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APPLICATION AND COMPARISON OF THREE SPATIAL STATISTICAL METHODS 
FOR MAPPING AND ANALYZING SOIL ERODIBILITY 

George Gertner*, Guangxing Wang*, Pablo Parysow**, and Alan Anderson*** 

Abstract 

*NRES, University of Illinois, Urbana, Illinois, USA 
**School of Forestry, Northern Arizona University, Flagstaff, Arizona, USA 

***USACERL, P.o.Box 9005, Champaign, Illinois, USA 

The Revised Universal Soil Loss Equation (RUSLE) is a model to predict longtime average 
annual soil loss, related to rainfall-runoff, soil erodibility, slope length and steepness, cover 
management, and support practice. The soil erodibility factor K accounts for the influence of 
soil properties on soil loss during storm events in upland areas. 

In this paper, ordinary kriging, sequential Gaussian and indicator simulation methods were 
used and compared for spatial prediction and uncertainty analysis of soil erodibility based on a 
data set from a very intensive soil survey (524 observations, 10 m by 10 m grid). Half the data 
was used for calibration, the other half used for validation. The results show that the three 
methods produce similar spatial distributions for predicted values. The method yielding the 
smallest mean square error was Gaussian simulation, followed by ordinary kriging and indicator 
simulation. However, the variance estimates obtained using indicator simulation consistent with 
the spatial variation, while those obtained by Gaussian simulation and ordinary kriging were 
overly smoothed. 

Keywords: assessment, prediction, soil erodibility, spatial statistical methods. 

1. Introduction 
Soil erodibility is potentially caused by the integrated effects of rainfall, runoff, and 

infiltration on soil loss. It is one of six input factors involved in the Revised Universal Soil Loss 
Equation (RUSLE) to predict longtime average annual soil loss. These six input factors include 
rainfall-runoff (R), soil erodibility (K), slope length (L) steepness (S), cover management (C), 
and support practice (P) (Renard et aI., 1997). The soil erodibility factor (K) in RUSLE accounts 
for the influence of soil properties on soil loss during storm events on upland areas as a rate of 
soil loss per rainfall erosion unit as measured on a given plot unit. The factor depends on soil 
properties such as silt, sand, organic matter, structure, and permeability. The higher the soil 
erodibility, the higher the soil loss. 

The USDA Natural Resources Conservation Service (NRCS) published soil erodibility 
factor values for different soil types. K values are published with a value (class width) whose 
magnitude indicates the uncertainty associated with that K value. For example, a K value of 0.32 
with a class width of 0.04 gives a range for that class of K=.28 to K=.36 . For those soils without 
K values available, K values can be estimated using soil erodibility nomographs and data from 
soil samples (RUSLE, 1995). 

Traditionally, spatial prediction of K values is carried out using a point-in-polygon 
procedure (Siegel, et aI., 1996). A number of field plots with soil samples is first drawn, located 
and measured. The soil properties of these samples are analyzed in a laboratory and K values are 
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then obtained from published NRCS soil surveys or from soil erodibility nomographs. An 
average K value of the field plots for each of the soil type polygons in a soil map is finally 
calculated and assigned to the cells within the polygon. 
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The point-in-polygon method is similar to a point-in-stratum method in deriving 
homogeneous polygons or strata using auxiliary data, such as image data and soil survey data 
(Wang et al. 1997). Uncertainty for each polygon or stratum is derived using within-polygon or 
stratum variance, and for a population using a sum of between-polygon or stratum variance and 
within variances. The difference between the two methods is that the cells in a polygon are 
spatially joint and the cells in a stratum may not be. Spatially smoothed estimates and variances 
are the main disadvantage. Besides, the accuracy of product maps depends, to a great extent, on 
the derivation of homogeneous polygons or strata. 

Spatial statistical methods for spatial prediction have been widely used in geology and 
expanded to applications in natural resource and environmental sciences. For example, 
Rogowski and Wolf (1994) investigated the variability in soil map unit delineation using kriging 
interpolation. Mowrer (1997) used a Monte Carlo technique of sequential Gaussian simulation 
to study propagation of uncertainty through spatial estimation processes for old-growth subalpine 
forests. Juang and Lee (1998) compared three kriging methods in heavy-metal contaminated 
soils. Wang et al. (2000) made a comparison of kriging and simulation methods in spatial 
prediction and uncertainty analysis of topographic factors in RUSLE. These methods are often 
assessed based on the precision and spatial distribution of estimates and their validation is 
difficult because of the high cost of obtaining with sufficient resolution. 

The objectives of this study are to use and compare three spatial statistical methods for 
spatial prediction and uncertainty analysis of the soil erodibility factor, K. These methods 
include ordinary kriging, sequential Gaussian simulation, and sequential indicator simulation. 
Their assessment is carried out based on overall prediction error, and the spatial distribution and 
variance of estimates when compared to a validation data set. 

2. Study area and data sets 
The study area is a small section of a large case study area located in Central Texas in Bell 

and Coryell Counties approximately 160 miles southwest of Dallas, TX. The climate is 
characterized by long, hot summers and short mild winters (Tazik et aI., 1993). Average daily 
temperature ranges from 8 °c to 29 DC. Average annual precipitation is 81 cm. Elevations 
ranges from 180 m to 375 m above sea level. Most slopes are in 2 % to 5 % range. Soils are 
generally shallow to moderately deep and clayey, underlain by limestone bedrock. 

At the southwest of the large case study area, 524 soil samples were systematically taken 
from a 250 m by 250 m area. The soil samples were measured at a laboratory for soil properties 
including silt, sand, organic matter, structure and permeability. The soil erodibility factors (K 
values) were calculated with the method in Renard et al. (1997, p.74). These samples were 
systematically divided into two groups by coordinates. Half of the data was used for calibrating 
the spatial statistical models and for predicting K values, and the other half of the data was used 
to validate the methods. 
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3. Methods 
Spatial variability of K values for the model data set was first determined using 

semivariograms. Spherical, exponential, Gaussian and power models were entertained for 
modeling the semivariograms. Ordinary kriging, sequential Gaussian simulation and sequential 
indicator simulation were then applied to produce prediction and variance maps of K values. 
The validation data were used to evaluate the prediction and variance maps. In addition, the 
predicted maps were compared to that derived by traditional point-in-polygon method from the 
soil survey. 
Semivariogram 

A semivariogram is key to many spatial statistical models and simulation studies because it 
measures the average dissimilarity between data separated by their physical location. By 
sampling a continuous variable Z in a study area, we collect n observations z(ua ) (a = 1,2, ... ,n) 

where u a is the vector of spatial coordinates of the ath individual. The semivariogram y(h) is 

computed as follows: 
1 N(h) 2 

Y(h)=-~J z(ua)-z(ua +h)] , 
2N(h) a;1 

[1] 

where h represents the relative relationship of two locations, called lag, and N(h) is the number 
of data pairs (Deutsch and Joumel, 1998). An experimental semivariogram may be fitted using 
spherical, exponential, Gaussian and power models. Different directions should be taken into 
account to determine whether the spatial variability is isotropic or anisotropic. 
Ordinary Kriging 

Given n observations {z(ua),a = 1,2,3, ... ,n} of a continuous variable Z, sampled and 

measured over a study area, the value of the variable at any non-sampled location U can be 
estimated. The ordinary kriging estimator, Z*ok(U) is (Goovaerts, 1997): 

n(u) n(u) 

Z*ok(U) = ~>.~k(u)Z(Ua) with L.A~k(U) = 1, [2] 
a;1 a;1 

and where A~k(U) is the weight assigned to the datum Z(Ua ) , interpreted as a realization of the 
random variable Z(ua ). The variable n(u) is the number of field data used for the location u to 
be estimated and it changes location by location given a neighborhood. For the error variance of 
the ordinary kriging estimator, refer to Deutsch and Joumel (1998) and Goovaerts (1997). 
Ordinary kriging is unbiased with minimum local error variance and provides a map of the best 
local estimates, however, this map may not be best as a whole. In addition, the local error 
variance mainly depends on the data configuration. 
Sequential simulation algorithms 

Both the Gaussian and indicator simulations methods used for the comparison are based on 
sequential algorithms. Assume that a study area can be divided into N nodes of a grid and 
{Z(U~),j = 1,2,3,oo.,N} is a set of random variables defined at N locations u;. A data set 

{z(ua),a = 1,2,3,oo.,n} is sampled. Conditional on this data set, several joint realizations of these N 

random variables can be generated: 
{z(q)(U~),j=l,oo.,N} q=l,oo.,L [3] 
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The key for sequential simulation is that the N-point conditional Cumulative Density 
Function (cdf) can be expressed as the product of N one-point conditional Cumulative Density 
Functions (cdfs) given the set of n original data values and N-I realizations (Goovaerts 1997; 
Deutsch and Joumel, 1998). The idea is described in the following: 

F(u; , ... ,u~; Zl' ... , ZN I (n)) = F(u~; ZN I (n+N-I)) x 

F(U~_I;zN_II(n+N-2))x ... x 

F(u~; z21(n+ 1)) x F(u; zll(n)) 

[4] 
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where, for instance, F(u~; ZN I (n+N-I)) is the conditional cdf of Z(u~) given the set of n 

original data values and the (N-I) previous realizations Z(u;) = z(q)(u;),j = I, ... ,N -1. The 

simplest case is the joint simulation of z values at two locations u; and u~. The process of 

generating realizations {z(q)(u;),z(q)(u~)} (q = I, ... ,L) by sampling the two-point conditional cdf 

can be described with a function that is a product of two one-point conditional cdfs: 

F(u;, u~; zl' z21 (n)) = Prob{ Z(u;) ::; zl' Z(u~) ::; z21 (n)} 
[5] 

= F(U~;Z21 (n+I))xF(u;;zl I (n)) 

where "I (n)" and" I (n+ 1)" denote conditioning the n data values z(ua ), and on the past 

realization Z(u;) = z(q) (u;) . In practice, the value z(q)(u;) is first drawn from F(U;;ZI I (n)) , 

then the value z(q) (u~) is drawn from the conditional cdf at location u~ under the conditional on 

the realization z(q) (u;) in addition to the original data (n). 
According to Eq. 4, the following steps can result in a realization of the random vector 

{Z(u;),j = I, ... ,N}. 

1) Define a random path for visiting each node of the grid in the study area; 
2) At the first location to be visited, model the cdf given the n original data using simple 

kriging and the modeled semivariograms, and from that conditional cdf, draw a 
realization which will become a conditional datum for all subsequent drawings; 

3) At the ith node visited, model the cdf given the n original data and all (i-I) simulated 
values at the locations previously visited using simple kriging with the modeled 
semivariograms, and for the ith node, from that conditional cdf, draw a realization which 
becomes a conditional datum for all subsequent drawings; 

4) Repeat step 3 until all N nodes are visited and provided with simulated values. Repeat L 
times the entire sequential process with different paths to visit the N nodes, which leads 

to L realizations, {z(q) (u;), j = 1, ... , N} , q = 1, ... , L . 

The algorithms for both the sequential Gaussian simulation and sequential indicator 
simulation are similar. The main difference is that the assumption for Gaussian simulation is that 
the underlying distribution is Gaussian, while no explicit predefined distribution is assumed for 
the sequential indicator simulation. Thus, the appropriateness of the Gaussian distribution must 
be tested before simulation, often calling for a prior transformation of original data into a new 
data set with a standard normal cdf. The simulated normal score values need to be transformed 
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back to the simulated values for the original variable. Moreover, modeling the conditional cdf 
means determining the parameters (mean and variance) of the Gaussian conditional cdf. 

The sequential indicator simulation does not require that an underlying distribution be 
assumed. However, an indicator transformation is needed. Before simulation, the continuous 
variable z is subdivided into S+ 1 discrete intervals, and S threshold values Zs are defined (s = 
1,2, ... ,S). These threshold values are referred to cutoff values. The indicator coding of the 
measurement data is then carried out as follows: 

{
I if z(ua )::;; Zs S = 1, ... ,S [6] 

i(ua;zs) = 0 
otherwise 

The function F(u; z I (n)) is then modeled through a series of S threshold values Zs 

discretizing the range of z: 
F(u;zs I (n)) = Prob{Z(u)::;; Zs I (n)} s = 1, ... ,S [7] 

The S conditional cdf values are interpolated within each class (zs' Zs+l] and extrapolated 

beyond the two extreme threshold values Zl and zs. In addition, modeling the conditional cdf 

implies determining the S conditional cdf values using one indicator kriging algorithm, which 
requires indicator semivariograms for all the cutoff values. 

Using sequential simulation algorithms can result in a set of realizations providing both a 
visual measure and a model of spatial uncertainty. If any spatial features, for example, the 
values of a variable are larger than a threshold value, and occur on most of the L simulated 
images, the percentage can be used as a measure of uncertainty. For details, refer to Wang 
(2000). 

According to Goovaerts (1997), ordinary kriging estimates are smoothed and are best in 
local prediction, however, kriging variances depend only on the data configuration and not on the 
actual observed data, and thus do not adequately reflect uncertainty. Both the indicator kriging 
and sequential Gaussian methods improve the capability and provide local uncertainty analysis 
by calculating conditional variances. The conditional variance depends on not only data 
configuration but also data values. This conditional variance in theory should provide a more 
realistic assessment of uncertainty across space. 

4. Results 
The location and soil erodibility K values of the 524 soil samples, and soil types and their K 

values from the soil survey are shown in Figure 1. From southwest to northeast, the soil sample 
K values increases and the highest values are located at the northeast central area. The study 
area contains only three soil types, BtC2, DPB and KrB. If the soil types are assigned with 
published K values, there are only two values over the area: 0.17 for BtC2; and 0.32 for both 
KrB and DPB. In the resulting K value map, thus, higher values are mainly located at southwest 
and lower values at the central area and northeast, the opposite if is inverse with the spatial 
distribution of the field sampled K values. 

Figure 2 shows a histogram of K values based on the calibration data. 
Four directional experimental semivariograms were calculated and their similarity in 

structure implies that the spatial variability is isotropic. The parameters and residuals of 
modeled omni-dimensional experimental semivariograms using spherical, Gaussian, and 
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exponential models are listed in the upper part of Table 1. The residuals for each of the models 
were similar. The best model in terms of fit was the Gaussian, then spherical, and finally 
exponential. The experimental and modeled Gaussian semivariograms are shown in Figure 3.The 
estimated nugget, sill variances and maximum distance are respectively, 0.0013, 0.0038 and 
117.52. This Gaussian semivariogram was used for ordinary kriging and Gaussian simulation. 

The parameters of standardized indicator semivariograms for indicator simulation were 
derived and are shown in the lower part of Table 1. The range of soil erodibility K values was 
divided into six intervals with five indicator (cutoff) values. When fitting the experimental 
indicator semivariograms, the spherical model was found to be the best. The nugget variance 
varies from 0.40 to 0.55, sill variance from 0.45 to 0.60, with a range parameter from 80 m to 
160 m. The standardization made the sum of nugget and sill variances equal to 1.0. 

The maximum number of realizations (runs) used for both the Gaussian and indicator 
simulation methods was 500. The standard deviation of predicted values were plotted against the 
number of realizations (Figure 4). From 50 to 400 realizations, the standard deviation decreased 
rapidly, and after 400 realizations the standard deviation stabilized. 

Figure 5 shows the predicted images of soil erodibility K values using the model calibration 
data set for the three methods. The lowest predicted values occurred in the southwest comer of 
the area and the highest in the northeast central area. From southwest to northeast, the predicted 
values increase. The spatial distribution is similar among all the predicted images and appears 
consistent with that of the data set consisting of the 524 field samples in Figure 1. 

In Figure 6, variance images of predicted values using these methods are presented. 
Ordinary kriging and Gaussian simulation produce smoothed variance images over the entire 
region. Most of the variances fell in the interval of 0.001 to 0.002. Indicator simulation give a 
larger range of prediction variances, and the variances increase from southwest to northeast, 
which is consistent with spatial distribution of the data sets. 

The probability maps for predicted values larger than 0.40 using Gaussian simulation and 
indicator simulation are given in Figure 7. These maps are very similar in spatial distribution 
and slight differences exists only at some small areas. These probabilities for the predicted K 
values larger than 0.4 increase from southwest to northeast. Most of the probabilities are less 
than 0.1 at southwest and larger than 0.5 at northwest. These features are supported by the 
spatial distribution of the data sets in Figure 1. 

Additional comparisons were made with the validation data. The three methods are 
compared in Table 2 based on mean and variance of predictions at the validation points, and 
mean error and mean square error (error = predicted - observed). Overall, the three methods 
produce slight overestimation. The Gaussian simulation has the smallest bias and mean square 
error, then ordinary kriging and finally indicator simulation. However, the errors were not 
constant. Figure 8 shows the predicted K values based on the three methods versus the 
validation K values. The narrow lines are linear regression lines through the data. It can be seen 
from this figure that all three methods overestimate when the K value is small and underestimate 
when the K value is large. The methods were assessed in terms of spatial variance. The overall 
area was systematically divided into 50 m by 50 m cells and mean square errors were calculated 
for each of the cell. Figure 9 shows the mean square error for each method across space. 
Although the mean square errors are conservative estimates, the mean square errors are not 
smooth across space like, the variance images of predicted values in Figure 6 for ordinary 
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kriging and Gaussian simulation. The spatial distributions of the mean square errors are very 
similar to the variance images of predicted values based on indicator simulation. 

5. Summary 
Three spatial statistical methods produce similar prediction maps of soil erodibility K values 

and the spatial distribution of the predicted values is consistent with that of the model and test 
data sets, although there was slight overestimation when the K value is small and 
underestimation when the K value is large. Compared to these three spatial methods, the 
traditional point-in-polygon method results in smoothed spatial prediction and variance maps. 
At the same time, the use of published soil erodibility K values from soil surveys may lead to 
large over- and underestimation compared to the field sample K values. 

According to the mean square error calculated from the test sample K values and their 
estimates, suggest that sequential Gaussian simulation is the best method for mapping the soil 
erodibility factor, then ordinary kriging, and finally sequential indicator simulation. The main 
reason may be that Gaussian simulation requires normal distribution of data sets and the normal 
distribution of the model data set used has led to the most suitable use of Gaussian simulation. 
Theoretically, sequential indicator simulation is very flexible because the distribution of data set 
need not be predefined. However, unlike Gaussian simulation and ordinary kriging, indicator 
simulation needs several indicator semivariograms to be developed. The modeling of these 
indicator semivariograms can be complicated and can lead to additional errors and uncertainty. 

Gaussian simulation and ordinary kriging produce only smoothed variance images. For 
ordinary kriging the reason may be that the error variances depend only on the data 
configuration. For the Gaussian simulation, the reason may due to two factors, only one 
semivariogram is used, and that the k value samples are geographically dense. With indicator 
simulation, the variance is not based on the configuration of the data. 
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Table 1. Experimental semivariogram models of 262 field sample K values used for modeling. 
Range Sill Nugget Residual Model 
233.78 0.0043 0.0007 0.00014 Spherical * 
117.52 0.0038 0.0013 0.00012 Gaussian 
188.87 0.0065 0.0006 0.00019 Exponential* 

Standardized indicator semivariogram 
Indicator Cutoff Zs Probability Range Sill Nugget Model 

1 0.178 0.172 160 0.45 0.55 Spherical 
2 0.218 0.347 150 0.55 0.45 Spherical 
3 0.243 0.473 130 0.55 0.45 Spherical 
4 0.273 0.668 100 0.60 0.40 Spherical 
5 0.308 0.840 80 0.45 0.55 Spherical 

* These experimental semivariogram models were not used for modeling K values. 

Table 2 Validation companson of three spatia methods based on 262 field validation samples. 
Methods Mean of Variance of Mean of difference Mean Square Error 

Predictions Predictions (Predicted-observed) (MSE) 
(regional) (regional) 

OK 0.250966 0.04929 0.001004 0.00137 
SG 0.250710 0.04741 0.000782 0.00136 
SI 0.257518 0.03902 0.008205 0.00157 
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Figure 1. Location and soil erodibility K values of soil samples (Top), and soil types and K 
values from soil survey (Bottom). 
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Figure 3. Experimental and modeled omni-dimensional semivariograms of field sample K 
values for model data set. 
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Figure 4. Standard deviation of realizations versus the number of realizations. 

75 

Conference on Applied Statistics in Agriculture
Kansas State University

New Prairie Press
https://newprairiepress.org/agstatconference/2000/proceedings/7



76 

:us\ik~~ 

SU~timate 

Si_estimate 
_0.13-0.16 
fill 0.16 - 0.19 
00.19-0.22 
00.22-0.25 
~ 0.25-0.28 
00.28-0.31 
00.31-0.34 
_ 0.34-0.37 
D 0.37-0.4 
_ 0.4-0.43 
_ No Data 

Kansas State University 

N 

A 
Figure 5. Predicted images of K factor from model data set using three methods (OK - ordinary 
kriging, SG - Gaussian simulation, SI - indicator simulation). 
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Figure 6. Variance images of predicted K factor values using the three methods (OK - ordinary 
kriging, SG - Gaussian simulation, SI - indicator simulation). 
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Figure 7. Probability maps for predicted K factor values larger than 0.40 using Gaussian 
simulation (SG) and indicator simulation (SI). 
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Figure 8. Predicted K factor versus validation K factor (OK ... ordinary kriging, SG - Gaussian 
simulation, SI - indicator simulation). 
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Figure 9. Spatial distributions of mean square of errors within 50 m by 50 m cells for ordinary 
kriging (top), Gaussian simulation (middle) and indicator simulation (bottom). 
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Figure 7. Probability maps for predicted K factor values larger than 0.40 using Gaussian 
simulation (SG) and indicator simulation (SI). 
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Figure 8. Predicted K factor versus validation K factor (OK - ordinary kriging, SG - Gaussian 
simulation, SI - indicator simulation). 
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