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AN ALTERNATIVE FOR MIXED MODEL ANALYSES OF LARGE, MESSY 
DATASETS~TDFREML) 

L. D. Van Vleck 
USDA, ARS, R. L. Hruska U.S. Meat Animal Research Center, Lincoln, NE 

R. K. Splan 
University of Nebraska, Lincoln 

ABSTRACT 

Portable Fortran based programs (MTDFREML) were developed using a derivative-free 
algorithm to obtain REML estimates of (co )variance components. Computations are based on 
Henderson's mixed model equations for multiple-trait models with missing observations on 
some traits and incorporation of relationships among relatives. Many fixed and random factors 
are allowed with number oflevels dependent on computer memory. Data sets with more than 
40,000 genetic effects have been analyzed. Options allow solving MME at convergence. 
Constraints are automatically imposed. Expectations, standard errors of contrasts of solutions for 
fixed effects and prediction error variances of solutions for random effects can be obtained. 
Dimensions can be changed to match data with computer capability. A Fortran compiler is 
necessary. No fee is charged but the University of Waterloo must certify a license has been 
obtained for sparse matrix subroutines (SP ARSP AK) used in the program. As an example, birth 
weights of 4891 progeny of389 sires nested within 12 breeds and of2893 dams nested within 3 
breeds of dam were analyzed to estimate components of variance due to sires and dams and to 
estimate differences among breeds of sires. For MTDFREML the analysis was trivial but for 
PROC MIXED the analysis was impossible unless dams were dropped from the model. 

Key words: Variance component estimation, Mixed model equations, Sparse matrix methods 

1. Introduction 
Many applications for mixed model analyses have too much data or too many levels of 

fixed or random factors to use commercial statistical packages such as PROC MIXED of SAS 
(1996). Animal breeders typically need to estimate variance components, predict genetic values, 
and estimate contrasts of fixed effects from such data. Until recently a specific computer program 
usually was written for each analysis. With increases in computing power and memory several 
quite general packages have been developed by animal breeders. The purpose of this paper is to 
describe a little of the history as well as the capabilities of one such package used by animal 
breeders -- MTDFREML (multiple trait derivative-free restricted maximum likelihood). A more 
complete history of development of the program is given in proceedings ofthe conference in 
honor of Shayle R. Searle (VanVleck, 1996). The computational aspects are given in detail in 
the manual that accompanies the program statements (Boldman, et aI., 1995). 
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2. Motivation 
An example of a relatively common problem for animal breeders with outcomes when 

attempted with MTDFREML and PROC MIXED of SAS (1996) will be described. 

97 

Genetic evaluations for bulls for weights of progeny are done separately for each breed of 
beef cattle at one of four universities in the United States. These evaluations provide best 
evaluations for comparison of bulls within a breed. Many breeders, however, want to compare 
bulls of different breeds. The USDA Meat Animal Research Center (USMARC) has 
characterized many breeds in their Germ Plasm Evaluation project. Their data are not used in the 
national cattle evaluations, but some bulls used at US MARC have been used elsewhere and thus 
have within-breed evaluations (commonly called EPDs, expected progeny differences). Notter 
and Cundiff (1991) developed a system for adjusting the within-breed evaluations so that bulls 
can be compared across breeds. The basis ofthe across-breed adjustment is the direct comparison 
of records of progeny of bulls used at USMARC, i.e., breed of sire differences. Table 1 shows 
the numbers of records that are available for the 12 breeds compared, and the number of sires of 
each breed for three traits. Table 2 further illustrates the data structure including the number of 
breeds of cows mated to the bulls and the number of dams of each dam breed for the birth weight 
trait. In addition, the model includes classification factors for sex of calf and age of dam and a 
linear covariate for calendar day of birth. 

Unquestionably, these are "messy" data although not a large data set by animal breeding 
standards. A mixed model with two random classification effects is indicated: sires within-breed 
of sire and dams within-breed of dam. The problem then is to jointly estimate components of 
variance due to sire effects, dam effects and residual effects and also breed of sire effects. The 
other effects can also be estimated but are only "noise" for the goals of the analysis. 

What to do? Although PROC MIXED ofSAS (1996) was not designed for a problem 
such as this, several options were tried with indicated outcomes: 1) both sires and dams included 
as random classification effects-failed to run, 2) sire as the only random classification effect and 
dams ignored-converged quickly with estimates of sire and residual components of variance and 
also breed of sire contrasts, 3) as a partial test of capacity, dams were included as the only 
random classification effect and sires ignored-failed to run. Specifying the model as sire within­
breed worked but as expected the model for dam within-breed did not run. 

The MTDFREML program was expected to run with all such models and did run. For the 
sire model, the solutions for variance components and estimable breed of sire contrasts were the 
same with PROC MIXED and with MTDFREML. Not unexpectedly, with MTDFREML breed 
of sire differences were not greatly different for models ignoring random effects of dams or 
ignoring both sire and dam effects. The sampling errors of the breed of sire contrasts are, 
however, markedly underestimated if sires are ignored and slightly underestimated if sires are 
considered random effects and dams are ignored (Barkhouse, et aI., 1998). 
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3. Derivative-free REML 
A survey of the audience revealed few but those with training in animal breeding had 

heard of derivative-free REML (DFREML). The idea ofREML appeared in Patterson and 
Thompson (1971). The history ofDFREML for animal breeders dates to1986 when Smith and 
Graser (1986) published a paper in the Journal of Dairy Science. A year later a more complete 
exposition was published by Graser, Smith and Tier (1987) in the Journal of Animal Science. 
Thus, most animal breeders could have been exposed to the idea. Smith had been a student in a 
course with Shayle Searle that used Searle's red bound notes (1979) that were a precursor to the 
variance components book (Searle, et aI., 1992). Smith also was in a computer science course 
that covered computing the log determinant of the coefficient matrix of least squares equation 
and the residual sums of squares by Gaussian elimination (e.g., Stewart, 1994). The estimation 
on variance component notes included results of Harville (1977) that can be used to write the 
likelihood in terms of the mixed model equations. These two ideas are critical to the 
development of derivative-free algorithms for obtaining REML solutions for variance 
components. Karin Meyer (1988, 1989) popularized the method by distributing Fortran 
statements for a general mixed model program utilizing sparse matrix techniques with Gaussian 
elimination. She also demonstrated how to extend the method to multiple-trait analyses (Meyer, 
1991). 

4. The connection with mixed model equations 
To show in simple terms what is required to calculate the likelihood given the data to 

consider the usual general linear mixed model: 

y=X~+Zu+e 

where 

y is the vector of observations, 
~ is the vector of fixed effects with X the matrix associating fixed effects with observations, 
u is the vector of random effects with Z the matrix associating random effects with observations 

and 
e is a vector of residual effects. The general first and second moments are: 

E (:) = (X:), md 

V [ :) = [ ZG::~ R Z:G :) 
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Henderson's mixed model equations which are well-known to be a rather simple 
modification of least squares equations can be written for the general case as: 

[ 
X'R -1X X'R -1Z ] [~] [X'R _1Y] 
Z'R -1X Z'R -1Z + G -1 U = Z'R -1y . 

The single trait (R = 102) version of these was invented by Henderson about 1948 (Henderson, 
preface, 1984). The proofs that the ~ are BLUE and u are BLUP came later (Henderson et al., 
1959 and Henderson, 1963). Properties are listed in Henderson (1975). 

99 

Let the MME be Cs = r. The key features of these equations for large sets of messy data 
are the large number of equations and the sparsity of the coefficient matrix, C. For the example 
with BWT, the number of equations was 3320 and the fraction of non-zero cells of C was only 
1.16%. Making use of this sparsity is the key to the computational efficiency ofDFREML. 

What must be computed to calculate the log likelihood, log L or rather -210g L? The 
results in Harville (1977) and Searle (1979) can be used to show (Meyer, 1991) that 

-210g L = constant + log I RI + log I G I + log I C* I + y'Py 

which are all terms used in Henderson's MME. The C* is a full-rank subset ofC and y'Py 
reduces to a generalized residual sum of squares. 

For a simple model for one trait that animal breeders call an animal model with u, the 
vector of genetic values: 

R = I 0 2 and G = A02 e g 
where 

A is the matrix of numerator relationships among the animals with genetic values in u. Then 
using rules from Searle (1982): 

10giRI = N log (o~) and 10giGI = 10giAI + q log(oi) 
where 

N = the number of observations for the trait, 
q = the number of animals with genetic values in u (which can include ancestors in A that do 

not have records but that is another story of Henderson, 1976a,b; Quaas, 1976), 
o~ = the residual variance and 
oi = the variance of additive genetic values. 
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5. The connection with the sparspak subroutines and the simplex algorithm 
The idea of the derivative-free method is to search for estimates of ()~ and ()~ 

that will maximize log L or equivalently minimize the more convenient form, -210g L. A 
generally efficient way to do this is with the Simplex algorithm (NeIder and Mead, 1965) which 
is described as the amoeba algorithm in Press et aI. (1989). The simplex algorithm finds the 
minimum for a non-linear function; hence the use of -210g L. A detailed description is given in 
the manual for MTDFREML (Boldman et aI., 1993). This algorithm can be thought of as the 
second of two important black boxes (something in and a good result out without having to 
understand much of what is happening). 

The simplex algorithm directs the search by controlling step sizes and directions of changes 
in the variance and covariance components that make up Rand G. At each up-date ofthe 
simplex, the four non-constant parts of -210g L are computed. The extension ofloglRI and 
log I G I to more complex models is not difficult so these two parts remain easy to compute 
(except for forcing the (co )variance components to remain in the allowable parameter space). The 
other two parts are computationally intensive. The key to efficient calculations is to take 
advantage of the sparseness of C*. The "black" box that was used in MTDFREML was a set of 
sparse matrix subroutines (SPARSPAK) developed at the University of Waterloo, Canada 
(George et aI., 1980). SP ARSP AK is copyrighted and requires a license to use. That package is 
built around sparse Choleski factorization. An initial read of half-stored non-zero coefficients of 
C is followed by a one-time reordering of the equations to minimize steps in sparse matrix 
factorization of C in subsequent rounds. Then in each round, triangular Cho1eski factor, L, is 

NE 

calculated such that LL' = C. The log determinant of L is L log(Q) where eij is the ith diagonal 
NE 

of L and NE is the number of equations. Then log I C I = 2 L log(Qii). At the end of the 

factorization for each round, s is calculated with a sparse Cho1eski down and up solve. The 
N 

calculation ofy'Py is :E y;~-lYi - sIr where Yi is the vector of traits for the ith animal and ~ is 

the variance-covariance matrix of residuals for the number of traits measured on animal i (see 
manual for more detail). The uncorrected total sum of squares would be calculated during the 
read of the data using the current update of components of R. The time consuming part is to 
calculate L from up-dated C. After L is calculated, then log I L I and y'Py require little time to 
compute. What can be noted is that these computations are general for multiple-trait models with 
only :Ey~Ri-1Yi slightly complicated to compute. 

The simplex algorithm then determines up-dates of R and G until convergence. Generally 
convergence is declared when the variance of the -210g L's in the simplex is small, e.g., .00001. 
The simplex contains as many -210g L's as the number of variances and covariances plus one. 
The simplex algorithm is not guaranteed to converge to a global minimum (maximum oflog L) 
so restarts are necessary to spread the search to determine if convergence is to the global 
minimum. Usually single-trait models without a covariance term such as a genetic covariance 
between direct and maternal effects converge with the first start. Multiple-trait analyses may 

Conference on Applied Statistics in Agriculture
Kansas State University

New Prairie Press
https://newprairiepress.org/agstatconference/1998/proceedings/9



Applied Statistics in Agriculture 101 

require many restarts. An ad hoc check for global convergence is whether -210g L changes in 
front of the second decimal and whether the proportions of total variance change from one restart 
to the next. 

6. Advantages and disadvantages 
This list will be sketchy and in some cases what is listed as an advantage may in some 

cases also be a disadvantage. Several advantages that could be listed under the heading of magic 
will show that. No quadratics other than the total sum of squares are computed. That is a 
computational advantage but knowing what quadratics are computed sometimes helps in 
understanding estimates of variance components. As stated in the name, not even a set of first 
derivatives is needed. Consequently, expectations with traces involving inverse elements of C* 
are not needed as with the EM algorithm. Similarly, matrices of second derivatives as needed for 
Newton-Raphson (N-R) type algorithms need not be computed. For non-mathematical 
researchers those are major hurdles and with DF are not needed. The disadvantage is that for 
algorithms where the information matrix or the expected value ofthe information matrix can be 
computed, convergence is usually much more rapid than with DF algorithms. 

One problem with most REML algorithms is that solutions try to escape the parameter 
space, i.e., variances go negative or some eigenvalues ofRo or Go (the variance-covariance 
matrices for an animal with more than one trait) become negative. Rules for what to do are not 
standard. The EM algorithm often creeps to the boundary. The N-R based algorithms usually 
require the estimate to be set to zero which complicates re-entry of a component. The DF 
algorithm assigns a -210g L that is much too large which forces contractions in the simplex 
algorithm until the estimates are in the parameter space. Each of these contractions does not 
require much time but usually contractions indicate poorly behaved data, i.e., many rounds to 
reach convergence. 

Some advantages ofDFREML involve equivalent models and multiple-trait models. For 
example in multiple-trait models with repeated measures for one trait and not for another trait, 
the environmental covariance between traits can be forced into what animal breeders call a 
covariance between permanent environmental (environmental effects being repeated in 
subsequent records) effects for the trait with repeated measures and also for the trait without 
repeated measures. Another example is for estimation of the correlation between effects of 
varieties expressed in several locations-the genotype by environment problem. The program can 
handle this as a multiple-trait analysis with the trait being defined as the location where the 
"trait" is measured. Still another example is in determining the correlation between the 
expression of a sire's genes for sex-limited traits, e.g., scrotal circumference in male progeny and 
age at puberty in female progeny. A simpler application would be to determine the genetic 
correlation between weaning weight in male and in female progeny. 
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Some computing considerations also can be considered advantages or disadvantages. The 
program is portable in the form of Fortran statements. But a compiler is then needed and Fortran 
seems not to be a priority for programmers anymore. The program is flexible in that vector sizes 
can be changed easily to match computer memory and models for the traits. Thus, large data sets 
can be handled with "large" depending on the number of factors and levels and computer 
memory. For obtaining solutions to MME the number of equations has exceeded 100,000. For 
variance component estimation, problems with 50,000 or more equations have been managed. 

The program can handle multiple-trait problems with different models for different traits 
and with no requirement that all traits be measured on each animal. Of special interest to animal 
breeders is that models with two genetic effects (commonly a direct effect of the animal and a 
maternal effect from the dam of the animal) can be modeled with a covariance between the two 
effects. Most such models require the genetic relationships among the animals be used which 
somewhat increases the number of non-zero elements in the coefficient matrix. 

The program statements are free and a detailed manual is available. But because the 
SP ARSP AK subroutines (Chu et aI., 1984) are integral they must be licensed for a relatively 
small annual fee for single computer or for somewhat larger institutional fee for an unlimited 
number of computers. Currently an agreement is being formalized with the University of 
Waterloo on how the distribution can be made. 

One of the major advantages of the MTDFREML package relates to SP ARSP AK. 
Ordinarily a Choleski factor can be obtained only for a full rank matrix. The C matrix except in 
very simple models is never full rank. To make such a matrix full rank would require imposing 
constraints before factorization. With messy data and many effects in the model, the necessary 
constraints are not always easy to determine. Steve Kachman (Boldman et aI., 1993), however, 
modified the SP ARSP AK code to impose necessary constraints during factorization to determine 
L. Those constraints are remembered for every up-date of G and R which insures -210g L does 
not fluctuate due to the constraints that are imposed. Thus, the code for MTDFREML needs to be 
distributed with SPARSPAK subroutines already modified and user-ready. 

One complication of not knowing what constraints are imposed is in determining what 
appropriate estimable functions are or if even if what would seem to be an estimable function is 
really estimable. Solutions corresponding to the constrained to zero equations are also true zero 
in the solution vector but that is not always a certain way to determine estimability. Therefore, an 
option was added to determine expected values of solutions. 

The logic for calculation of expectations is this. Because s = C-r even if s is not obtained 
from a generalized inverse (in fact, s is obtained from a generalized L), then E[s] = C- E (r) 
which can be rewritten in terms ofthe MME and blocks of the generalized inverse ofC as 

Conference on Applied Statistics in Agriculture
Kansas State University

New Prairie Press
https://newprairiepress.org/agstatconference/1998/proceedings/9



Applied Statistics in Agriculture 103 

[ c xx C J:Z] [X'R -IX] E[s] = P 
c zx C Zz+ Z'R -IX 

Examination of this expression reveals that the coefficients of P for the ith element of s are 

[X'R -IX] obtained by multiplying the ith row of C- by each of the columns of . 
Z'R -IX 

The ith row of C-, ci' is obtained quickly with a Choleski down- and up-solve of CCi = Ii where Ii 
is the ith column of I. The multiplication of ci by the lefthand columns of C requires reading of 

[X'R -IX] the prepared data file and sparse matrix multiplication with ci' i.e., E[Sil = c; p. 
Z'R -IX 

Each expectation is relatively time consuming but ordinarily only a few expectations are needed 
to find the pattern. 

The same general idea is used to obtain variances oflinear contrasts and is attributed to 
Harville (1974) who used the term "mixed model conjugate normal equations". Again for Cs = r, 
s = C-r whether s is solved for directly or not. For a linear contrast k's, V(k's) = k'V(s) k 
= k'C-k where Yes) is the variance of prediction errors. Now equate C<t> = k so that <t> = C-k, 
whether solved for directly or not. In fact, do a Choleski down- and up-solve to obtain <t> using k 
as the right hand side vector (usually mostly zeroes except for, for example, a I and a -1 for a 
linear contrast between two levels of a factor). From these identities k'<t> is the necessary 
calculation to obtain k'C-k = V(k's) which is the variance of prediction error for the linear 
contrast k's. Thus, variances (and standard errors) oflinear contrasts can be obtained quickly and 
for any linear function of the solution vector. Care must be taken to insure estimability as the 
computations do not require the contrast to be estimable. 

Similarly, the variance of prediction error for u can be obtained. In that case, ~ is a vector 
of zeroes but with the element corresponding to the ith element in u being set to unity: then 
k;<t> = V (u i - u). 

Standard errors of variance components or of functions such as heritability are not yet 
available with MTDFREML for general multiple-trait models. For single-trait models or 
multiple-trait models with all traits measured on all animals, a visiting scientist, Dr. Joerg 
Dodenhoff, utilized the computing strategies involved with average information REML 
(AIREML) to obtain the average of the matrix of second derivatives and its expected value to 
obtain asymptotic standard errors (Dodenhoff et aI., 1998). A version for cases with missing 
observations on some traits is needed. 
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Some other disadvantages ofDFREML include sensitivity to starting values. If the starting 
values are on the order of a magnitude too large or small, the step size in the simplex algorithm 
may not be great enough to reach a set of parameter estimates close to the minimum of -210g L. 
One solution to the problem that usually works is to force starting values for variance 
components to sum to less than the unadjusted phenotypic variance. 

In some cases rounding error seems to prevent reaching convergence. Extremely small 
changes in variance components then result in relatively large changes in -210g L or at least in 
V(-210g L) of those retained in the simplex. In most such cases the estimates and -210g L will not 
have changed in any important way in spite of a V(-210g L) that is larger than desired. 

Starting values of zero for covariances will not be changed as the simplex makes 
proportional changes when updating. Starting values close to zero will change very slowly. A 
related problem is that starting with the wrong sign on a covariance will result in many rounds to 
change the sign. 

A major disadvantage is for three or more traits in an analysis. With many covariance terms 
the number of possible combinations of estimates of variances and covariances is large. Restarts 
are essential as global convergence may require several restarts as well as many rounds to reach 
each local convergence (Boldman and VanVleck, 1990; Groeneveld and Kovac, 1990). A rule of 
thumb is that time to convergence increases according to t5 where t is the number of traits 
(Misztal, 1994). For the example, a single trait took 7 minutes on a relatively ancient 486/33, two 
traits took hours, and three traits took days. 

7. Development credits 
The development ofMTDFREML was a joint effort largely financed by a USDA post 

doctoral associate position. The series of post-docs spent some of their time on various aspects of 
the program. The chief architect of the program and the person who made the program easy to 
use was Keith Boldman, the first post-doc. Lisa Kriese succeeded him and added several parts as 
did 1. Curt Van Tassell, the final post-doc, cleaned up some minor bugs and made compilation 
much easier (Boldman, et aI., 1995). As an aside, Curt also developed a similar program based 
on a Gibbs Sampling Bayesian algorithm (VanTassell and VanVleck, 1995). Steve Kachman, as 
already mentioned, made the important contribution of modification of the Choleski algorithm to 
work with singular coefficient matrices. Joerg Dodenhoff added steps to compute asymptotic 
standard errors for the variance components, a feature that was not a part of the original package. 
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8. Some similar packages 
This paper has described some of the features of only one such package developed by 

animal breeders for computation ofREML estimates. The MTDFREML program may be one of 
the easiest to use but is not necessarily as fast or as efficient as some others which are listed here. 

Karin Meyer, who divides her time between Edinburgh, Scotland and Armidale, Australia 
developed the first general DFREML package and has continued to modify and extend that 
package. There now is an option to use AIREML which generally converges in many fewer 
rounds than DFREML but which requires elements of the inverse of the coefficient matrix which 
may limit the allowable number of equations. Eildert Groeneveld in Germany has a general 
purpose package for solving MME called PEST. He also has a version to estimate variance 
components called VCE. Jost Jensen and Per Madsen in Denmark have the DMU program which 
utilizes AIREML. Arthur Gilmour in Australia has Arthur's REML, ASREML, which is based 
on AlREML. Joerg Dodenhoff, from Germany and currently at Iowa State University, while at 
the University of Nebraska working with me and Steve Kachman developed an AIREML 
package fashioned after MTDFREML for a general single-trait model with up to three genetic 
(direct, maternal, and grand maternal) effects (Dodenhoff et aI., 1998). Many other similar 
packages have probably been written but this list shows that various options are now available 
even before SAS develops a package for large sets of messy data. 

9. Summary 
This paper has described a computational package for relatively large messy data sets based 

on a derivative-free algorithm for obtaining REML estimates of variances and covariances. Some 
history ofDFREML and the underlying principles were described. A computing algorithm was 
outlined based on sparse matrix Choleski factorization of the non-full rank matrix of coefficients 
of Henderson's mixed model equations. Capabilities of the program include: estimation of 
(co )variance components, estimation of contrasts of fixed effects and their standard errors, 
calculation of prediction error variances of random effects, and calculation of expected values of 
solutions. The program was developed by USDA-ARS with collaboration from Steve Kachman 
at the University of Nebraska. Some similar packages developed in other countries were also 
listed. 
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Table 1. Records on progeny of 12 sire breeds used to estimate breed of sire differences 

No. progeny 
Sire breed No. sires BWT WWT YWT 

A 67 856 826 762 

B 68 676 619 576 

C 25 181 170 168 

D 28 422 358 312 

E 28 422 368 332 

F 20 387 338 334 

G 63 583 506 468 

H 15 174 155 154 

I 24 365 336 334 

J 16 435 415 347 

K 7 199 191 189 

L 27 189 176 173 

Total 389 4891 4458 4149 

Table 2. Other factors in model to estimate breed of sire differences 

Number 
Dam breeds Mated to sire breeds Years Dams Progeny 

A NotA 15 1118 1875 

B NotB 15 1287 1413 

X A,B,D 3 488 603 

3 12 15 2893 4891 
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