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BIAS IN PRINCIPAL COMPONENTS ANALYSIS DUE TO 
CORRELATED OBSERVATIONS 

Hong Jiang and Kent M. Eskridge 
Department of Biometry, University of Nebraska-Lincoln 

ABSTRACT 

A common practice in many scientific disciplines is to take measurements on several 
different variables on each unit from a designed experiment. This practice is cost efficient and 
results in data that may be analyzed using multivariate statistical methods. Usually, principal 
components analysis (PCA) is conducted by decomposing the covariance matrix of the several 
dependent variables using eigenanalysis without accounting for possible correlations among the 
observations. To evaluate how correlated observations bias PCA results, we used algebraic 
derivation and simulation for several different types of correlation structures. Our results 
indicated that sampling error generally had a much larger impact on the bias of PCA results than 
correlation between the observations. If we ignore the sampling error and there are no time trends 
or treatment effects, the PC's and the percent variance explained by a PC is not affected by 
correlated observations, however the eigenvalues are biased. If the sampling error is considered, 
for moderate sized correlations between observations and reasonably sized designs, bias was 
generally small enough to ignore for the first PC, otherwise SAS PROC MIXED may be used to 
easily correct for correlated observations, resulting in less bias in the PCA results. 

1. INTRODUCTION 

In most experiments in science and engineering, multiple variables are measured on each 
experimental unit. Typically experimental designs are the RCBD (randomized complete block 
designs) and the CRD (completely randomized designs), where single or repeated measurements 
are taken on each experimental unit for each of different variables. 

In the analysis of such experiments, principal components analysis (PCA) is a useful 
multivariate method for understanding the nature of association among the variables. One of the 
goals of PCA is to reduce the dimension of the data from the total number of observed variables 
to a few meaningful "new" variables called principal components (PC's), that reduce the 
complexity of problem and aid with describing and understanding variation in the data. PC's are 
"composite" variables that are explanatory combinations of the original variables' where the 
coefficients display how each ofthe original variables' affects the PC's response and where the 
relative size of the coefficients give meaning to the component. The first few PC's usually 
account for the most of the variation in the data in which case they can be used to summarize the 
data with little loss of information (Johson and Wichen,1998; Johson, 1998; Morrison, 1976). 

An important assumption of the PCA method is that all observation vectors are 
independent. PCA method is conducted without accounting for possible correlation among the 
observations in most applications. However, observations from scientific experiments will 
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generally be correlated, either due to repeated measurement of the experimental units, or due to 
the nature of the experimental design . Repeated measurement of experimental units will cause a 
dependence (or serial correlation) between the measurements taken over time. Repeated 
measurements arise in many fields, and are more common than single measurements. For 
example, in longitudinal individual studies, experimental units are monitored successively over a 
period of time to record the changing pattern ofthe responses (Crowder, 1996) . Even when 
experimental units are only measured once, the nature of the design of the experiment will often 
cause observations to be correlated. For example, in a RCB, with blocks random, all 
observations on a variable within a block are equally correlated and the resulting correlation 
structure is compound symmetric (CS). The more effective the blocking the larger, the 
correlation among observations within a block (Lentner, 1993). 

Therefore, an important question arises: how does correlation among observations affect 
PCA results when the correlation is ignored? We algebraically developed equations to determine 
the bias of eigenvalues and eigenvectors due to first order serial correlation (AR(l)) and CS 
correlated observations when the true covariance matrix was known. To evaluate the bias of PCA 
results as affected by both correlated observations and sampling error, we simulated multivariate 
normal observations with AR(l) and CS correlation structures. Then we computed eigenvalues 
and PC's based on the correlated observations and compared the results with the true eigenvalues 
and PC's. We also demonstrated how to accommodate serial correlation and reduce the bias of 
the PCA results using PROC MIXED. 

2. THEORY AND METHODS 

In scientific experiments, data on two variables are usually set up as following, 
Y1 ZI 
Y2 Z2 

YsZs 
where Y I' ... , Ys are nx 1 observation vector of variable Y on s experimental units for a repeated 
measure design or s blocks for a block design and ZI' ... , Zs are observation vectors of variable Z. 
Assume that subjects (or blocks) are independent and for each subject the between variables 
correlation matrix free serial correlation is: 

L = [ cr ~ cr Y2Z 1 
cr yz cr z 

To understand how observations are correlated among observations within each variable 
and across the variables, it is important to re-express data matrix as a column vector: iY1' 

Y 2"" Ys' ZI' Z2""Zs' )' Then the covariance matrix of this vector allows one to see these 
different types of correlations. For example, in an experiment with 2 subjects, 3 repeated 
measures and 2 variables per subject, the re-expressed data matrix is 
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[ 

Vy 0 

o Vy 
V = V 0 

yz 
o Vyz 

(1) 

where V y is a 3x3 covariance matrix within subject across observation; V yz is a 3x3 covariance 
matrix within subject across variables; and Vz is defined similarly to Vy. In this study, we assume 
Vy=o/xR, Vz=o/xR, V yz=oyzxR where R is the across observation, within subject correlation 
matrix. R may take several different forms depending on the structure of the data. V may be 
extended to any number of subjects (or blocks), variables and repeated measures. 

Types of correlation structures across observation 

In this study, we analyzed two types of correlation structures across observation: 
first order autoregressive serial correlation and compound symmetric. 

First order autoregressive serial correlation (AR(l) ) 

Repeated measurements arise in many diverse fields. The term of repeated measure refers 
to situations where the same characteristic is observed, on the same experimental unit at different 
times. This means that when observations are made over time, the effect of the disturbance 
occurring at one period carries over into another period. For the AR(1) structure, the model is 
y=XP+Et ; Et=pEt_1+Ut where ut is a normally and independently distributed random variable with 
mean zero and variance 0/ and it is assumed to be independent of Et-i. It can be shown that 
E(Et)=O, Var(Et)=o/I(1-p2)=o2, and COV(Et, Et_i)=pi0 2 for i<t, COV(Et, EtJ=pi02 indicates that the 
greater the number of periods between two disturbances is, the smaller their covariance is 
(Kmenta,1971; Chatfield, 1999).For example, with 2 subjects, 3 repeated measures and 2 
variables, the Vy in covariance matrix V in (1) is Vy=o/xR, where 

[ 
1 P P2

] 

R = pIp 
p2 P 1 

In this study, we assumed the across variables covariance matrix, Vyz in (1), can be expressed in a 
similar manner, Vyz=OyzxR 

Compound symmetric correlation structure (CS) 

A correlation matrix among observations is said to possess compound symmetry (CS) 
when it can be written in the form 
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[
1 P P ... P] 

R =:. p p .p. .;. 

This is a reasonable covariance structure for a single variable for many designed experiments 
(Morrison,1976). For example, consider the RCB design with random blocks. 

151 

The model is Yij=Il+~j+'ti+Eij; where E(Yij)=Il+'ti , V(y)=Op2+0e and COV=(Yij, Yrj)=Op2 i:;t:i', 
and we define p=Op2j(Op2+ 0/), so Corr(Yij, Yrj)=P' In this case the above covariance matrix R 
holds for a single block. In the example with 2 blocks, 3 treatments and 2 variables Vy=o/xR, 
and V yz=oyzxR. Many other types of designed experiments result in similar but more complex 
covariance matrices. 

Principal Component Analysis ( PCA ) 

PCA is one of the most widely used methods in multivariate analysis. Principal 
components depend solely on the covariance matrix or correlation matrix of the original variables 
Xl' x2' ... , xp' The ithpC is defined as the linear combination PCi, 

PC - + + + i-I 2 ... P , - e'lx 1 e'2xl ... e, X -", t t t tp p 

where ~i is called an "eigenvector" having coefficients eij' The coefficient subscript i refers to the 
eigenvector index and j refers to the original variable (xJ index. The eigenvectors and 
eigenvalues are obtained by performing eigenanalysis on the correlation (or covariance) matrix. 
The variance of each principle component PCi is the eigenvalue, denoted by Li, i= 1, 2, ... , p, of 
the i1heigenvector. This can be shown by noting that Var(PCJ=~i':E~i =Li . In addition the 
covariance between any two different PC's is zero: Cov(PCi PCk)=~i':E~k=O. The proportion of 
total population variance explained by the kth principal component is LJL,Pi=1 ( LJ Where 
L,Pi=1 (Li) is the total variance or the sum of all the variances of the original variables (Johnson 

and Wichern, 1998; Morrison, 1976). 
Standard PCA implicitly assumes no covariance between any two observations, either 

within a variable or across variables. Accordingly, the covariance matrix V for two variables y 
and z in equation ( 1 ) is implicitly assumed to have R=I, i.e. all observations are uncorrelated. 

Bias of eigenvalues, eigenvectors and percent variance explained by peA 

We consider two different situations in how precisely the covariance matrix is estimated: 
(i) The population covariance matrix V is known, and the sampling error is not a consideration. 
In this case, we derive algebraic results based on expected SS and cross-products to see the 

relative influence correlation among observations on the bias of PCA results. 
(ii) For small samples, we use simulation to assess the combined effects of sampling error in 
estimating V and correlated observations on bias of PCA results. 
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i. Algebraic method 

In this section we will algebraically derive bias of eigenvalues, eigenvectors and percent 
variance explained by PC's with assumptions: (1) V has structure as in equation (1), (2) V is 
known for both AR(I) and CS correlation structure, and (3) there is no time trend for a repeated 
measures design or there are no treatment effects for a RCB design. 

In many applications of PCA of experimental data, researchers estimate ~ with the 
sample covariance matrix, disregarding any correlation among observations. When there is 
correlation among observations, the sample covariance matrix is biased. 
Assuming subjects are random, sample variance and covariance and their expected value E(.) are 
given as follows (Searle, 1997): 

L~YiJ·-y")2 
S2 = __ '--__ 

Y ns-l 
y'Ay. 

ns-I' 

z'Az 
ns-1' 

1:1: (y "" - y" )( z"" - z" ) y' Ay S = IJ I. IJ I. __ _ 

yz ns -1 ns-l 

E(y' A:. ) tr(A v.y)+~ I ~ 
E(S2) = Y = Y Y 

Y ns-1 ns-1 

E(zl Az\ tr(A Vz)+1l I All 
E(S2) = 'I = -z -z 

z ns-1 ns-1 

E ( 'A) tr (A V Y z ) + f.-ly 'A f.-l z 
E(S)= Y z = ____ -=-__ 

yz ns-l ns-l 
where n is the number of repeated measures, s is the number of subjects ( or blocks), and 

A = 1- j = 1- (11 ns)11' which corrects for the mean. 

Now, 

_ 11'Vy 
tr (A V y) = tr (I - J) V y) = tr (I - (I Ins) 11' ) V y) = tr (V y) - tr (--) = 

ns 

d. n n 

o;tr(R) - -y tr(l1 'R) = 0; (ns - L L ri)/n) ~ 
ns i~j~ 

n n 

(L L roo) - n 
"-1"-1 IJ 

E(S2)=d.(1- I-J- )+J.l 'AJ.l l(ns-l)=co;+J.l 'AJ.l I(ns-I) 
Y Y n(ns-l) -y -y -Y -y 

where rij is the element of the R matrix. 
In the same way, we can get 

E(S;)=ccr;+1l 'All /(ns-l) 
-z -z 

Similar result hold for any other pairs of variables. 

Conference on Applied Statistics in Agriculture
Kansas State University

New Prairie Press
https://newprairiepress.org/agstatconference/2000/proceedings/13



Applied Statistics in Agriculture 153 

If time trend or treatment effects are not removed, PCA results will be biased. If we want 
to decompose the error covariance matrix with PCA, we shoud first correct for the time trends or 
treatment effects. 

In this study, we assumed that there were no time trends or treatment effects, so 
IlYl=lly2=······=llyn=}gy'A gy= 0 =} E(y'Ay) = tr(AVy), thus 

E(S) = J cr: cr :'J l (j yz (j z 

The expectation of the sample covariance is a constant c times the true covariance matrix.When 
the covariance structure is AR(l) model, for p variables, n repeated measures, and s subjects, 

n-I 2(n -i) i .. . 
c = (I - L ( -1) p) where c IS a functIOn of p, the number of subjects s and the number of 

i=1 sn n 

time measurements n. When the data have CS covariance structure, C = (1- ten ~~) p) . sn - n 

When observations are not independent, the sample covariance matrix estimates c~ and 
so is biased. However, as the sample size sand/or n, the number of time measurements gets 
large, c approaches 1 and the sample covariance matrix is a consistent estimate of ~. 

We assume that Lj is an eigenvalue of the true covariance matrix ~ and ~j is the 
eigenvector corresponding to Lj. Yet LCj be the eigenvalue of the covariance matrix c~. Then 
LCj=cLj.Thus the eigenvalue is biased by the factor c. The bias as a proportion of the true 
eigenvalue is LCj-L)/Lj=(cLj-L)/Lj=c-l. Thus the estimated eigenvalues are biased by the 
proportion c-1. Now note that L/~(L)=true proportion of total variance explained of the 1 st PC 
and (LC/~(LC)= estimated proportion of total variance explained of 1 st Pc. Then 
LC/~(LC)=cL/~(cL)= L/~(L) and so the proportion of total variance explained by any PC is 
unbiased. Now let ~j be the eigenvectors corresponding to LCj and using the definition of 
eigenvectors C~~j=CLi~i =} ~~i=(L)~i. But this last equality holds for the true eigenvector 
So ~j=~j and all eigenvectors are thus unbiased for all the PC's. These results hold for any 
balance linear mixed model as long as the sampling error is zero and there are no time trends or 
treatment effects. 

ii. Simulation method 

We used simulation to evaluate how bias of the PCA results were effected by sampling 
error in estimating the covariance matrix and by correlation among the observations. We used the 
SAS/MVN macro and SAS/IML to generate multivariate normal data (SAS MVN Macro) and 
SAS/IML to obtain the eigenvalues and eigenvectors of the sample covariance matrix and to 
evaluate the bias in the principle components results due to the repeated measures (SAS Institute 
Inc, 1990). We simulated observations for CS and AR(1) among observation covariance structure 
for values of p with 0.2, 0.5,or 0.9, for correlation among variables p yz as 0.3, 0.7, and the 
number ofrepeated measures n equal to 3 and 10.500 samples were generated for each case. 
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3. RESULTS AND DISCUSSION 

Algebraic results 

Based on the assumptions of V as in equation (1), with no trend or treatment effects, and 
no sampling error, the PC's are not affected by correlated observations. In addition, the percent 
variance explained by a PC is not affected by correlated observations. However, the proportional 
bias of the eigenvlaues is c-1. This bias can be severe when p is large, or the number of subjects 
s (or blocks) and the number of repeated measures n (or treatment) are small. 

Simulation results 

Figures 1 a and 1 b displayed the simulated proportional bias of the first and second 
eigenvalues that include sampling error for the AR(1) model with Pyz=0.3, 2 variables and 3 
repeated measures. When s is large, the bias asymptotically approaches zero. The simulation 
results suggested that the number of subjects (or blocks) should be greater than 30 to keep bias of 
the eigenvalues on the two PC's below 15%. Comparing Figures la and 1b where the correlation 
among the variables is 0.3 with Figures 2a and 2b where the correlation among the variables is 
0.7, we find the curves are somewhat different for PC1 and similar for PC2. Generally, it appears 
that the larger the correlation among the variables, the smaller the bias of the eigenvalues. 

Figures 3a and 3b display the simulated proportional bias of the variance explained by the 
PC's that include sampling error for the AR(1) model with 2 variables, 3 repeated measures, and 
P yz=0.3. When the number of subjects is large (>30), the bias is less than 15% and 
asymptotically approaches zero as the number of subjects become very large. But when s is 
small, bias can be large as compared to the algebraic no sampling error case where the bias is 
zero. The percent variance explained by the PC's is also affected by the size of correlation 
between variables where the larger the correlation among variables, the smaller the bias (Jiang, 
2000). 

Figures 4a and 4b show the proportional bias of the loadings for PC 1. We see that the 
bias trends are similar for both loadings. So interpretation of loadings appears to be similar to 
interpretation of the true loadings. 

Figures 5 -7 display the bias of PCA for 4 variables and 3 repeated measures when 
sampling error is considered. From Figures 5aand 5b, we can see that the first two eigenvalues 
all have positive bias. When the number of subjects is greater than 30 or the serial correlation is 
not very large, bias is less than 10% for the first eigenvalue. But there is a large positive bias 
(over 25%) for the second eigenvalue with s=30. We need to be careful about the second 
eigenvalue even though the number of subject is at least 30. 

From Figure 6a, bias of the percent variance explained by PC1 is generally less than 15%, 
when number of subjects is greater than 10 . However, from Figure 6b, bias of the percent 
variance explained by PC2 can be large (>25%), even with 30 subjects. 

Figures 7 a, 7b, 7 c, 7 d show the proportional bias of the loadings of PC 1. All four 
loadings have negative bias and similar bias trends, so interpretation of PC 1 is relatively 
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unaffected by sampling error. On the loading for the other PC's, the bias trends are not similar, 
and consequently, interpretationes can be quite biased. Bias for the proportion of variance 
explained by the first PC is rather small but can be large for the other PC's Very similar results 
are obtained using the CS correlation structure.( Jiang, 2000). 

4. DATA ANALYSIS 

In small samples (s<30), it is likely useful to use an estimation procedure to obtain 
variance component estimates after accounting for serial correlation. The covariance matrix using 
these variance and covariance estimates may then be decomposed using PCA In this section we 
demonstrate how to use PROC MIXED to get these variance estimates, and compare the PCA 
results with those based on the sample covariance matrix. 

We applied this approach to data from 22 children who were measured monthly over 
eighteen monthes for blood lead, urine lead, food lead, and lead on the childrens' hand denoted 
PB_BLOOD, UA, PB_FOOD and HDWP (Stanek, et aI, 1998). We used the model is 
y=jJ.+sj+ejj , where sj=ith subject effect and eij-mvn(O, ~). PROC MIXED (Littell, et aI, 1996) 
was used to estimate the covariance matrix after removing the effects of serial correlation. For 
these repeated measures data, we used the UN@AR(I) covariance matrix in MIXED. This 
covariance matrix is the same as the V matrix we defined as above, that is, all variables have 
same across observation correlation structure, both within and among variables, where R is from 
the AR( 1) serial correlation structure. 

To use PROC MIXED, all variables were stacked into a new single variable Y with the 
following SAS statements: 

Proc Mixed; 
Class sub var visit; 1* sub is subject number, var identifies the variable, 

visit is repeated measurement # *1 
Model Y=var/noint; 1* Y is the stacked new variable *1 
Repeated var visit Isubject=sub type=UN@AR(1); 

Using this program we obtained the covariance matrix after removing the effect of serial 
correlation: 
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Covariance Parameter Estimates (REML) 

COY Parm Subject Estimate Variables 
·.mw~~.w .w····~·y~w<~«,~""," ~~H'~',~'~~,,~w_ w,~~ __ """w,~""·.·,,w~ ~~w·""~---'W"""Wc.~w~Ym. , r'm"~_'~~'_'H'HHmH'~~'~ 

, ........ ,.",..,,_'w""·.w.~w."'= ......................... " .... ~" ............... = .............................. "'''''_~_~W""~_ 
~_~'Y.-. ........ ,""" __ .w ... ,,, ..... ..... _"" .. "''''N.v ... _~= ........ w· ... , ...... , .... ,= .. · 

VAR UN ( 1 , 1 ) SUBJNO 20.37212817 HDWP 

UN (2,1 ) SUBJNO 1.16684061 

UN(2,2) SUBJNO 12.01942312 PB - FOOD 

UN(3,1) SUBJNO 1.38920152 

UN(3,2) SUBJNO 0.23577516 

UN(3,3) SUBJNO 3.38313055 UA 

UN (4,1 ) SUBJNO 2.26274525 

UN(4,2) SUBJNO 0.39611874 

UN(4,3) SUBJNO 2.8453265 

UN(4,4) SUBJNO 8.8123017 PB - BLOOD 

Serial VISIT AR(1) SUBJ 0.40341359 

Correlation 

Then we used this covariance matrix, which is not influenced by serial correlation, to 
obtain eigenvalues and eigenvectors of the correlation matrix, using Proc Princomp. We then 
compared these PCA results with those based on the sample correlation which contained the 
effect of serial correlation. 

Eigenvalues of the Correlation Matrix after removing effects of serial correlation 

Eigenvalue Difference Proportion Gnmlative 

PRIN1 1.62277 0.(i)8803 0.405693 0.40569 

PRIN2 1.01397 0.129596 0.253492 0.65919 

PRIN3 0.88437 0.405485 0.221093 0.88028 

PRIN4 0.47889 0.119722 1 

Eigenvalues using sample correlation matrix. 

Eigen values of the Correlation Matrix ! ~ , 
Eigenvalue Difference Proportion Cumulative 

PRINI 1.66388 0.584978 0.41597 0.41597 

PRIN2 1.0789 0.330903 0.269726 0.6857 

PRIN3 0.748 0.238785 0.187 0.8727 

PRIN4 0.50922 0.127304 1 
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Eigenvectors of the Correlation Matrix after removing effects of serial correlation 

Figenvectors ! 
PRIN1 PRIN2 PRIN3 PRIN4 

HDWP 0.366749 0.354769 0.860017 0.002094 

PB_FOOD 0.122927 0.897845 -0.422799 0.001815 

UA 0.651739 -0.186182 -0.202848 0.706701 

PB_BID 0.652396 -0.182617 -0.201156 -0.7075 

Eigenvectors on samplecorrelation matrix 

Eigenvectors ! ! 
~ 

PRIN1 PRIN2 PRIN3 PRIN4 

HDWP 0.41539 0.534728 -0.734024 0.052206 

PB_FOOD 0.352991 0.64679 0.674355 0.048022 

VA 0.60836 -0.332054 0.051238 -0.719036 

PB_BLD 0.576842 -0.430661 0.061877 0.691343 

Proportion bias of eigenvectors (assuming mixed results are unbiased) 

PRIN1 PRIN2 PRIN3 PRIN4 

HDWP 0.1326274 0.5072569 -1.853499 23.934743 

PB_FOOD 1.8715578 -0.27962 -2.594975 25.461639 

VA -0.066559 0.7834935 -1.252595 -2.017455 

PB_BLD -0.115811 1.3582782 -1.307609 -1.977154 

Using Proc Mixed to correct for serial correlation in these data did not change the 
eigenvalues results much compared to the PCA results based on the sample covariance matrix. 
There appeared to be considerable bias in some of the loadings. PC1 uncorrected for serial 
correlation shows a much higher loading on food lead than PCI on the results corrected for serial 
correlation. 

5. CONCLUSIONS 

This study evaluated the effects of correlation between observations, and the variables, 
and sampling error on the bias in PCA results. In general, sampling error had a much larger 
impact on the bias of PCA results than correlation among the observations. 
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In most cases evaluated, the bias of eigenvalues, The proportion of variance explained by 
the PC's and interpretation of the loadings was not severe for PC 1 when there were at least 30 
subjects. Bias for PC2 and higher could still be large even with more than 30 subjects. 

As a general rule of thumb, if one is mostly interested in the first PC, then analysis of the 
sample covariance matrix, without accounting for the effects of serial correlation is probably 
acceptable if the experiment has more than 30 subjects for a repeated measures design, or 30 
blocks for a simple block design, however, fewer subjects may be required with more repeated 
measures (n>30) (Jiang, 2000). If the number of subjects or blocks is smaller than 30, and/or the 
researcher is interested in PC's beyond the first, it may be better to first correct for the serial 
correlation, before PCA is conducted. We are currently investigating the reduction in bias using 
this approach. 
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