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SOME STRATEGIES FOR SELECTING AND FITTING COVARIANCE 
STRUCTURES FOR REPEATED MEASURES 

Raul E. Macchiavelli, Dept. of Agronomy and Soils, Univ. of Puerto Rico, P.O. Box 9030, 
Mayaguez, PR 00681-9030 

Abstract 

Since in longitudinal studies the covariance structure is often regarded as a nuisance parameter, 
the strategy has been to use a parsimonious covariance model that describes adequately the 
observed data and permits better inference on the parameters of interest. In this paper we present 
some diagnostic tools to choose an appropriate covariance structure and discuss some strategies 
for fitting it. The main diagnostic tool is the "residual", computed as the standardized difference 
between the elements of the fitted covariance (concentration or correlation) matrix and the 
corresponding unstructured matrix. SAS Proc Calis is a very efficient procedure that fits many 
covariance structures in models with no fixed effects. Based on this procedure, we discuss some 
strategies to choose initial values and improve convergence problems in certain commonly used 
structures. 

1. Introduction 

The analysis of repeated measurements needs to consider the dependencies among the 
observations taken on the same unit. In normal linear models, this is attained by assuming a 
particular structure for the covariance matrix (Dempster 1992, Lindsey 1993, Jennrich and 
Schluchter 1986, Wolfinger 1996). 

The choice of structure affects both the power and the validity of test procedures about 
the mean parameters. Since in longitudinal studies the covariance structure is often regarded as a 
nuisance parameter, the ideal solution is to use a parsimonious covariance model that describes 
well the observed data. If an unrealistically simple covariance is selected, the tests may be 
invalid. On the other hand, an unnecessarily complex structure (or no structure at all) may 
decrease the power (Macchiavelli and Moser 1997). 

Diggle (1988) mentions several steps involved in making inferences about the mean 
parameters in these models. The first step is to fit a mean model (overfitting if necessary to avoid 
creating spurious dependencies), then initial covariance structures can be studied using relevant 
theory and graphics. Finally, formal statistical techniques can be applied to select the final 
covariance structure and make inferences for the mean parameters. From a practical perspective, 
this strategy has two aspects that are critical to ensure a good covariance structure is chosen and 
fit: the selection of the structure and the likelihood optimization problem for fitting the selected 
structure. 

Methods for choosing appropriate structures are mostly based on model selection 
techniques: sequence of likelihood ratio tests (Lindsey 1993, Diggle et al. 1994) or penalized 
likelihood criteria (Macchiavelli 1995). In the related area of linear structural equations 
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(Joreskog and Sorbom 1987), indices of goodness of fit and residuals have been developed 
(Browne 1982, SAS 1996). In this paper we introduce residuals from the covariance and 
concentration structures, which, after proper standardization, permit the graphical evaluation of 
the goodness of the fit. 

In the last five years, there has been a renewed interest in fitting new structures, due 
mostly to their widespread availability in SAS Proc Mixed (Wolfinger 1996, SAS 1996). One of 
the main difficulties that practitioners have found in the application of these more complex 
covariance structures is the poor convergence of the numerical routines used to fit them. This is 
due, in part, to the large number of parameters involved in complex structures if the number of 
time periods is large. The choice of appropriate initial values for the parameters is therefore very 
important to improve the convergence of the algorithms. We present a strategy for computing 
initial values for a variety of covariance structures using SAS Proc Calis. 

2. Concentration residuals 

Let Y = (~, ... , YT ) ~ NT (fl,:E) be a T-dimensional vector representing repeated 

observations on a single experimental unit. Consider n independent random vectors (Y1,···, Y n ) , 

each with the same covariance matrix. Define 

and assume a linear model E(YnxT ) = Xnxa0 axT' for some n x a matrix X of full column rank. 

The elements of 0 are functionally independent. 
We are usually interested in making inferences about 0, the mean parameters, while 

the covariance matrix, :E, contains the nuisance parameters. Since the multivariate normal 
distribution is an exponential family, the canonical parametrization for the nuisance parameter is 
not in terms of 1: but in terms of the concentration matrix, n = :E-1 . The likelihood for n 
independent observations using this parametrization is: 

L(Y; @,ll) ~ (2Jrr"''' Illl"" exp{ -ttr[ II t(y, -X,@l(Y, -x,@)']}, (2.1) 

where Xi is the ith row of X. 

As mentioned before, several structures are commonly used for n = (OJi]) or :E = ((J' ij) . 

The compound symmetry structure assumes OJ ii = a + band OJi] = b if i -::f:- j. The first order 

autoregressive model assumes the (J'ij = (J'pli- ]1. The first order antedependence assumes that 

OJi] = 0 if I i - j I > 1. In the particular case of structures defined only by conditional 

independence (zeroes in n), we have a linear exponential family (Dempster 1972, Cox and 
Wermuth 1990). Some of the most commonly used covariance structures have structural zeroes 
in n = :E-1 (CS, CSH, AR(1), ARH(1), and ANTE(1)), while others have structural zeroes in :E, 
(TOEP(q), TOEPH(q), and UN(q)). 
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From the likelihood function, it is clear that the MLE of n for complete data if no 

structure is assumed is flu = S-1 , where 

(2.2) 

Under a particular structure, the MLE of n will be denoted as i!. 
Given that the canonical parameters are the elements in n, a natural way of checking the 

appropriateness of a particular structure is by using the "concentration residuals:" 
~ ~ 

R=nu-n (2.3) 

These residuals have the advantage over the "covariance residuals" (defined similarly for 1:) of 
being in terms of canonical parameters. Furthermore, they do not have structural zeroes in many 
commonly used situations, like the conditionally independence models considered by Dempster 
(1972), Cox and Wermuth (1990), and Macchiavelli and Moser (1997). 

In order to standardize these residuals, and be able to display them in a sensible way, 
their asymptotic covariance matrix will now be computed. 

Let A TxT be a symmetric matrix. Define the operator vech as the T(T -1) /2 - vector of 
nonredundant elements of A, arranged by rows (Henderson and Searle, 1979). Let 

Wu = vech( flu) and w = vech( fl). Then r = vech(R) = Wu -w. 
The asymptotic distribution of Fncov(wu -w) is N(O,Iss(n») (Cox and Wermuth, 

1990), where Iss (n)has elements ncov( Wij'Wk1 ) = WikW j1 +wi/w jk , 

If a structure is present in n, fewer parameters will be necessary. Let y be the vector 

containing such parameters. We will denote the structured concentration as nCr) to emphasize 

its dependence on y. Since the usual regularity conditions hold, 9, the MLE of y, IS 

asymptotically normal: 

Fn (9 -y) ~ N(O,C(y»), (2.4) 

where C(y) = n r 1 (y). The asymptotic distribution of Fn (w - w) can be deduced from this one 

using standard results on functions ofMLEs (see, for example, Seber 1984, p. 532): 

Fn (w - w) ~ N (o,J(y)C(y)J(y),) , (2.5) 

where J = a vechn / ay . 
Since Fn (w - w) = J(y)(f -y) +0/1), then cov( Fnwu, Fnw) = J(y)C(y)J(y)' +op(I). 

Therefore, 

Cov( Fn (wu -w)) ~ Iss(n) - J(y)C(y)J(y)'. (2.6) 

From these results we can obtain the asymptotic distribution of Fn r , which will be normal with 

expectation ° and covariance matrix nK = Iss (n) - J (y )C(y)J (y)'. In practice, an estimate of 

K can be obtained by substituting n by flu (or fl), and y by 9 . 
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In order to display the concentration residuals, two standardizations can be done. The 
first one consists in dividing each residual by its standard deviation (the square root of each 
diagonal element of K), and plot these standardized residuals in a boxplot or a stem-and-Ieaf 
display. Large absolute values or extreme asymmetry in the plot are indications of bad fit. The 

second alternative is to plot K-)I, r in a normal probability plot: we should observe a straight line 
if the structure fits well. 

3. Some strategies for finding initial values of covariance parameters 

One of the main difficulties encountered when trying to fit covariance structures to large 
data sets with missing data and complex covariances is the optimization of the likelihood 
function. This is a particularly difficult task given the number of covariance parameters found 
when there are many time points and heterogeneous models are used. In cases like this, it is 
critical to use "good" initial estimates to improve (or even attain) convergence. 

This problem is compounded by the fact that many specifications of the covariance 
structure in SAS Proc Mixed are done by parametrizing ~ instead of g = :E-1 . This is important 
when the relationship between the elements in both matrices is not trivial (of course, there is 
always a one-to-one correspondence between them). In the case of conditional independence 
models g has a very simple structure (because it has many structural zeroes), while ~ is much 
more complex. One way of obtaining initial values for the parameters in ~ is by using Proc 
Calis, which has a very flexible way of modeling covariances. In this procedure one can specify, 
in the COSAN option, any structure of the form: 

(3.1) 

where each F can be a general matrix G, its inverse G -1, or (I - G t; and P can be a 

symmetric matrix Q or its inverse Q-I. 
If the data were complete, the maximum likelihood estimator under any structure could 

be obtained from I:u , the MLE of ~ assuming no structure. This can be done in Proc Calis very 

efficiently (Macchiavelli and Moser 1996). It the data are not complete, the strategy is to obtain 

an approximate estimate of ~ based on I:u in Proc Calis and then extract from this the initial 

values for the parameters in Proc Mixed. This may require some processing in Proc IML in order 
to have a smooth transition between the procedures. 

The first order antedependence structure, ANTE(I), can be specified in Proc Calis as 
, 

:E=(I-ctn(I-ct, where C is a lower triangular matrix whose only (T-l) nonzero 

elements are located along its secondary diagonal and D is a diagonal matrix with T different 
elements. The first order autoregressive structure, AR(!), can be specified similarly but with all 

nonzero elements in C equal, D as a diagonal matrix of (}2 and boundary constraints to assure 
I p I:s: 1. If the structure is the first order autoregressive structure with heterogeneous variances, 
ARH(1), the specification is similar, except that the elements of D are all different. 

Conference on Applied Statistics in Agriculture
Kansas State University

New Prairie Press
https://newprairiepress.org/agstatconference/2000/proceedings/14



Applied Statistics in Agriculture 165 

For the covariances with structural zeroes in 1:, the specifications are similar but use 

~ = (I - C)D(I - C)' (i.e., do not invert the first factor). 

4. Examples 

In order to check the feasibility of the proposed methods, 100 random normal vectors 
were generated using SAS. Each vector had 8 elements, and was transformed so that the 
dependencies correspond to a heteroscedastic autoregressive model of order 1. The covariance 
matrix ~ = (aif) has elements a ii = ij pli-ii, with p = 0.8 . 

Standardized concentration residuals were obtained assuming the following structures: 
compound symmetry, first order autoregressive, first order heteroscedastic autoregressive (the 
correct one) and first order antedependence (also correct but not parsimonious). Computations 
were carried out in Maple (Redfern 1994). The residuals are presented in Figure 1. We can see 
that the two invalid structures result in values of standardized residuals well beyond (-3,3). On 
the other hand, for the two valid structures the residuals are all less then 3 in absolute value. Had 
covariance residuals been used instead of concentration residuals (using, for example, Proc 
Calis), structural zeroes would have appeared in 17 out the 36 residuals in the antedependence 
structure. 

In the following example we simulated a real situation with 4 treatments, 8 times and 8 
replicates. A scenario like this could occur, for example, if we are comparing the production (dry 
matter yield) of a pasture under 4 types of fertilization regimes. The plots would be arranged 
completely at random, with 8 replicates of each treatment. Each plot is cut every 3 months during 
2 years (8 cuts in total) and its dry matter yield recorded. The assumed covariance structure was 
a first order antedependence. (This particular structure can be used for equidistant and not 
equidistant intervals.) The true matrices C and D (defining the regression coefficients between 
lagged observations and the conditional variances, respectively) were: 

1 0 0 0 0 0 0 0 1 

-.8 1 0 0 0 0 0 0 1 

0 -.6 1 0 0 0 0 0 1 

0 0 -.4 1 0 0 0 0 1 
I-C= diag(D) = 

0 0 0 -.6 1 0 0 0 10 

0 0 0 0 -.8 1 0 0 10 

0 0 0 0 0 -.9 1 0 10 

0 0 0 0 0 0 -1 1 10 

, 
The resulting true covariance matrix was computed as ~ = (I - C) -I D (I - C) -I . The values were 

the following (covariances in the lower triangle, variances on the diagonal and correlations in the 
upper triangle): 
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1.000.620.38 0.17 0.04 0.02 0.02 0.01 

0.80 1.640.61 0.270.060.040.03 0.02 

0.48 0.98 1.590.45 0.090.06 0.04 0.04 

0.190.390.64 1.250.21 0.13 0.100.08 

0.120.24 0.38 0.75 10.5 0.63 0.48 0.40 

0.090.190.31 0.60 8.36 16.70.760.64 

0.080.17 0.27 0.54 7.53 15.023.50.84 

0.080.170.270.547.53 15.023.533.5 

U sing this mean and covariance structure, random normal observations were generated 
using SAS. In order to simulate missing observations, data were dropped randomly using 
Bernouilli random numbers with 1[=0.25. The SAS code used follows: 

proc mixed method=ml data=a; 
class treat time rep; 
model y=treatltime; 
repeated time /subject=rep(treat) type=un; 
make 'r' out=unsig; 

data unsig (type=cov); 
set unsig; 
_type_='COV' ; 
_name_ =' col' Illeft (trim (row) ) ; 
drop row; 

proc calis data=unsig method=ml coy all 
outstat=hat dfe=28 gconv=.00001 

maxiter=200; 
cosan b(8,low,imi)*d(8,dia); 
matrix b 

[1, ]= 0, 
[2, ]= ga1 0 , 
[3, ]= o ga2 0, 
[4, ]= 2*0 ga3 0, 
[5, ]= 3*0 ga4 0, 
[6, ]= 4*0 ga5 0, 
[7, ]= 5*0 ga6 0, 
[8, ]= 6*0 ga7 O' , 

matrix d 
[1,1] =delta1-delta8 

data hat; 
set hat; 
if _type_='MAXPRED'; 
keep coI1-coI8; 

proc iml; 
use hat; 
read all into sigmahat; 
sigma=vecdiag(sigmahat) ; 
rho= j (1 ,7,1 ) ; 
do i=1 to 7; 

rho[i] = sigmahat[i+1 ,i] 
sqrt(sigmahat[i+1 ,i+1]*sigmahat[i,i]); 

end; 
names= 'covp1 ' : 'covp15' ; 
param=sigma' II rho; 
create hat2 from param [colname=names]; 
append from param; 

proc mixed data=a; 
class treat time rep; 
model y=treatltime; 
parms / parmsdata=hat2; 
repeated time / subject=rep(treat) 

type=ante (1) ; 

run; 

F or this particular small example the algorithm with no initial values converged to a 
solution in 7 iterations, while the one using the initial values did it in 4 iterations. In more 
complex data sets the use of "good" initial values improved noticeably the convergence. 
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For some other covariance structures, the specification of the COSAN model in Proc 
Calis needs to be changed accordingly. For example, the following is the code needed for an 
ARH(I) structure: 

proc calis data=unsig method=ml cov all 
outest=hat dfe=28 gconv=.00001 maxiter=200j 

cosan b(8,low,imi)*d(8,dia)j 
matrix b 

[1,]= ° , 
[2,]= covp90, 
[3,] = ° x2 0, 
[4,]= 2*0 x3 0, 
[5,]=3*0 x4 0, 
[6,]= 4*0 x5 0, 
[7,]=5*0 x6 0, 
[8,]=6*0 x7 OJ 

matrix d 
[1,1] =covp1 -covp8 j 

bounds -1 < covp9 <1 j 
x2=covp9j 
x3=covp9; 
x4=covp9; 
x5=covp9; 
x6=covp9; 
x7=covp9; 

run; 

5. Summary 

In this paper we discussed how the covariance and concentration matrices have 
parameters that can be interpreted as covariances and conditional covariances. In particular a 
corner of zeroes in the concentration matrix yields a more realistic structure for repeated 
measures, since it implies conditional independence. In order to assess the fit of a given 
structure, conccentration residuals are introduced, together with two possibilities for their 
standardization. Finally, the issue of obtaining reasonable initial values for the iterative 
procedures is approached using SAS Proc Calis parametrizations, which permit very general 
structures to be fit. 
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Figure 1: Standardized Concentration Residuals 
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