomes which contain both a marker and QTL provide information 
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on recombination. When the QTL and marker dosage levels are unequal, there will be some 

chromosomes containing just an M or Q, and thus provide no information about r. Unequal 

dosage levels for the QTL and marker can even mask recombination, the effect of masking is even 

more severe when there are additional copies of the marker (i.e., increased marker dosage) since dQ 

is observed in the quantitative trait distribution means. Lastly, as the linkage between the marker 

and QTL weakens (i.e., the QTL is farther from the marker), regardless of marker and/or QTL 

dosage, the power to estimate r decreases dramatically. 

6 Summary 

Model selection for QTL analysis using a single marker has been presented for a pseudo-doubled 

backcross polyploid organism demonstrating preferential pairing during meiosis. Clearly, the as­

sumptions of preferential pairing and known ploidy level affect the power by increasing or decreasing 

the number of potential models. Thus, for a polyploid with a smaller ploidy, the power for all pos­

sible parameter configurations will be higher than what has been described. When the assumption 

of preferential pairing is lifted to accommodate random pairing, the results may be very different 

in that, the ploidy level not only alters the number of potential models, but can also affect the 

probability of an informative pairing. Extensions to include that case are in progress. 

With our mating design and simulation, we assumed an additive QTL mean model with the 

effect of the QTL being a single value, and a variance of 1.0. In doing so, we realize that we have 

limited our simulation space, and for completeness, a range of QTL effects, along with varying 

variance parameter values must be considered. We fully expect the statistical power of what we 

described to be affected as both QTL effect and variance change. Clearly, as the QTL dose means 

become more disparate it will be easier to estimate the correct dosage of the QTL. Additionally, 

our model selection process is simplified because the number of parameters for each configuration is 

the same. A more flexible approach is to use only an order restriction on the means. In other words 

J-lo < J-ll < ... < J-ldQ' where the subscript represents the dosage of the QTL. However, this alters 

the number of parameters in each configuration. If a non-additive model is employed, a model 

selection criterion such as the BIC (Kass and Raftery, 1995) could be used to select the model. 

As demonstrated by Ripol et al. (1997) placing multiple dose markers on an existing framework 
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of single dose markers allows the estimation of a genetic map for any polyploid. As shown in many 

diploid studies, given that a genetic map exists, the genetic distances between markers can easily 

be exploited for the purpose of QTL mapping. The limiting factor in extending to polyploids what 

has been successful in diploid QTL mapping, has been the development of models which reflect 

the polyploid nature of more complex organisms. Our goal in this paper has been to describe the 

tools necessary to investigate QTL mapping in polyploids by beginning with the simplest situation 

of single marker QTL mapping, and setting the stage for more advanced investigations. Currently, 

we are extending this algorithm to interval mapping which involves two markers and a single QTL. 

While the steps are similar, the increased number of potential models makes this a more complex 

problem. 

Finally, in addition to the particularities of the polyploidy and the complications that arise in 

attempts to model it for QTL mapping, questions with regard to linkage between markers and QTL 

arise. Exploration of these questions have great potential to further our understanding of genome 

organization within and between species, as well as to provide us with an evolutionary time line for 

polyploidization. Some of these questions are: If a molecular marker is found to be tightly linked 

to a QTL, should the dosage of the marker agree with the dosage of the QTL? In what situations 

is the linkage more strongly affected? Should the models which are controlled by dosage levels be 

weighted for the purpose of representing more realistic results? Would models with dosage levels 

more similar to each other be more likely, especially with close linkage? Answers to these questions 

may aid in understanding of the genetics, evolution, and comparative organization between well 

mapped diploids and sparsely investigated polyploids. Mapping of QTL in polyploids may enable 

us to create links between evolutionarily related species, many of which are diploid, which in turn 

will allow us to broaden our understanding of genetically diverse and distantly related species. 
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Table 1: Simulated octaploid progeny (n = 50) from a pseudo-doubled backcross where y denotes 

the quantitative traits, and 1M indicates presence of the marker. 

y 1M Y 1M Y 1M Y 1M Y 1M 

4.190 1 4.070 1 3.387 1 -0.156 1 -0.448 0 

-0.324 0 2.091 1 5.753 1 -1.146 1 6.886 1 

4.620 1 2.367 0 2.541 1 -1.483 1 3.446 1 

1.286 1 7.638 1 4.866 1 7.718 1 7.662 1 

6.795 1 3.098 1 3.185 1 2.156 1 7.808 1 

4.542 1 1.218 1 4.967 1 3.309 1 3.449 1 

0.480 1 3.674 1 4.146 0 1.338 1 0.212 0 

3.864 0 8.481 1 8.249 1 8.130 1 3.389 1 

2.404 0 8.417 1 7.424 1 1.069 1 6.855 1 

4.380 0 7.875 1 3.890 1 4.439 1 3.856 0 

Table 2: Maximum likelihood results for simulated data where dM is the dosage of the marker, dQ 

is the dosage of the QTL, L is the likelihood described in the text, a is the additive effect of the 

respective QTL dose, f-lo is the mean of the quantitative trait when the QTL dosage is 0.0, a is 

the standard deviation of the quantitative trait distribution, and r is the recombination fraction 

between the marker and the QTL. 

dM dQ log(L) a J-Lo (j r 

2 1 -96.210 3.906 2.061 4.162 0.0001 

2 2 -89.096 3.708 0.082 0.782 0.3291 

3 1 -95.612 4.232 2.202 3.616 0.0001 

2 3 -96.619 2.573 -0.516 0.894 0.2610 

3 2 -89.191 3.697 0.120 0.778 0.3049 

3 3 -96.622 2.560 0.247 1.975 0.2765 

2 4 -95.408 3.203 -3.459 0.797 0.0417 

3 4 -95.976 2.596 -1.135 0.779 0.2589 
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Figure 1: A pseudo-doubled backcross experimental mating design which is the result of selecting 

an informative parent, doubling half of its chromosomes to create a non-informative parent, then 

crossing the two parental lines to produce a pseudo-doubled backcross population. 

Informative 
Parent 

M M 

Q Q 

Modified Pseudo Doubled Backcross 

Cut 
.-------------, 
I 

\ 
? . 

x 

Progeny 

Double 
,...------------,.-------------, 
I 

I 

- - - - - - - - - - - - _1'- ___________ _ 

/ 

Noninformative 

Parent 

Conference on Applied Statistics in Agriculture
Kansas State University

New Prairie Press
https://newprairiepress.org/agstatconference/2000/proceedings/3


	AN INTRODUCTION TO MODEL SELECTION FOR QUANTITATIVE TRAIT LOCUS ANALYSIS IN POLYPLOIDS
	Recommended Citation

	tmp.1446829208.pdf.oUp8J

