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ON USING PROC MIXED FOR LONGITUDINAL DATA 

Walter W. Stroup 
Department of Biometry, University of Nebraska, Lincoln, NE 68583-0712 

Abstract 

PROC MIXED has become a standard tool for analyzing repeated measures data. Its 
popularity results from a wide choice of correlated error models compared to other software, e.g. 
PROC GLM. However, PROC MIXED's versatility comes at a price. Users must take care. 
Problems may result from MIXED defaults. These include: questionable criteria for selecting 
correlated error models; starting values that may impede REML estimation of covariance 
components; and biased standard errors and test statistics. Problems may be induced by 
inadequate design. This paper is a survey of current knowledge about mixed model methods for 
repeated measures. Examples are presented using PROC MIXED to demonstrate these problems 
and ways to address them. 

Key Words: Repeated measures experiment, mixed model analysis, correlated error models 

1. Introduction 

Longitudinal data, also known as data from repeated measures designs, are common in 
research throughout most agricultural disciplines. Data analysts use several methods to analyze 
longitudinal data. Two of the most common are multivariate analysis of variance (MANOV A) 
and univariate linear models. MAN OVA allows for correlated errors among repeated measures, 
but MANOV A is beyond the level of statistical training of most biological researchers, its 
assumed correlation model is inefficient, and its handling of missing data is even more so. 
Univariate linear models are far more accessible to biological researchers and much better at 
handling missing data. However, until recently, univariate linear models, as implemented by 
major statistical software packages (e.g. SAS PROC GLM) have been limited in their ability to 
handle correlated errors,. They have generally relied on assumptions that kept computing simple, 
but were not necessarily realistic. In the 1990's, comprehensive mixed model software has been 
introduced, notably SAS PROC MIXED. Because PROC MIXED makes accessible a 
comprehensive array of correlated error models, it has become a standard tool for analyzing 
longitudinal data. 

However, PROC MIXED's versatility come at a price. The purpose of this paper is to 
review the underlying theory behind PROC MIXED's analysis of repeated measures data, and, 
more importantly, to review issues of which users of PROC MIXED should beware and how to 
cope with them. This paper is divided into three parts. Section 3 reviews what is meant by 
longitudinal data and repeated measures designs. Section 4 reviews relevant linear mixed model 
theory and problems associated with applying it to longitudinal data. Section 5 is an illustration 
using a PROC MIXED analysis of a hypothetical data set. 
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44 Kansas State University 

2. Repeated Measures Design and Model Background 

For the purposes of this paper a repeated measures design is understood to have the 
following features: 

.. There are 2 or more treatments. Let t (~2) denote the number of treatments. 

.. Experimental units (subjects) are randomly assigned to each treatment. The number of 
subjects per treatment, denoted n;, i=l, 2, ... , t, need not be equal. Subjects may be assigned 
to treatments using any reasonable design, e.g. completely randomized, randomized 
complete or incomplete block, row-column designs such as Latin Squares, etc. 
"Reasonable" depends on the context of the particular experiment. To keep things simple, 
this paper presents examples using completely randomized designs. 

.. Each subject is observed at each of K times. The times are typically regularly spaced. They 
need not be equally spaced. Often, their timing reflects the biology of the subjects under 
study, e.g. growth stage. 

The data of interest from repeated measures studies can usually be presented in graphical 
form. The following is a typical graph. In this example, 2 treatments,"test" and "placebo" are 
compared. 

y 

Test 

Placebo 

Time 

Inference typically focuses on the following effects: 

.. Treatment x time interaction 
Are changes over time the same (parallel on the graph) for all treatments? 

.. Time effects 
Assuming negligible treatment x time interaction, how does the mean response change over 
time? If non-negligible treatment x time interaction exists, there may be interest in how 
response changes over time for each treatment. 

.. Treatment effects 
How do the mean responses to treatments differ? Again, this may be averaged over all times 
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assuming negligible treatment x time interaction, or specific to each time, otherwise. 

Assuming experimental units are assigned to treatments using a completely randomized 
design, the model equation is: 

Yijk = Ilik + Sij + eijk 
where 

Yijk = observation on /1 subject, or experimental unit, on ith treatment at kth time 
Ilik = mean of ith treatment at kth time, often expanded in effects form as 

11 + (Xi + 't'k + Yik' 

(2.1) 

where 11, (Xi' 't'k' and Yik are the intercept, treatment main effect, time main effect, 
and treatment x time interaction, respectively 

Sij = ilh subject effect - i.i.d. N(O,(JS2) 
eijk = random error, i.e. random variation among repeated measurements on each subject 

45 

If a more complex design is used to assign subjects to treatments, it is reflected in the model, e.g. 
by adding a block effect if a randomized block design is used. 

Superficially, equation (2.1) resembles the model for a split-plot experiment. However, a 
split-plot assumes random assignment of split-plot experimental units, and hence independent 
ejjk's, typically i.i.d. N(O,(J2). Because repeated measurements cannot be randomized, the eijk's in a 
repeated measures experiment are at least potentially correlated. Denote eij as the vector of errors 
for the repeated measurements on the ifh subject, that is, ei/ = (eij1 , eij2, ... eijK). 

The vector eij is assumed to be distributed MVN(O,I:), where I: models the correlation 
among the eijk's. Also, eij is assumed to be independent of sij' Thus, the observations, Yij' = (Yijl' 
Yij2, ... YijK) - MVN(lli , J(JS2 + I:), where Ili' is the vector of means at the K times for the ith 
treatment, i.e. Il;' = ( Ilil' lli2' ... , lliK)' The Yijk'S are thus distributed multivariate normal: 

Yll r~l (J 2J + 
s I: 0 0 0 

Ytl Ilt 0 (J 2J + I: 0 0 s 

Y12 ~ MVN III 0 0 (J 2J + 
s I: 0 

Yt2 fl t 
0 0 0 (J 2J + I: 

s 

The covariance matrix, I:, can reflect various models of correlation among the eijk's. Among the 
more common are: 
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~ 

~ 
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Independent Errors, ~ = 102• 

Compound Symmetry (CS), 

1 P P P 

0 2 
P 1 P P P 

~ 

P P 1 

where P= correlation between observations on the ijth subject. Note that the compound 
symmetry model can be reexpressed as ~ = JOS2 + 102, and hence the correlation among 

repeated measurements is the same as the interclass correlation 
0 2 

s in the 

independent errors model. Thus, Os 2 in the independent errors model and P in the 
compound symmetry model are confounded; the two are actually equivalent 
expressions of the same model. 

~ First-order Autoregressive [AR(1)] 

P 
k-2 

P 1 

AR(l) assumes correlation between errors (e jjk) w time periods apart is pW. 

~ Toeplitz (TOEP) 

1 PI P2 PH 

PI 1 PI P2 Pk2 
~ 2 

0 

Pk- I PI 1 
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~ First -order Antedependence [ANTE( 1 )] 

l . 

(J 2 
2 

~ Unstructured (UN) 

(Jj(JkP IP2 ... Pk - ll 
(J2(JkP 1P 2···Pk- 2 

(J2 
k 
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I: = [(JiJ, where (Jii = (Ji2. Note that the unstructured covariance model is conceptually 
similar to the correlation structure assumed when one uses MANOV A to analyze 
longitudinal data, the distinction being that in MANOVA, the covariance matrix among the 
observations, Yijk' is unstructured, whereas with I:=[(Ji.a the covariance among the errors is 
unstructured. 

Note that ANTE(1) and UN allow for heterogeneous variances at each time of observation. 
There are modifications of CS, AR(1), and TOEP that also allow for heterogeneity at each time. 
Equally spaced times of observation are implicitly assumed for AR(1) and TOEP, whereas CS, 
ANTE(l), and UN allow for unequal spacing. See SAS/STAT Software: Changes and 
Enhancements though Release 6.12 (SAS Institute, 1997) for a complete list of available 
covariance models. 

With the flexibility PROC MIXED allows in choosing correlated error models, the 
following questions arise: 

~ Does the choice of correlated error, or covariance model matter? If so, how? Are type I error 
rates affected? Estimates of treatment/time effects? Standard errors of estimates? 

~ Assuming choice of covariance model does matter, how does one choose the "correct" 
model? 

~ Once an appropriate covariance model is chosen, how accurately does PROC MIXED 
compute test-statistics, degrees of freedom, standard errors, p-values, etc. 

3. Linear Mixed Model Results 

a. Model, estimation, and inference 

The repeated measures model equation (2.1) is a special case of the mixed model 

y=XP +ZU +e 
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where [~l- MVN ( : 1 ' [ ~ ~]) , Therefore, y - MVN(Xp. V), where V~ZGZ'+R 

In the repeated measures model, X describes the treatment-time design, ~ is the vector of 
fixed treatment-time effects, Z describes the subjects design, u is the vector of random subject 
effects and e is the vector of random errors. Consistent with (2.1), G=lus 2 and R is block 
diagonal, with each block equal to 1;, the within subject covariance matrix described above. 

PROC MIXED obtains estimates of ~ and U by solving the mixed model equations: 

XIR-1Z l[b 
ZIR -IZ + G -I U 

where band u denote the solutions for ~ and U, respectively. Note that the solution for b is equal 
to the generalized least squares (GLS) solution, b = (Xy1X)--X'V·1y. 

Inference for the mixed model is based on predictable functions, i.e. functions of the form 
K'~ + M'U, where K'~ is an estimable function. The best linear unbiased predictor (BLUP) of 
K'p + M'U is K'b + M'u. Its prediction error variance is given by the formula 

[
X1R-IX 

Var[K'CP-b)+M'(U-u)=L'CL, where L' = (K' M'), and C = 
ZIR -IX G-l,Le, 

the generalized inverse of the left-hand side of the mixed model equations. For known G and R, 
inference proceeds as follows: 

~ Confidence Interval: use the formula K Ib + M IU ± Za VL ICL ,where Za is the standard 

normal table value for the I-ex. level of confidence. 

~ Test Ho: K'~ +M'U = 0: use the Wald statistic, (K'b + M'u),(L'CLr1(K'b + M'u), which is 
. t I 2 approxlma e y - X rank(L)' 

For unknown G and R, PROC MIXED substitutes restricted maximum likelihood 
(REML) estimates of the variance and covariance components, e.g. REML estimates of Us 2 and 
the components of ~ in repeated measures mORels, directly into the mixed model equations and 
the formula for prediction error variance. Let C denote the estimate of C obtained by substituting 
REML estimates of its variance and covariance components. Inference proceeds as follows. 

~ Confidence Interval: use the formula K1b + M1u ± tea, v) VL leL ,where v = d.f. to 

estimate L'CL. Note that v may be "obvious" by inspection or it may require an 
approximation, e.g. PROC MIXED will compute Satterthwaite's procedure. 
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• Test Ho : K'P + M'U = 0: use the Wald statistic divided by its degrees of freedom, 

(K1b+M1u)1 (L1(;L)- (K1b+M1u)1 .. . 
, which is approximately - F[rank(L), v] • 

rank(L) 
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Kacker and Harville (1984) showed that, except for balanced, variance compor;."ents only 
models, these procedures are biased. Specifically, standard errors obtained from L'CL 
underestimate the true standard errors based on known L'CL. Therefore, except for balanced, 
independent errors (and hence compound symmetry) models, PROC MIXED computes standard 
errors that are biased downward and test statistics that are biased upward for repeated measures 
experiments. For many commonly used covariance models, the bias can be quite severe, as 
shown in the examples below. The bias can be exacerbated by mispecifying ~, particularly if the 
assumed ~ is quite different from the true ~ (e.g. assume CS when ANTE(1) more aptly 
describes the true structure). 

So the questions are: 

• How does one choose an appropriate covariance model, ~? 

/\ 

• How does one correct for the downward bias of L'CL? 

b. Model selection 

Suppose one wants to choose between VI and V2 , the Var(y) resulting from two covariance 
models ~I and ~2' respectively. PROC MIXED provides three methods. 

• Likelihood Ratio Test: Compute REML log-Likelihood under VI and V2• Assuming V2 is 
a subset of VI' the likelihood ratio statistic -2 log [REML L (model 1) / REML L (model 2)] 
is approximately distributed X2• The degrees of freedom for X2 equal the difference between 
the number of variance and covariance components in V I and V 2 • 

The fact that the likelihood ratio test is possible only if V2 is a subset of V j limits its 
usefulness. Alternatively, one can compare REML log-likelihoods, preferably with a penalty 
function to account for differences in the number of covariance parameters among models. 
PROC MIXED offers two such criteria: 

• Schwarz's Bayesian Information Criterion, called SBC in PROC MIXED, given by. 
SBC = REML log-likelihood - Y2q[(log(N-p)], 
where q = # parameters in covariance model, 

N = # observations * 

* 

p = # independent fixed effects parameters 

Important: N should be the number of subjects. Versions ofPROC MIXED through 
Release 6.12 use N equal to the total number of observations, i.e. the number of 
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subjects multiplied by the number of times each subject is observed. Thus, SBC over 
penalizes covariance models with more covariance parameters. This is corrected in 
version 7.0 and subsequent versions of SAS. The difference is illustrated below in 
Section 5. 

~ Akaike Information Criterion (AIC). 
AIC = REML log-likelihood - q. 

There is no consensus on which procedure for comparing covariance models is "best." 
Keselman et al. (1998) conducted a simulation study comparing the three methods used by 
PROC MIXED for a number of different covariance models. They found that all of the 
procedures choose the "wrong" covariance model over 50% of the time. However, they did not 
distinguish between "slightly wrong" and "substantially wrong" choices. That is, choosing an 
ARel) model when the true model is TOEP may have negligible consequences, whereas 
choosing UN when the true model is CS may be quite serious. Their study found that AIC choose 
the "right" model more often than SBC, but suggested that because the study was done using 
Release 6.12 of SAS, this result was probably an artifact of the error in the way SBC is 
computed. Wolfinger (1999) suggested that Bayesian weighting among candidate models, along 
the lines described by Carlin e 1996), may be preferable to choosing anyone covariance model. 
Further work needs to be done in this area. 

d. Accounting for bias in standard errors and test-statistics 

As noted in the introduction (section 3a), repeated measures experiments usually focus on 
treatment/time effects. In other words, inference depends on estimable functions K' p, i.e. on 
fixed effects only. For estimable functions, the prediction error variance reduces to 

Var(K1b) = [KI 01 ] C [~] = K1(XIV-1Xr'K ,where 0 denotes the matrix M=O in the 

1\ 

predic~able function K)+M'U. Thus, the "model-based" REML estimate, L'CL, reduces to 
K'(X'V1XylK, where Vis V using the REML variance and covariance component estimates. As 

1\ 

with L'CL, except for balanxed, variance components only models, e.g. independent errors 
longitudinal models, K'(X'VIXy1K is a downward biased estimate of K'eX'ylxyIK, resulting 
in underestimated standard errors and inflated test statistics. Also, the degrees of freedom for 
estimating K'eX'y1xylK, used by PROC MIXED to obtain p-values for t- and F-tests and to 
obtain confidence intervals via the t-distribution, often must be approximated. The Satterthwaite 
procedure PROC MIXED uses is not always appropriate. 

How should the bias and degree of freedom issues be handled? Possible approaches 
available using PROC MIXED are 

~ The empirical estimate of K' (X'yIX) - K, also called the "robust" or "sandwich" estimate. 
This estimate is described by Liang & Zeger (1986) and Diggle et al. (1994). They propose 

1\ -

replacing the model-based REML estimate (X' V -IX) by 
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(3.1) 

where ei is the vector of observed residuals, obtained fitting the independent errors model, 
for the ith subject. This approach assumes that the number of subjects per treatment is 
substantially greater than the number of times of observation. When the number of 
observation times is equal to or greater than the number of subjects per treatment, as often 
happens in agricultural experiments, the empirical estimate of Var(K'b) may actually be less 
than the model-based estimate and the resulting test-statistics may be wildly inflated. Hardly 
a solution to the problem of downward biased standard errors and upward biased test 
statistics! 

~ Kenward and Roger (1997) propose a bias adjustment for the model-based REML 
1\ 

estimate, K'(X'y1Xy1K, and a degree of freedom approximation more general than the 
Satterthwaite approximation. This option is available in Version 7.0 and subsequent 
versions of SAS. 

1\ 1\ 

Following Kenward and Roger, let cl> = X'V-1X and cl>= (X'y1Xyl. Kenward and 
1\ 

Roger obtain E(cl». They use this result to adjust Var(K'b) and Fobs and to obtain a generally 
applicable approximation for v. The main results are 

E(~ ) = cl> + ! L L w.. 82cl> 
2 1J80.80. 

• 
I J 

where 

R .. = X'V- I 82V V-IX, 
IJ 80.80. 

I J 
1\ 

and Wij is ijth element of V are 0), where ° is the vector of variance and covariance 
components. 

1\ 1\ 1\ 1\ 1\ 

• Hence cl>adj = cl>+ 2 cl> [~~Wi/QirPi cl> Pj -1ARij] cl>. Wij can be approximated from the 

information matrix IE = E ( 82L 1 ' where L is the REML log-likelihood, or, as 
8oi8oj 

with PROC MIXED, version 7.0, the observed information matrix 

I - [ obs - 82 L 1 = H where H is the Hessian matrix. 
8o i8oj 
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/\ 

• U sing <I> adj , Fobs is adjusted as F* = AF obs' where A 

the approximate denominator degrees of freedom. 

Kansas State University 

v 
and v is equal to 

E(Fobs)(v-2) 

• The denominator degrees of freedom are approximated by the formula 

v = 4 + 
k(K) + 2 Var(F ) 

ran ,where p = obs. The approximations for 
rank(K)xp - 1 2E(Fobi 

E(Fobs)' Var(FobJ are quite involved. See Kenward and Roger (1997) for details. 

The Kenward-Roger and Satterthwaite degrees of freedom approximations yield equivalent 
results for variance-component-only mixed models (independent errors or CS for longitudinal 
data) when all the variance component estimates are positive. However, the Kenward-Roger 
approximation is generally applicable, whereas the Satterthwaite procedure often breaks down 
when variance component estimates are negative or when covariance models are used. 

4. Examples 

This section present an example illustrating the issues discussed in the previous sections. 
The data are given in Table 1. They are from a repeated measures experiment with 4 treatments, 
6 subjects per treatment, and 8 times of observation. The data in Table 1 appear in the format 
appropriate for analyzing longitudinal data with the REPEATED option in SAS PROC GLM. 
For PROC MIXED the data need to be rearranged so that there is one data line per treatment x 
subject x time combination, e.g. using the following SAS statements: 

DATA A; 
INPUT TRT SUBJ T1-T8; 

DATA B; 
SET A; 

TIME=1 ; Y=T1 ; OUTPUT; 
TIME=2; Y=T2; OUTPUT; 
TIME=3; Y=T3; OUTPUT; 
TIME=4; Y=T4; OUTPUT; 
TIME=5; Y=T5; OUTPUT; 
TIME=6; Y=T6; OUTPUT; 
TIME=7j Y=T7j OUTPUTj 
TIME=8; Y=T8j OUTPUTj 

DROP T1- T8j 

The model for this experiment is exactly as given in equation (2.1). The basic PROC 
MIXED statements for the analysis are: 
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PROC MIXEDj 
CLASSES SUBJ TRT TIMEj 
MODEL Y= TRT TIME TRT*TIME/DDFM=SATTERTHj 
RANDOM SUBJ(TRT)j 
REPEATED TIME / TYPE=< type of covariance model> SUBJECT=SUBJ (TRT) j 

53 

Readers are referred to Littell et al. (1996) for further details on programming MIXED for 
repeated measures and to SAS documentation (SAS Institute, 1997) for further information on 
types of covariance models available and other options in PROC MIXED. Here, note only that 
the RANDOM statement identifies the between subjects random model effect and REPEATED 
identifies the type of covariance model (independent, AR(l), etc.) and the subject on which the 
block diagonal structure of the covariance matrix R is based. 

As noted above, some covariance models contain the between subjects random effects. In 
these model, one must not include both RANDOM and REPEATED statements. For example, 
compound symmetry covariance model and random subject + independent errors are equivalent 
models, and hence the following two programs 
PROC MIXEDj 

CLASSES SUBJ TRT TIMEj 
MODEL Y= TRT TIME TRT*TIME/DDFM=SATTERTHj 
RANDOM SUBJ(TRT)j 

TITLE 'MIXED - INDEP ERRORS (SPLIT PLOT IN TIME) 'j 

and 

PROC MIXEDj 
CLASSES SUBJ TRT TIMEj 
MODEL Y= TRT TIME TRT*TIME/DDFM=SATTERTHj 
REPEATED TIME / TYPE=CS SUBJECT=SUBJ(TRT)j 

TITLE 'MIXED - COMPOUND SYMMETRY' j 

produce the same result. Key output: 

Covariance Parameter Estimates (REML) 

Cov Parm 

SUBJ (TRT) 
Residual 

INDEP ERRORS 

Estimate 

27.71786905 
4.79758929 

COMPOUND SYMMETRY 

Conference on Applied Statistics in Agriculture
Kansas State University

New Prairie Press
https://newprairiepress.org/agstatconference/1999/proceedings/5



54 Kansas State University 

COy Parm Subject Estimate 

CS SUBJ(TRT) 27.71786905 
4.79758929 Residual 

Model Fitting Information for Y 

INDEP ERRORS 

Res Log Likelihood -419.696 
Akaike's Information Criterion -421.696 
Schwarz's Bayesian Criterion -424.771 
-2 Res Log Likelihood 839.3910 

COMPOUND SYMMETRY 

Res Log Likelihood -419.696 
Akaike's Information Criterion -421.696 
Schwarz's Bayesian Criterion -424.771 
-2 Res Log Likelihood 839.3910 

Source 

TRT 
TIME 
TRT*TIME 

Source 

TRT 
TIME 
TRT*TIME 

Tests of Fixed Effects 

INDEP ERRORS 

NDF DDF Type III F Pr > F 

3 
7 

21 

20 
140 
140 

0.74 0.5425 
109.04 0.0001 

1.98 0.0106 

COMPOUND SYMMETRY 

Tests of Fixed Effects 

NDF DDF Type III F Pr > F 

3 20 0.74 0.5425 
7 140 109.04 0.0001 

21 140 1.98 0.0106 

The same equivalence exists for the unstructured covariance model, and hence the RANDOM 
SUBJ(TRT) statement should not be used along with a REPEATED / TYPE=UN 
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SUBJECT=SUBJ(TRT) statement. For other models, the random subject effect is not necessarily 
confounded with any covariance parameters, and so both statements may be used. For example, 
for AR(1): 

PROC MIXED; 
CLASSES SUBJ TRT TIME; 
MODEL Y= TRT TIME TRT*TIME/DDFM=SATTERTH; 
RANDOM SUBJ(TRT); 
REPEATED / TYPE=AR(1) SUBJECT=SUBJ(TRT); 

TITLE 'MIXED - AR(1) ERRORS'; 

produces distinct estimates of a/ and p. In some data sets a/ and p are too closely identified. 
The typical symptom of this problem is failure of the REML algorithm to converge. In theory, 
as 2 and the Pi in the Toeplitz structure are identified and the random subject effect and repeated 
statements may both be used. In practice, many data sets do not behave well (i.e. REML does not 
converge or gives nonsense estimates) when one tries to fit both the random subject effect and 
the REPEATED TYPE=TOEP covariance model. The same is true for the first-order 
antedependence model. The random subject effect is identifiable in theory. However, fitting the 
random subject effect along with REPEATED TYPE=ANTE(1) rarely "works," because in 
practice the terms are usually not sufficiently identifiable to permit variance-covariance 
estimation algorithms to obtain solutions. 

Fitting the AR(l) model to the data in Table 1, as2 and P are well identified and REML 
yields meaningful estimates: 

Cov Parm 

SUBJ(TRT) 
AR(1) 
Residual 

Subject 

SUBJ(TRT) 

Estimate 

22.50472051 

0.75734258 
9.61359585 

However, recalling Kenward and Roger's work, the Satterthwaite approximation does not 
generalize to the covariance models in repeated measures, and hence one often sees peculiar 
results. The MIXED program for the AR(1) model yields: 

Source 

TRT 
TIME 
TRT*TIME 

NDF DDF Type III F Pr > F 

3 2.48 
7 

21 
o 
o 

0.75 0.6009 
60.55 

1.48 

In Version 6 (Release 6.12), the alternatives are to either use the default degrees of freedom, 
using the containment rule (in essence, the degrees of freedom for error from the ANOV A table 
that results looking at the model as a split-plot) or supplying user-determined denominator 
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degrees of freedom. It is not clear what one would use for the latter. The default yields 
Source NDF DDF Type III F Pr > F 

TRT 
TIME 

TRT*TIME 

3 

7 
21 

20 
140 
140 

0.75 0.5344 
60.55 0.0001 

1.48 0.0921 

Comparing the p-values for the AR(1) vs. CS suggests the impact of covariance model choice: 
the test for the main effect of treatment not appreciably affected but for the time and time x 
treatment tests, the simpler the covariance model, the greater the F-values - and hence the lower 
the p-values -- tend to be. Model misspecification can result in excessive type I error rate when 
the covariance model used in the analysis is too simple relative to the true serial correlation (e.g. 
analyze the data with a compound symmetry model when there is actually substantial, patterned 
correlation - AR(1), TOEP, etc.) or it can result in excessive type II error and hence inadequate 
power when the covariance model used in the analysis is more complicated than necessary 
(e.g. using UN when AR(1) adequately describes serial correlation). 

Table 2 summarizes the model selection results and the F-values for the time and treatment 
effects using a number of different covariance models. Note that the likelihood ratio test for 
AR(1) tests AR(1) versus the independent error (or, equivalently, compound symmetry) model. 
The tests for TOEP, ANTE(1), and UN test these models versus AR(1), the logic being that 
whereas AR(l) clearly shows an advantage relative to CS, none of the more complex models 
show an advantage over AR(1); hence AR(l) is used here as a benchmark because it is the most 
complex model showing any advantage over its less complex competing models. Table 2 also 
gives test results for the MAN OVA and Huynh-Feldt corrected p-value options available in 
PROC GLM. The main points of Table 2 are: 

~ By all three model selection criteria, AR(1) is the covariance model of choice 

~ Under-modeling serial correlation (independent errors/CS) results in inflated F-values and 
hence overly significant p-values 

~ Over-modeling serial correlation (TOEP, ANTE(1), UN) results in deflated F-values and 
hence understated statistical significance 

In other words, choosing an appropriate covariance model matters. Failing to choose a reasonable 
covariance model can result in serious misinterpretation of the data. 

~ The MANOV A option in GLM also over models serial correlation and hence its p-values 
severely understate statistical significance 

~ The Huynh-Feldt option in GLM does not adequately account for the AR(1) structure, and 
hence does not adequately correct for inflated F-values 

In other words, the options provided by traditional fixed effects software are inadequate to 

Conference on Applied Statistics in Agriculture
Kansas State University

New Prairie Press
https://newprairiepress.org/agstatconference/1999/proceedings/5



Applied Statistics in Agriculture 57 

provide accurate analysis of longitudinal data. 

~ MANOV A in GLM and TYPE=UN in MIXED ought to produce similar results, yet the p­
values are quite far apart. 

This point requires additional discussion. It is a symptom of the bias that results when test 
statistics are computed using model-baseR estimates of X'V-'X, that is, substituting REML 
estimates into V and using the resulting Vas if it was known. As discussed in Section 4, Kacker 
and Harville (1984) and Kenward and Roger (1997) showed that test statistics are biased upward 
and standard errors are biased downward. 

Recalling Section 4, one suggestion for solving the bias problem is the empirical (or robust 
or "Sandwich") estimator. This can be implemented by using the EMPIRICAL option in the 
PROC MIXED statement: 

PROC MIXED EMPIRICAL; 
CLASSES SUBJ TRT TIME; 
MODEL Y= TRT TIME TRT*TIME/DDFM=SATTERTB; 
RANDOM SUBJ(TRT); 
REPEATED / TYPE=AR(1) SUBJECT=SUBJ(TRT); 

This results in the following tests of the treatment and time effects: 

Source 

TRT 
TIME 
TRT*TIME 

Tests of Fixed Effects 

NDF DDF Type III F Pr > F 

1 20 3.49736E29 0.0001 
140 2.29324E31 0.0001 
140 1.78875E29 0.0001 

Note that the F-values are wildly inflated. This is typical when the number of time periods 
exceeds the number of subjects per treatment. Deleting the RANDOM statement helps 
somewhat. That is, the MIXED program: 

PROC MIXED EMPIRICAL; 
CLASSES SUBJ TRT TIME; 
MODEL Y= TRT TIME TRT*TIME/DDFM=SATTERTH; 
REPEATED / TYPE=AR(1) SUBJECT=SUBJ(TRT); 

yields 
Source NDF DDF Type III F Pr > F 

TRT 3 20 1.31 0.2981 
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TIME 
TRT*TIME 

7 

20 
140 
140 

121.57 0.0001 
9.04 0.0001 

Kansas State University 

Recall that using the model based default, FTRT*TIME with the AR(I) covariance model was 1.48. 
Using the empirical estimate, FTRT*TIME = 9.04, hardly a solution to the problem of upward bias! 
While not shown here, the standard errors of treatment, time, and treatment-time combination 
means and various differences are similarly unreasonable. 

Note also when the empirical option is used, the TYPE= specification in the REPEATED 
statement is not used. Instead, test statistics and standard errors are computed using the 
"sandwich" estimator of (X' y-lxf given above in formula (3.1). See SAS/STAT Software: 
Changes and Enhancements though Release 6.12 (SAS Institute, 1997) for further details. With 
the repeated measures experiments typically used in agriculture, where the number of subjects 
per treatment is often small relative to the number of times of observation, the empirical 
estimator is not a viable approach. A promising alternative, however, is Jvailable in Release 7.0 
and subsequent releases of SAS. In these releases, the adjustment to X'V1X and denominator 
degrees of freedom approximation proposed by Kenward and Roger (1997) are available. They 
are implemented via the DDFM options in the MODEL statement, DDFM=KR. 

Recalling the AR(l) example, the PROC MIXED code to compute the Kenward-Roger 
adjustment is: 

PROC MIXED; 
CLASSES SUBJ TRT TIME; 
MODEL Y= TRT TIME TRT*TIME/DDFM=KR; 
RANDOM SUBJ(TRT); 
REPEATED / TYPE=AR(1) SUBJECT=SUBJ(TRT); 

This yields the following: 

Type 3 Tests of Fixed Effects 

Num Den 
Effect DF DF F Value 

TRT 3 20.5 0.77 
TIME 7 109 50.90 
TRT*TIME 21 117 1.24 

Pr > F 

0.5219 
<.0001 
0.2330 

Note the adjustment of the degrees of freedom and the F-values. For instance, without the 
adjustment, FTRT*TIME = 1.48 (p=0.0921) whereas with the adjustment, the F-value is 1.24 
(p=0.2330). 

Version 7.0 also corrects the error in Release 6.12's computing the Schwarz Bayesian 
Criterion noted above. Table 3 gives an update of Table 2 with corrections in the SBC and 
Kenward-Roger adjusted test-results compared to default tests. The following main points result: 
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.. The SBC does not penalize more complex covariance models as heavily as it appeared to in 
Release 6.12. Although the AR(1) is still clearly the preferred covariance model here, some 
conclusions could change. Note the reversal of independent errors/CS relative to ANTE(1). 

.. The Kenward-Roger adjustment does not affect the independent errors /CS models, because 
default statistics are exact for balanced variance-components-only mixed models. 

.. There is considerable adjustment of several of the F-values. 

.. The inadequacy of the Huynh-Feldt adjustment is even more apparent. 

.. The results for TYPE=UN in MIXED and MANOV A in GLM, while not identical, are only 
trivially different. 

What about the affect on standard errors? For AR(I), adding the statement 

LSMEANS TRT*TIME / DIFF SLICE=TIME SLICE=TRT: 

yields estimates the mean response at every treatment-by-time combination, all possible 
differences among them, and tests of simple effects of treatment for each time and time for each 
treatment. Below are selected results: the treatment-time LSMEANS for treatments 1 and 2, 
differences between time 1 and each subsequent time for treatment 1, differences between 
treatment 1 and 2 for each time, and each SLICE. 

For the LSMEANS, the results are: 

Model-based "Naive" Standard Errors 
Least Squares Means 

Effect TRT TIME LSMEAN Std Error DF t Pr > It I 
TRT*TIME 1 30.33333333 2.30980355 140 13.13 0.0001 
TRT*TIME 2 24.95000000 2.30980355 140 10.80 0.0001 
TRT*TIME 3 21.21666667 2.30980355 140 9.19 0.0001 
TRT*TIME 4 20.65000000 2.30980355 140 8.94 0.0001 
TRT*TIME 5 20.10000000 2.30980355 140 8.70 0.0001 
TRT*TIME 6 19.98333333 2.30980355 140 8.65 0.0001 
TRT*TIME 7 20.58333333 2.30980355 140 8.91 0.0001 
TRT*TIME 8 21.06666667 2.30980355 140 9.12 0.0001 
TRT*TIME 2 32.13333333 2.30980355 140 13.91 0.0001 
TRT*TIME 2 2 24.56666667 2.30980355 140 10.64 0.0001 
TRT*TIME 2 3 21.31666667 2.30980355 140 9.23 0.0001 
TRT*TIME 2 4 18.21666667 2.30980355 140 7.89 0.0001 
TRT*TIME 2 5 18.66666667 2.30980355 140 8.08 0.0001 
TRT*TIME 2 6 17.60000000 2.30980355 140 7.62 0.0001 
TRT*TIME 2 7 18.45000000 2.30980355 140 7.99 0.0001 

TRT*TIME 2 8 18.40000000 2.30980355 140 7.97 0.0001 

Kenward-Roger Adjustment 
Least Squares Means 

Standard 
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Effect TRT TIME Estimate Error OF t Value Pr > It I 
TRT*TIME 30.3333 2.3098 30.8 13.13 <.0001 
TRT*TIME 2 24.9500 2.3098 30.8 10.80 <.0001 
TRT*TIME 3 21.2167 2.3098 30.8 9.19 <.0001 
TRT*TIME 4 20.6500 2.3098 30.8 8.94 <.0001 
TRT*TIME 5 20.1000 2.3098 30.8 8.70 <.0001 
TRT*TIME 6 19.9833 2.3098 30.8 8.65 <.0001 
TRT*TIME 7 20.5833 2.3098 30.8 8.91 <.0001 
TRT*TIME 1 8 21.0667 2.3098 30.8 9.12 <.0001 
TRT*TIME 2 1 32.1333 2.3098 30.8 13.91 <.0001 
TRT*TIME 2 2 24.5667 2.3098 30.8 10.64 <.0001 
TRT*TIME 2 3 21.3167 2.3098 30.8 9.23 <.0001 
TRT*TIME 2 4 18.2167 2.3098 30.8 7.89 <.0001 
TRT*TIME 2 5 18.6667 2.3098 30.8 8.08 <.0001 
TRT*TIME 2 6 17.6000 2.3098 30.8 7.62 <.0001 
TRT*TIME 2 7 18.4500 2.3098 30.8 7.99 <.0001 
TRT*TIME 2 8 18.4000 2.3098 30.8 7.97 < .0001 

Note that the estimates and standard errors are not affected for LSMEANS, but the denominator 
degrees of freedom, and hence the p-values, are. For differences: 

Model-based "Naive" Standard Errors 

Differences of Least Squares Means 

Effect TRT TIME TRT TIME Difference Std Error OF t -

TRT*TIME 2 5.38333333 0.88100697 140 6.11 

TRT*TIME 3 9.11666667 1.22306461 140 7.45 
TRT*TIME 4 9.68333333 1.47079848 140 6.58 

TRT*TIME 5 10.23333333 1.66795230 140 6.14 
TRT*TIME 6 10.35000000 1.83190291 140 5.65 
TRT*TIME 7 9.75000000 1.97178415 140 4.94 

TRT*TIME 8 9.26666667 2.09315416 140 4.43 

TRT*TIME 2 1 -1.80000000 3.26655551 140 -0.55 

TRT*TIME 2 2 2 0.38333333 3.26655551 140 0.12 

TRT*TIME 3 2 3 -0 . 10000000 . 3.26655551 140 -0.03 

TRT*TIME 4 2 4 2.43333333 3.26655551 140 0.74 

TRT*TIME 5 2 5 1.43333333 3.26655551 140 0.44 

TRT*TIME 6 2 6 2.38333333 3.26655551 140 0.73 

TRT*TIME 7 2 7 2.13333333 3.26655551 140 0.65 
TRT*TIME 8 2 8 2.66666667 3.26655551 140 0.82 

Kenward-Roger Adjustment 

Standard 
Effect TRT TIME TRT TIME Estimate Error OF t Value - -

TRT*TIME 2 5.3833 0.9081 139 5.93 

TRT*TIME 3 9.1167 1.2609 147 7.23 

TRT*TIME 4 9.6833 1.5165 154 6.39 
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TRT*TIME 5 10.2333 1.7199 158 5.95 
TRT*TIME 6 10.3500 1.8890 160 5.48 
TRT*TIME 7 9.7500 2.0331 160 4.80 
TRT*TIME 8 9.2667 2.1580 157 4.29 

TRT*TIME 2 -1.8000 3.2666 30.8 -0.55 
TRT*TIME 2 2 2 0.3833 3.2666 30.8 0.12 
TRT*TIME 3 2 3 -0.1000 3.2666 30.8 -0.03 
TRT*TIME 4 2 4 2.4333 3.2666 30.8 0.74 
TRT*TIME 5 2 5 1.4333 3.2666 30.8 0.44 
TRT*TIME 6 2 6 2.3833 3.2666 30.8 0.73 
TRT*TIME 7 2 7 2.1333 3.2666 30.8 0.65 
TRT*TIME 8 2 8 2.6667 3.2666 30.8 0.82 

Note that in addition to the denominator degrees of freedom, the standard errors of the 
differences between times within treatment, but not between treatments within time, are affected. 
For SLICES: 

Model-based "Naive" Slices 

Tests of Effect Slices 

Effect TIME NDF DDF F Pr > F 

TRT*TIME 3 140 1.83 0.1454 
TRT*TIME 2 3 140 1.85 0.1412 
TRT*TIME 3 3 140 1.26 0.2911 
TRT*TIME 4 3 140 0.68 0.5644 
TRT*TIME 5 3 140 0.35 0.7887 
TRT*TIME 6 3 140 0.73 0.5328 
TRT*TIME 7 3 140 0.18 0.9075 
TRT*TIME 8 3 140 0.40 0.7517 

Num Den 
Effect TRT OF OF F Value Pr > F 

TRT*TIME 7 140 8.53 <.0001 
TRT*TIME 2 7 140 15.57 <.0001 
TRT*TIME 3 7 140 15.48 <.0001 
TRT*TIME 4 7 140 12.30 <.0001 

Kenward-Roger Adjustment 

Num Den 
Effect TIME OF OF F Value Pr > F 

TRT*TIME 3 30.8 1.83 0.1633 
TRT*TIME 2 3 30.8 1.85 0.1591 
TRT*TIME 3 3 30.8 1.26 0.3058 
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TRT*TIME 4 3 30.8 0.68 0.5698 
TRT*TIME 5 3 30.8 0.35 0.7889 
TRT*TIME 6 3 30.8 0.73 0.5392 
TRT*TIME 7 3 30.8 0.18 0.9069 
TRT*TIME 8 3 30.8 0.40 0.7524 

Num Den 
Effect TRT DF DF F Value Pr > F 

TRT*TIME 7 139 8.02 <.0001 
TRT*TIME 2 7 139 14.65 <.0001 
TRT*TIME 3 7 139 14.56 <.0001 
TRT*TIME 4 7 139 11.57 <.0001 

Again, the denominator degrees of freedom are affected. In addition, for the SLICES comparing 
TIME effects within each treatment, the F-values are corrected downward. The following are the 
"naive" (PROC MIXED default) and Kenward-Roger corrected SLICE statistics for the effect of 
time for each treatment for CS, TOEP, ANTE(l), and UN. 

COMPOUND SYMMETRY = INDEP ERRORS - MIXED DEFAULT = KENWARD-ROGER CORRECTION 

Num Den 
Effect TRT DF DF F Value Pr > F 

TRT*TIME 7 140 16.10 <.0001 
TRT*TIME 2 7 140 31.19 <.0001 
TRT*TIME 3 7 140 44.31 <.0001 
TRT*TIME 4 7 140 23.37 <.0001 

MIXED DEFAULT - TOEPLITZ COVARIANCE 

Num Den 
Effect TRT DF DF F Value Pr > F 

TRT*TIME 1 7 140 11.09 <.0001 
TRT*TIME 2 7 140 19.27 <.0001 
TRT*TIME 3 7 140 21.23 <.0001 
TRT*TIME 4 7 140 16.28 <.0001 

KENWARD-ROGER CORRECTION - TOEPLITZ COVARIANCE 

Num Den 
Effect TRT DF DF F Value Pr > F 

TRT*TIME 7 55.1 10.36 <.0001 
TRT*TIME 2 7 55.1 18.00 <.0001 
TRT*TIME 3 7 55.1 19.83 <.0001 
TRT*TIME 4 7 55.1 15.20 <.0001 

MIXED DEFAULT - ANTEDEPENDENCE COVARIANCE 

Conference on Applied Statistics in Agriculture
Kansas State University

New Prairie Press
https://newprairiepress.org/agstatconference/1999/proceedings/5



Applied Statistics in Agriculture 63 

Num Oen 
Effect TRT OF OF F Value Pr > F 

TRT*TIME 1 7 140 8.58 <.0001 
TRT*TIME 2 7 140 14.44 <.0001 
TRT*TIME 3 7 140 15.65 <.0001 
TRT*TIME 4 7 140 12.56 <.0001 

KENWARD-ROGER CORRECTION - ANTEDEPENDENCE COVARIANCE 

Num Den 
Effect TRT OF OF F Value Pr > F 

TRT*TIME 7 42.9 7.49 <.0001 
TRT*TIME 2 7 42.9 12.63 <.0001 
TRT*TIME 3 7 42.9 13.68 <.0001 
TRT*TIME 4 7 42.9 10.96 <.0001 

MIXED DEFAULT - UNSTRUCTURED ERROR COVARIANCE 

Num Den 
Effect TRT OF OF F Value Pr > F 

TRT*TIME 7 20 19.16 <.0001 
TRT*TIME 2 7 20 27.84 <.0001 
TRT*TIME 3 7 20 31.29 <.0001 
TRT*TIME 4 7 20 27.12 <.0001 

KENWARD-ROGER CORRECTION - UNSTRUCTURED ERROR COVARIANCE 

Num Den 
Effect TRT OF OF F Value Pr > F 

TRT*TIME 7 14 13.41 <.0001 
TRT*TIME 2 7 14 19.49 <.0001 
TRT*TIME 3 7 14 21.90 <.0001 
TRT*TIME 4 7 14 18.98 <.0001 

The main points arising from comparing SLICEs are 

~ The Kenward-Roger correction is noticeable for all covariance models, except CS where it 
is equivalent to default results. 

~ The Kenward-Roger correction is greater for TYPE=UN, the most complex of the models 
compared in this example. 

This example is consistent with Kacker and Harville (1984) and Kenward and Roger (1997) 
papers: except for CS, the default methods for computing the SLICE F-values are biased upward 
and the Kenward-Roger correction will always decrease them. In their paper, Kenward and Roger 
included the results of simulation studies they did on their correction. There are other as-yet 
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unpublished simulations of which the author is aware. More small-sample studies are certainly 
needed, as the adjustment has only been tested for a few of the situations for which it will 
probably be used. However, the studies conducted to date suggest that using DDFM=KR 
probably should be considered "standard operating procedure" when using PROC MIXED to 
analyze longitudinal data. 

One final note comparing the above SLICE output: 

~ The F-values are affected by choice of covariance model. The difference from the F-values 
obtained using model is greatest for CS and UN. However, discrepancies also exist among 
AR(1), TOEP, and ANTE(1). 

There is an "oral tradition," for lack of a better expression, that the exact choice of 
covariance model is not overly critical, but choosing a model that is "in the ball park" is 
important. In other words, if the true serial correlation is approximately AR( 1), using TOEP 
should yield similar results, but using a seriously misspecified model, e.g. CS in one direction or 
UN in the other, is more likely to adversely affect the accuracy of one's conclusions. In this 
example, discrepancies are not exactly consistent with conventional wisdom, but neither are they 
overly contradictory. More work needs to be done to validate or debunk the "oral tradition" just 
described. This would be especially useful in conjunction with studying the small sample 
behavior of the Kenward-Roger correction. Studies to address these question are in progress and 
we hope to be able to report on our findings in the future. 

5. Summary 

PROC MIXED represents a distinct step forward for the analysis of longitudinal data. 
Compared to MIXED, previously available MANOV A or Huynh-Feldt adjusted univariate 
analyses, such as have been available with PROC GLM, are not flexible enough to handle the 
type of correlated error structure typical of longitudinal data in agriculture. GLM's lack of 
flexibility is not trivial: severely misleading conclusions can result. Moreover, GLM's - indeed, 
MANOVA's - approach to missing data is unacceptably Draconian. 

Several cautions are in order when using PROC MIXED. Among the more important issues 
are: 

~ Several covariance structures (e.g. CS and UN) contain the random subject effect. 

Hence, one should not include the corresponding random and repeated statements in the 
same program. Other structures [e.g. AR(1), TOEP, and ANTE(1)] are technically not 
confounded, but in certain data sets their covariance parameters are too closely identified with 
the random model effect to permit both to be modeled. TOEP and ANTE(1) are especially 
susceptible. 

~ The Sattelthwaite degree of freedom approximation is inappropriate for most covariance 
models. 
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However, the Kenward-Roger procedure, to be available beginning with Version 7.0 of 
SAS, appears to work quite well. In the special case of variance-components-only mixed models 
(and hence, CS) the Kenward-Roger and Satterthwaite approximations are equivalent. 

.. For non-trivial covariance models, PROC MIXED's default statistics are biased. 

F-values for effects involving time are biased upward and the corresponding default 
standard errors are biased downward. The so-called "sandwich" or empirical estimator is not 
suitable for most agricultural applications. However, the Kenward-Roger adjustment appears to 
address this bias. More testing is needed to fully verify its small-sample behavior, but the 
indications to date are sufficiently favorable to recommend the Kenward-Roger option as 
standard operating procedure. 
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Table 1. Longitudinal data example * . 

aBS TRT SUBJ T1 T2 T3 T4 T5 T6 T7 T8 

1 27.7 19.8 18.4 15.8 16.5 16.1 15.5 17.1 
2 2 26.7 20.1 13.5 12.2 11.5 12.4 14.9 18.3 
3 3 31.6 29.6 25.1 24.4 23.0 24.0 20.8 19.1 
4 1 4 25.8 22.3 17.6 19.8 19.1 16.0 17.9 18.0 
5 1 5 37.3 30.2 29.3 29.1 29.0 30.1 33.9 33.8 
6 1 6 32.9 27.7 23.4 22.6 21.5 21.3 20.5 20.1 
7 2 1 30.6 25.4 22.7 18.7 20.8 20.4 19.1 19.8 
8 2 2 31.9 22.5 19.9 15.0 15.8 14.9 19.9 18.5 
9 2 3 27.8 21.8 14.5 11.4 14.8 13.2 11. 1 7.0 

10 2 4 37.4 29.8 25.6 25.4 27.1 26.1 26.2 26.5 
11 2 5 35.8 30.7 29.0 26.5 24.5 22.1 24.9 27.9 
12 2 6 29.3 17.2 16.2 12.3 9.0 8.9 9.5 10.7 
13 3 1 35.7 27.9 23.9 19.9 20.9 18.4 19.0 20.4 
14 3 2 40.8 32.6 31.9 28.7 26.7 28.4 28.4 25.6 
15 3 3 30.8 26.1 19.5 19.6 19.0 17.8 16.2 17.3 
16 3 4 43.5 37.4 34.4 27.8 24.8 22.3 20.3 19.8 
17 3 5 35.5 31.4 26.4 20.1 15.7 19.0 20.3 22.0 
18 3 6 36.7 29.2 23.0 21.2 22.1 24.1 18.3 20.7 
19 4 1 34.9 29.0 24.0 26.3 22.9 24.8 26.4 27.7 
20 4 2 28.2 21.0 20.6 21.2 20.3 20.0 19.9 20.8 
21 4 3 27.7 17.8 15.7 9.7 13.1 10.3 12.5 11.7 
22 4 4 30.5 25.3 20.8 18.7 15.1 13.3 14.4 13.7 
23 4 5 25.2 19.3 17.1 18.8 14.6 12.2 15.9 10.7 
24 4 6 38.7 32.0 30.7 29.8 26.1 25.1 27.4 26.8 

* Variables in data set: TRT denotes treatment, SUBJ denotes subject (experimental unit), T1 
denotes observation at time 1, T2 denotes observation at time 2, ... T8 denotes observation at 
time 8. 
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Table 2. Model selection criteria and tests of treatment and times effects for various covariance 
models using Release 6.12 of SAS 

Model 

Indep errors 
CS 
AR(l) 
Toeplitz 
ANTE(l) 
Unstructured 

-2 REMLLL 

839.39 
839.39 
788.65 
784.94 
780.65 
760.45 

F -values under various models 

Model TRT 

I&CS 0.74 
(.5425) 

AR(l) 0.75 
(.5433) 

TOEP 0.75 
(.5335) 

ANTE(l) 0.77 
(.5223 

UN 0.74 
(.5425) 

MAN OVA 

H-F 

50.74 
3.71 
8.00 

28.20 

TIME 

109.04 
(.0001) 

60.55 
(.0001) 

63.60 
(.0001) 

47.30 
(.0001) 

101.31 
(.0001) 

df 

1 
6 
12 
33 

p=.OOOl 

p=.OOOl 

AIC SBC 

-422.0 -424.7 
-422.0 -424.7 
-397.3 -401.5 
-400.5 -412.8 
-405.3 -428.4 
-416.2 -471.6 

TRT*TIME 

1.98 
(.0106) 

1.48 
(.0921) 

1.43 
(.1698) 

l.31 
(.2103) 

l.37 
(.2450) 

p=.5581 

p=.0284 
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Table 3. Model selection & test results. Table 2 updated with corrected SBC and Kenward-Roger 
corrected F-tests. 

Model -2REMLLL AIC SBC-6.12 SBC-7.0 

I&CS 839.39 -422.0 -424.7 -422.9 
AR(l) 788.65 -397.3 -401.5 -399.1 
Toeplitz 784.94 -400.5 -412.8 -405.2 
ANTE(l) 780.65 -405.3 -428.4 -414.2 
Unstructured 760.45 -416.2 -471.6 -437.4 

F -values under various models 

Model TRT*TIME - default TRT*TIME - KR adjustment 

I&CS 1.98 1.98 
(.0106) (.0106) 

AR(l) 1.48 1.24 
(.0921) (.2330) 

TOEP 1.43 1.32 
(.1698) (.1893) 

ANTE(l) 1.31 1.12 
(.2103) (.3516) 

UN 1.37 0.90 
(.2450) (0.5982) 

MANOVA p=.5581 

H-F p=.0284 
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