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Applied Statistics in Agriculture 

DAILY SOLAR RADIATION ESTIMATED FROM TKMPERA TURE RECORDS 

D.W. Meek, USDA-ARS-MW A National Soil Tilth Lab., Ames, IA 50011-4420 USA 

Abstract: Crop growth models and other environmental analyses require the input of daily 
global solar radiation values. Unfortunately many locations lack long-term solar radiation 

123 

data. Most agricultural experiment stations, however, have daily temperature records. Also 
they are often the locations for which crop growth simulations are conducted. In an unpublished 
manuscript in the field of agricultural meteorology, researchers wanted to address this need. 
Specifically they wanted to estimate historical daily global solar radiation using daily air 
temperature data records by adapting a single published empirical intrinsically nonlinear model, 
a form of the Weibull curve. In order to help future research in the given field, this paper argues 
that the selected model is a poor choice. Two independent long-term data sets that come from a 
similar climate to that of the researchers' are used, one for model development and the other for 
testing model prediction. Through the use of performance statistics on the cross-validation, 
three alternative models are offeredfor comparison (the performance statistics are accepted by 
researchers in the agricultural meteorology discipline). The results give no reason to favor the 
researchers' selected model. Furthermore no model performed well under advective conditions. 
Future research should consider finding a better means to account for advection, developing and 
evaluating other models, and justifying the assumptions of the methodology to be employed. 
Keywords: Bristow-Campbell Model, Fox Statistics, cross-validation 

1. Introduction 
Recently I was asked to review a manuscript for an agricultural meteorology journal. The 

researchers specifically wanted to estimate historical solar radiation using daily air temperature 
data records with a model. The need for the estimates is reviewed in the next section. The 
researchers presented just one model, a modification (requiring 12 parameters) of the Bristow­
Campbell Model (1984), an intrinsically nonlinear model. The researchers' model was 
developed from a 30 year record of daily data that came from an NWS station located in a 
Midwestern town with rural surroundings. As is commonly the practice in this research field, 
information on the solution existence and uniqueness, error surface topology, convergence, 
parameterization, error structure, etc. was not reported (rarely is more than the coefficient of 
determination reported). The model was tested via cross-validation on several independent sets 
located at various research sites in the same state. All had a 10 year period of record. Some of 
the performance statistics for the cross-validation proposed by Fox et al. (1981), that are 
commonly used by researchers in this field, were reported. These statistics are defined in the 
methods section. No performance goal in terms of any of the Fox statistics was set. Problems 
were apparent and so the work was not acceptable. 

The IHirpo·se ·ofthls \vork tl1eri'is to' snow· thai "the' given Bristow-Campbell Model, especially 
as cast, is a poor choice. I present the analysis in a way that agrometeorological researchers 
readily accept, cross-validation analysis. The Fox statistics along with graphs are used to assess 
the results. Two comparable long-term data sets from a nearby state with a similar climate are 
used. One is the development set and the other is the prediction set. Three simpler alternative 
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models are developed and evaluated along with the Bristow-Campbell model. A comparison of 
performance results is then presented along with some recommendations for additional research. 

2. Background on the research problem 
Daily solar radiation is an important measurement needed for various analyses in many of the 

applied sciences from engineering to environmental science (see e.g., Iqbal, 1983). In agronomy 
a major use is for crop growth modeling (e.g., Meek et aI., 1984). Crop growth models require 
the input of daily global solar radiation to estimate intercepted photosynthetically active radiation 
which in tum is used to estimate photosynthesis and crop growth. Many locations of interest lack 
long-term solar radiation data. Most agricultural experiment stations, however, have historical 
daily data conforming to a set standard (USDC-NWS, 1972) that include daily maximum and 
minimum air temperature records along with precipitation. Agricultural experiment stations are 
often the locations which are the best sites for developing and evaluating crop growth 
simulations because they are the places where detailed histories and measurements of crop 
growth and development are available. Nowadays automated stations that include solar radiation 
are becoming the standard for experiment stations in the United States but generally the period of 
record is less than a decade (e.g., Meyers and Hubbard, 1992). In the lesser developed countries 
automated weather stations at agricultural sites are rare. Thus, for many purposes including 
historical crop growth modeling, the need for solar radiation estimates at places where it is not 
measured still exists (see e.g., Bland and Clayton, 1994; or Hargreaves et aI., 1985). 

The job of reconstructing the solar radiation record from other meteorological data is not new. 
Time series on annual data is of great concern to climate change research (e.g., Lean et aI., 1995). 
Some of the work in agronomy follows. Richardson (1985), Hargreaves et al. (1985), and 
Bristow and Campbell (1984) have proposed daily-based nonlinear models with the daily 
temperature range as the predictor. Not one used the World Meteorological Organization 
(WMO) recommended 30 year period of record (WMO, 1967). Hook and McClendon (1992) 
used a multiple linear regression model for a 13 year period of record. 

3. Data 
The WMO has recommended a 30 year period of record for establishing climatological 

normals (WMO, 1967). Recent work with solar radiation has followed the WMO standard (e.g., 
Meek, 1997; NREL, 1992 & 1995). An independent development set and a prediction set each 
with a 30 year period of daily records were selected for this analysis because single cross­
validation is an accepted practice in the field of agricultural meteorology. Some general 
considerations for working with the given type of data along with summaries of the prediction 
and development sets follow. 

3.1 Variable Definitions and Modeling Considerations 
All models considered are based on a broadband transmittance definition or a modification of 

it (formally the basic concept of transmittance is spectral). Broadband transmittance, the 
dependent variable which is denoted 1", is simply estimated by a ratio, 1" = RslRsext. Here Rs is 
the measured daily global solar shortwave radiation (generally the 0.3 - 3.0 !lm wave-band) at the 
ground station and RSext is the calculated extraterrestrial daily total value. Based purely on solar 
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geometry and the solar constant, routines for estimating RSext for subdaily intervals, often hours, 
can be found in standard texts like Iqbal(1983). Daily values are then the sum of the hourly 
values. The daily units used here are megajoules per square meter (MJ m-2). Throughout the 
year RSext varies approximately sinusoidally with the day of the year peaking at the summer 
solstice in the Northern Hemisphere (about day 172). The Rs measurement is the sum of direct 
beam and diffuse solar radiation. On a completely overcast day the direct beam can be 
negligible. Otherwise it is the dominant term. The attenuation of solar radiation as it passes 
through the atmosphere is known as radiative transfer and is the superposition of numerous 
spectral processes (see e.g., Iqbal, 1983). At a given location there is a climatic based upper limit 
for Rs often called a "clear day curve" and denoted as Rsc (Meek, 1997). Thus there is also a 
bounding curve for 't', i.e., 't'c = RsdRsext. The two broken curves in Fig. 1 show R Sext and Rsc 
curves developed for Ames, IA. 

Modeling Rs physically without considerable knowledge of many atmospheric variables that 
are generally not available at agricultural experiment stations has not been feasible until recently. 
Some possibilities are suggested in the discussion section. Instead, in general, empirical models 
of't' have been used like those given in the background section. If a model of't' for a given 
location is known then daily solar radiation can be easily estimated, i.e., Rs = 't'RSext. 

In previous research for modeling 't' with the temperature range (LlT, the independent 
variable), LlT has been used as is and with modifications. Generally the daily temperature range 
is given by LlT(J) = TmaxCJ) - TminCl) where J is the daily time step sequence index and Tmax and 
Tmin are the daily maximum and minimum surface air temperature extremes measured with liquid 
in glass recording thermometers. The assumption behind the proposed relationship is that the 
temperature range is driven by the amount of radiation received. This is plausible only in the 
absence of the movement of a large, comparatively warmer or cooler air mass into the 
observation area, i.e., advection. Bristow and Campbell(1984) arbitrarily adjusted each 
temperature range datum for advection by defining it as 
LlTa(J) = TmaxCl) - O.5(Tmin(J) + TminCl+l)). Next selected datum were further arbitrarily scaled to 
75% of their value under two given precipitation conditions (the resulting temperature range 
variable is designated LlTb)' So LlT can be designated as unadjusted, LlTa as adjusted, and LlTb as 
fully adjusted. 

The counter example models proposed in this work make use of another variable known as 
relative optical air mass (shortened to air mass) and is denoted IDa. A conceptual definition 
follows. Assume the atmosphere is a spherical shell around the planet's surface. At solar noon 
at an equinox on the equator rna = 1, its lowest value, meaning there is one atmospheric path 
length that incoming direct beam solar radiation passes through. At sunrise or sunset it is at its 
maximum daily value having to go through several atmospheric path-lengths. Hence under 
normal conditions at any other place or time rna> 1. Like the site specific RSext curve, rna can be 
uniquely computed for a given set of coordinates, sunshine period, and hour angle with standard 
routines (see e.g., Iqbal, 1983). Daily averages weighted by RSext can then be estimated. For 
Central Iowa daily IDa approximately varies sinusoidally being about a half year out of phase with 
RSext and ranges from about 1.6 at the summer solstice to about 3.5 at the winter solstice (see the 
solid line curve in Fig. 1). 
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3.2 Prediction Set 
Daily Rs (converted to units of MJ m-2), Tmax, and T min (converted to °C), and precipitation 

(denoted P and converted to mm) data for Ames, IA were obtained from the Iowa State 
University (ISU) Experiment Station. The data were recorded from 1960 through 1989. Details 
on the instrumentation and procedures are available (see Meek, 1997 and Baker and Klink, 
1975). The geographic coordinates for Ames are 42.03 0 N, 93.80° W, and 335 m elevation. The 
data were not formally quality controlled and have known problems and outliers. Of serious 
consequence, up until the early 1980s data were recorded on strip charts and daily values were 
obtained via planimetry. The methodology could have introduced a 5% or more error, possibly 
tending toward systematic over-estimation of the daily values (z 1.25 MJ m-2). Consequently 
predictions may be somewhat underestimated. Later Rs data were numerically integrated. A few 
Rs values exceeded the extraterrestrial value and so were excluded from the analyses. Finally 
some temperature records were excluded because they had Tmin>Tmax. Site specific RSext and Rsc 
curves were developed for both the prediction and development sets. 

3.3 Development Set 
Daily data for Des Moines, IA were calculated from a serially complete quality controlled 30-

year record (1961-1990) that includes total and component shortwave irradiance data as well as 
many other meteorological variables including precipitation and the temperature record, all on an 
hourly basis. Daily values in metric units were calculated from the hourly data. This data record 
comes from the Solar and Meteorological Observation Network database (SAMSON for short and 
a.k.a. NSRDB for National Solar Radiation Data Base) which has 239 sites throughout the 
United States and its commonwealths (NREL, 1992; NREL, 1995). The Des Moines Station 
(WBAN 14933) geographic coordinates are 41.52° N, 93.65° W, and 294 m elevation. The 
quality control procedure is formally documented (NREL, 1993). The daily ~T data for a 
SAMSON set are thus from hourly averages and not from point extremes. The ~T data are 
probably foreshortened by a factor of 0.916 compared to that based on point extremes. The given 
factor is based on an analysis of 5 years of data records from an automated station for a site about 
5 km south of Ames, IA in the Walnut Creek Watershed with approximate coordinates of 93 ° 38' 
N, 41 ° 58' W, 305 m elevation (Sauer and Hatfield, 1994). Hence the ~T data were accordingly 
adjusted. 

4. Models and methodology 
First a summary of the accepted practices for model evaluation in the meteorology literature is 

given. Then the original Bristow-Campbell model is reviewed followed by the modified version 
presented in the manuscript under consideration. Finally three simpler alternatives are presented. 

4.1 Accepted General Practices 
Rarely do articles in this research field explicitly state regression assumptions yet alone report 

in reasonable detail the model development results. In most cases ordinary least squares 
regression (OLS) is used and models are developed with an additive error structure and the 
assumptions that are associated with OLS are implicit. Although concerns about the OLS 
method and assumptions are raised in the discussion, in this analysis they are employed to be 
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consistent with the extant practice. The models are developed with the Des Moines data set. The 
prediction data set (for Ames, IA) is used to compare the models' performance. 

Some or all of the model comparison statistics suggested by Fox (1981) are often reported by 
agricultural meteorologists. This methodology was originally intended for assessing large 
deterministic or simulation systems but has come to be employed for regression models too. The 
observations, 0, are treated as the dependent variable and the model eredictions, P, are ~reated as 
the independent variable. The stat~stics a:-e the means of 0, denoted 0, and P, denoted P; the 
mean bias error (the difference of ° and P, a.k.a., Bias) and its variance; the root mean square 
error (RMSE); the mean absolute error (MAE); an~ t~e Pearson correlation coefficient, r(O,P). 
Also the ° and P medians, the ratio of the means (OIP) , and the Spearman correlation coefficient 
~e_ added t~ the _tabled results. If the data are reasonably comparable then, of course, ° = P so 
OIP :::: 1 or ° :::: P, the ° and P distributions are similar with a zero mean bias error (Bias:::: 0), 
and other diagnostics reveal no problems. The Berg-plot (1992) is useful to graphically present 
and assess most of these comparisons. A Berg-plot shows univariate statistics in the form of a 
box-whisker plot on both the dependent and independent variables as well as on their difference, 
the bias. In these box-plots the lower end of the box is the 25th percentile (first quartile), the line 
in the middle of the box is the 50th percentile (median), the top of the box is the 75th percentile 
(third quartile), so the box represents the middle 50% of the data (the interquartile range). The 
plus sign is the arithmetic mean, the end of the bottom whisker is the 5th percentile, the end of 
the top whisker is the 95th percentile, and the asterisks are the minimum and maximum values. 

4.2. The original Bristow-Campbell model 
The original Bristow and Campbell model (1984), a form of the Wei bull curve, is given by 

1" = A(1 - exp(-B.1~)) (1). 

In eq. (1) A, B, and C are empirical constants with A bounding the estimate to a maximum value 
that can be achieved on very clear days, i.e., A should be 1"e. The model is really an empiricism. 
The authors did not make any claim to the contrary. 

4.3. The modified Bristow-Campbell model 
The proposed modification of the Bristow and Campbell model initially was 

1" = A(1)(1 - exp(-B(I).1T;(l»)) (2a). 

In eq. (2a) A, B, and C are analogous to the eq. (1) constants but they change with season (I =1, 
2,3,4 corresponding to spring, summer, fall, and winter). So there are 12 parameters! In a 
revision, rather than try another model, eq. (2a) became 

1" = A(I)(1- exp(-B(I).1T;(l)/Rsext)) (2b). 

The earlier work resulted in a negative bias for the A (I) 's so they were next estimated 
graphically but still were probably too low. The RSext divisor was introduced to help reduce 
seasonal biases. In both cases a nonlinear least first power procedure (the L1 norm) from a 
popular commercial package was employed but no information either about the routine or the 
regression results was reported. In order to try to parallel the researchers' methodology the A(1) 
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values for my analysis were fixed to the 95th percentile of the seasonal'te frequency distribution 
in place of using arbitrary graphical estimates. Also, by using Ramsay's robust Ea for the weight, 
generalized least squares are employed instead of an L1 routine. 

If, indeed, some form of eq. (1) is appropriate and needs seasonal adjustments, a simpler 
alternative with fewer parameters is possible. For example, one alternative is 

(2c). 

In eq. (2c) 'ta = RslRse and C(ma) = Co+Cjma. This form eliminates A and continuously adjusts B 
andC. 

4.4. Alternative Models 
The motivation for the selected models is provided in the discussion section. First, however, 

here are some more definitions. Both 't and ~T can also be seasonally adjusted by dividing by 
rna' So now 't becomes 'tm = Rs/(Rsextma) and ~T becomes ~Tm = ~T/ma' The simplest model to 
consider is just the line 

Through indicator variables in a linear regression or nonlinear regression a two population 
version of eq. (3) can be defined. Using a nonlinear regression procedure, let 'tm be 

(3). 

't = fAoo + AOj~Tm' ~Tm:;;~Tmel (4) 

m ~10 + All~Tm' ~Tm>~TJ 
where ~Tmc=('tme-Aoo)lAoj where 'tme = 'tjma' In this model if the estimate for the first group 
exceeds 'tme (equivalent to RS>RSe) then the second line is used instead. 

5. Results and discussion 
The Fox Statistics (1981) for the tested models are listed in Table 1. Berg-plots accompanied 

with annual cycle model observation/prediction difference plots are shown in Figs. 2 and 3 
(model2b in Fig. 2A&B, model2c in Fig. 2C&D, model 3 in Fig. 3A&B, and model 4 in Fig. 3 
C&D). While all positive functions tend to predict in the right direction, they do not do the job 
equally well! Clearly two to four parameters can do as good a job or better than the 12 in eq. 
(2b)! Formal tests like Fisher's Z-test on correlations can be done to help confirm what an 
inspection of the results suggests. In practice, though, researchers mainly make a selection by 
ranking the desired statistics. Sometimes an o-p regression line is reported. By any means of 
assessment, these results don't favor either Bristow-Campbell form, especially eq. (2b), over the 
alternatives. More interestingly, upon further analysis, none of the listed models is entirely 
satisfactory - all exhibiting heteroscedasticity with larger scatter in the late spring through early 
summer. In fact all the differences form a nice inverse funnel when plotted against rna' Also all 
are biased low although perhaps not seriously for eqs. (3) and (4) when the possible upward bias 
in the Ames Rs data is considered. Moreover, there is considerable and justifiable room for 
improvement in the predictions. Also consideration of the results and diagnostics on the 
development set, which are not generally reported, would have provided much insight into some 
of the problems. 
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5.1 Variable definition, selection, and other data considerations 
Regardless of the preceding results, a researcher needs to question and justify the need for 

using an intrinsically nonlinear model. Data analyses suggest that all of the dependent or 
independent variables are non-normal and autocorrelated. Furthermore there is possible 
heteroscedasticity. Bristow and Campbell (1983) showed a scatterplot for their data which came 
from a non-Midwestern climate and only had a one year period of record. Visually it did display 
slight curvature but not a sigmoid. It was more like a diminishing returns curve. One could 
question if an asymptote was apparent. Except for a very few points, the scatter appearance was 
also consistent with heteroscedasticity, possibly displaying a widening funnel in a positive linear 
relationship. In addition there appears to be an upper boundary for 1: across all ~Tb values 
consistent with a 'tc upper boundary. From the physical assumptions for a transmittance­
temperature range relationship one could argue for a linear relationship if advection adjustments 
are done. More importantly, is this scatter reproducible? 

In the work under consideration a scatter plot of the researchers' 30 year data was similar to 
that for the Ames. This finding is interesting because ~Ta not ~Tb was used. An argument for 
using ~Ta was given based on regional climatic conditions. Moreover ~Ta was defined as 

rather than as 

Based on unreported analyses, the latter ~Ta estimator was used in this research because it 
worked better. In either case the scatter in the plot was vastly greater than that in Bristow and 
Campbell. This scatter plot needs to be carefully considered. 

In any 't model there is another possible independent variable to consider. It is the daily 
average air temperature, 

T = (Tmax + Tmin)/2. 

AyerageEir temperature can b~used to indicate advection. Specifically, when 
~T(J) = T(J) - T(J-l) and/or ~T(J-l) are large then advection is almost certainly occurring. 
Figure 4 is a montage showing the relationship 't versus ~T, ~Ta' and ~Tb for all the Ames data 
as well as for 30 year median based daily norms developed from the entire data set. Figure 5 
shows the same for 'tm versus ~ T m. Some very interesting patterns are revealed. Now notice 
most of the outliers in figs. 4 A::.C and 5A, especially ones to the right side, are associated with 
large absolute value ~T(J) or ~T(J-l) observations, i.e., advection. Also notice ~T shows the 
highest linear relationship with 't (Fig. 4A) while ~Ta shows the lowest (Fig. 4B). All the 
patterns shown in Figs. 4 and 5 were also evident in the Des Moines data set. Thus ~ T a and ~ T b 
are not really adjusting for advection very well. 

5.2 Modeling considerations 
Equation (4), which works the best, was chosen to offer a simple alternative that uses just one 

form of the selected independent variable, the temperature range. It only corrects for extreme, 
mainly advective conditions, using mostly the points to the right of the dense cloud in Fig. SA. 
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In selecting alternative models, especially an intrinsically linear one, why not find a means of 
directlj' including the daily_average air temperature? Response surface methodology with LlTm(J) 
and LlT(J) and also with LlT(J-1) added looks promising in each of two different approaches. 
Each was considered directly. Next 't"m along with each temperature variable was subtracted from 
its annual cycle normal. Hook and McClendon (1992) did not consider any such options. 

There are, however, some even more promising alterna.!jves that should be tried. One 
possibility stems from observing that 't"m' Ll T or Ll T m' and T are all autocorrelated. In fact Ll T 
forms a nice stationary time series with a strong first lag term. Some form of time series analysis 
could prove useful, especially using Ll T to find a means of modeling the advection. Another 
possibility is to try a more physically based approach which is possible with data available in the 
SAMSON database. Adaptations of simple broadband parameterizations such as Monteith's 
direct plus diffuse model (Monteith and Unsworth, 1990) are possible; one possibility is, 

(5). 

In eq. (5) ao, aI' and a2 are model parameters and 0 is the independent variable, a turbidity 
coefficient which can be constructed from aerosol optical depth and precipitable water 
parameters in the SAMSON database. SAMSON also has diffuse solar radiation, sky cover, and 
many other variables WIDch could be used to develop and modify eq. (5). Preliminary assessment 
reveals 0 is linear with T, i.e, diffuse is linear with o. Moreover findings make sense physically. 

Finally there is a question of the appropriateness of using ordinary regression methodology 
with the usual assumptions. It has been pointed out that all of the variables are autocorrelated, 
non-normal, and the development and prediction results indicate heteroscedasticity. Another 
consideration is that the data are a serial sampling of the environment at one location used to 
represent a large area, i.e., a random field (Vanmarcke, 1983). Hence, essentially, they are 
happenstance data. Using OLS regression assumes the effects are fixed. A 30 year period of 
record may address any range considerations but not possible measurement error in the 
predictors. Ample consideration needs to be given to this issue. In eq. (3) the use of Draper's 
(1991) geometric mean estimator suggests a slope value almost double that of the OLS estimate 
and would have a measurement error of ±1.5 Co (the measurement error estimate is based on 
back calculation from a method of moments slope estimator). Temperature data from a rain gage 
network associated with the previously mentioned base station located in the 5600 ha Walnut 
Creek Watershed just south of Ames suggest a measurement error of ::::±1 Co. The resulting 
slope would be :::: 20% larger. Hence the assessment of the effect of a measurement error is 
paramount. Furthermore, with Carroll et al. (1995) nonlinear measurement error methodology, 
eq. (5) could be modeled directly from non-SAMSON sites. 

6. Conclusion 
The Bristow-Campbell Model, especially as formulated in eq. (2b) is a poor choice given the 

researcher's stated purpose. This conclusion is based on established statistical methodology 
accepted in the researchers' field. In this comparison much simpler alternatives cast in the 
chosen predictor variable, temperature range, work better. Furthermore, there are many other 
things that should be considered to soundly develop a model. These considerations include 
finding a better means to account for advection, developing and evaluating other models, and 
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justifying the assumptions of the methodology to be employed. I plan to work on these problems 
and then to notify the researchers of the unpublished work that I reviewed of any significant 
findings. 
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Table 1. Quantitative measures of daily global solar radiation model performance for Ames, IA. 

Model" N o P Ratio r MAE RMSE Bias(MBE) sl 

Eq. (2b) 10921 14.10 (13.06) 15.45 (13.86) 0.9122 0.7893 (0.7921) 3.89 5.21 
Eq. (2c) 10921 14.10 (13.06) 15.45 (15.13) 0.9122 0.7891 (0.7821) 3.90 5.25 
Eq. (3) 10921 14.10 (13.06) 15.14 (14.80) 0.9311 0.7981 (0.8010) 3.89 5.02 
Eq. (4) 10921 14.10 (13.06) 15.26 (14.76) 0.9240 0.8059 (0.8035) 3.76 4.97 

"Terminology 
Model: Equation numbers are the same as those provided in the methods section. 
N: Number of observations. 

-1.36±0.048 25.28 
-1.36±0.049 25.72 
-1.04±0.047 24.16 
-1.16±0.046 23.32 

0: Mean observed value of daily measurements [R.(d)] in MJ m·2 (median value). 
P: Mean predicted value of daily measurements [R.(d)] in MJ m·! (median value). 
Ratio: (Mean observed)l(Mean predicted) 
r: Pearson product-moment correlation coefficient (Spearman rank correlation coefficient). 
MAE: Mean absolute error (MJ m·2). 

RMSE: Root mean square error (MJ m·2). 
Bias: Mean bias error (MJ m·2). 

S/: Bias variance. 
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Figure 1. Extraterrestrial (Rsext) and clear day (RsJ solar radiation curves developed for Ames, 
IA are drawn to the left axis scale. The corresponding daily average relative optical air mass 
curve (l1\t)' d h' h . 1 IS rawn to t e n,gl taXIs sca e. 
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Figure 2. Bristow-Campbell Models for the Ames, IA data set: Berg-plots for eq. (2b) cross­
validation (A) and for eq. (2c) cross-validation (C). Corresponding annual cycle time plots for the 
observed - e . 2b and observed - e . 2c rediction differences Band D . 
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Figure 3. Alternative models for the Ames, IA data set: Berg-plots for eq. (3) cross-validation 
(A) and for eq. (4) cross-validation (C). Corresponding annual cycle time plots for the observed­
e . 3 and observed - e . 4 rediction differences Band D . 
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Figure 4. Scatterplots for 1: vs. ~T, ~Ta' and ~Tb for all Ames data (frames A {r=O.SOS}, B {r=OA19}, and C {r=OA92}, 
n=10921) and for median based daily normals (frames D {r=O.S19}, E {r=OA32}, and F {r=OA87}, n=36S). In frames A, B, 
and C points associated with possible advective conditions are shown as * and are selected when I ~ T(J) I >4 DC or when I ~ T(J-
1)1>4 DC. 
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Figure 5. Scatterplots for 1"m vs. ~Tm for all Ames data (A {r=O.697}, n=10921) and for median 
based daily normals (B {r=O.912}, n=365). In frame A, points associated with possible advective 
conditions are shown as * and are selected when ~ T(J >4°C or when ~ T J-I >4°C. 
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