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Abstract 

Experiments in greenhouses usually have to be conducted with very lim­
ited resources. This makes it particularly important to control the between 
plot variation by appropriate use of blocking. Many greenhouse experiments 
are naturally laid out in a pattern that makes a class of designs known as 
semi-Latin squares useful. Their properties have been studied recently by a 
number of authors and this work is reviewed. Often, the experimental treat­
ments will have a factorial structure. An example of a 23 structure is used to 
show how factorial treatments can be assigned to treatment labels to ensure 
that the appropriate information is obtained from the experiment. 

Keywords: Glasshouse experiments; Semi-Latin square design; Tomatoes; 
Trojan square design. 

1 Introduction 

A class of designs known as Trojan squares or, more generally, semi-Latin 
squares can be extremely useful for experiments in many agricultural ap­
plications. These designs deserve to be more widely known and used. In 
this paper we describe the use and properties of Trojan square designs in the 
context of experiments in greenhouses on crops such as tomatoes, an applica­
tion recently discussed by Edmondson (1998). In addition, we present some 
new work, on the use of these designs when the treatments have a factorial 
structure. The background is discussed in Section 2 and Trojan squares are 
described in Section 3. In Section 4 we present the results for an example 
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of a factorial treatment structure and some general comments are made in 
Section 5. 

2 Experiments in Greenhouses 

Protected crops such as tomatoes, cucumbers and peppers are an important 
part of horticulture in southern England and other parts of western Europe. 
Because of the cost of running commercial-scale greenhouses, experiments in 
the research station usually have to be done with fairly limited resources. 
Thus, for example, the facilities available may be a single compartment in a 
greenhouse. Within the greenhouse compartment, plots are often arranged 
in columns, which may come in pairs to facilitate access to the plots. A plan 
of a typical experimental layout of plots is given in Figure 1. 

When considering blocking for experiments in such a layout, pairs of 
columns naturally form one blocking factor and rows naturally form another. 
That is to say that we can expect considerable variation between pairs of 
columns and between rows, so that in order to obtain efficient estimates of 
treatment comparisons we should use both of these as blocking factors. To 
simplify the terminology, we will refer to a pair of columns simply as "a 
column". There are two ways we can define blocks: 

• Use two-way blocking, i.e. a row and column design, assuming the 
row and column effects are additive. Unlike most row and column 
designs, like Latin squares, there are two plots within each row x column 
combination. With this blocking system, we should ensure that each 
treatment appears (as nearly as possible) equally often in each row and 
each treatment appears (as nearly as possible) equally often in each 
column . 

• Use the row x column combinations as blocks of size 2. After the initial 
definition of blocks, this ignores their spatial layout. With this block­
ing system, we should ensure that we have an incomplete block design 
which is as efficient as possible, i.e. a balanced, or as nearly balanced as 
possible, incomplete block design. This means that each pair of treat­
ments should appear together in blocks as nearly as possible equally 
often. 

139 

Conference on Applied Statistics in Agriculture
Kansas State University

New Prairie Press
https://newprairiepress.org/agstatconference/1998/proceedings/12



140 Kansas State University 

The idea of Trojan square designs is to meet both of the above require­
ments simultaneously. Trojan squares can be useful in other areas of ap­
plication. For example, The University of Reading's poultry house used to 
be arranged so that cages were stacked in a number of different brooders, 
with each tier in each brooder having two cages. Thus the layout looks just 
like Figure 1, except that this represents a side view, rather than a view 
from above. Bailey (1992) discussed a number of other applications, some in 
agriculture, some in other areas. 

3 Trojan Square Designs 

Consider running an experiment to compare 8 varieties of tomato in the 
facility shown in Figure 1. Label the varieties A, B, C, D, C¥, /3, " 8, where 
the difference between Latin and Greek letters is meaningless as far as the 
varieties are concerned, i.e. all eight letters are interchangeable. If we use 
rows and columns as blocking factors, any design with each variety once in 
each row and once in each column will be fully efficient. For example, the 
design shown in Figure 2, which is known as an inflated Latin square, will 
be as good as any other. 

On the other hand, if the blocks are used, ignoring the spatial arrange­
ment, any good incomplete block design will be adequate. For 8 treatments 
in 16 blocks, each of 2 plots, no balanced incomplete block design exists, so 
a nearly balanced design is required. The design shown in Figure 3 is a par­
tially balanced incomplete block design with two associate classes, i.e. there 
are two groups (Alphabets) of treatments, those in the same group appearing 
together in blocks the same number of times (zero times) and those in dif­
ferent groups appearing together in blocks the same number of times (once). 
This is as good as any other design if we ignore the spatial arrangement of 
blocks. 

A Trojan square design achieves the advantages of both of the above 
designs simultaneously. It is constructed by using two (or more in general) 
mutually orthogonal Latin squares. A Trojan square design for the layout 
in our example is shown in Figure 4. In this design, each variety appears 
once in each row and once in each column and so is as good as the design 
in Figure 2 when using rows and columns as blocking factors. On the other 
hand, using blocks of size 2, it is identical to the design in Figure 3. 

The appropriate randomization for a Trojan square design is to ran-
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domly permute rows, randomly permute columns and randomly permute 
plots within blocks (rowxcolumn combinations). When our treatments are 
varieties, as in our example, and each comparison is of equal interest, then we 
will also randomly allocate the treatment labels to varieties. Note that the 
construction of the above design is mathematically the same as the con­
struction of a Graeco-Latin square. However, here the symbols in each 
row X column combination apply to different plots, whereas in a Graeco-Latin 
square design, they apply to the same plot. 

Trojan squares can be thought of as doubly resolvable (or Latinized) 
incomplete block designs. A resolvable incomplete block design is one in 
which blocks can be grouped, so that a group of blocks contains a single 
complete replicate of the treatments. Trojan squares are incomplete block 
designs with the blocks arranged so that those blocks in a row contain a 
complete replicate and those blocks in a column contain a complete replicate. 
Among doubly resolvable incomplete block designs, Cheng and Bailey (1991) 
showed that Trojan squares are: 

• A-optimal, i.e. the average variance of all possible contrasts among 
treatments is minimized; 

• D-optimal, i.e. the generalized variance of all possible contrasts among 
treatments is minimized; 

• E-optimal, i.e. the maximum variance of any contrast among treat­
ments is minimized. 

Trojan squares have a long history, but their existence, construction and 
statistical properties have been studied in depth only recently - see Preece 
and Freeman (1983), Bailey (1988, 1990, 1992), Bailey and Royle (1997), 
Bailey and Chigbu (1997) and Edmondson (1998). They were introduced by 
Darby and Gilbert (1958) for greenhouse experiments and this application is 
discussed further by Bailey (1992) and Edmondson (1998). 

Analysis of the data from a Trojan square design can be carried out 
directly using mixed models (SAS proc mixed, Genstat reml, Splus lme, 
etc.). To analyze data obtained from the design in Figure 4, an appropriate 
model would be 

lijk(l) = J-l + Pi + ij + (Pi)ij + VI + Cijk, (1) 

where lijk(l) is the response in plot k (k = 1,2) in row i (i = 1, ... ,4) 
and column j (j = 1, ... ,4) with variety l (l = 1, ... ,8) applied, J-l is the 
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overall mean, Pi ~ N(O, O"~) is a random row effect, ,j ~ N(O, 0";) is a random 

column effect, (p,)ij ~ N(O, O"~) is a random row x column interaction effect, 

VI O=r=l VI = 0) is the variety effect and Eijk ~ N(O, 0"2) is the random plot 
effect. The row x column interaction effect can also be described as a block 
effect nested within the row and column effects. 

To analyze yield data from the above design in SAS, we could use the 
following commands: 

proc mixed; 
class ROW COLUMN VARIETY; 
model YIELD = VARIETY; 
random ROWICOLUMN; 

or 

proc mixed; 
class ROW COLUMN BLOCK VARIETY; 
model YIELD = VARIETY; 
random ROW COLUMN BLOCK(ROW COLUMN); 

In this analysis the variety effect is estimated partly from within-block 
comparisons and partly from between block comparisons. More insight can 
be gained by defining pseudo-factors, ALPHABET and LETTER, where 
ALPHABET has two levels (1 = A, B, C, D; 2 = a, /3",8) and LETTER 
has four levels (1 = A, a; 2 = B, /3; 3 = C,,; 4 = D,8). The pseudo­
factors are defined purely for convenience and have no physical meaning. In 
the model we can replace VI with VI = am + In + (al)mn using the obvious 
notation. This allows us to see how much information is obtained at the 
within block level and how much at the between block level. To analyze the 
data in Genstat, we can use the following commands: 

blockstructure ROW*COLUMN 
treatment structure VARIETY//(ALPHABET*LETTER) 
anova YIELD 

or 
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blockstructure (ROW+COLUMN)/BLOCK 
treatmentstructure VARIETY//(ALPHABET*LETTER) 
anova YIELD 

This results in an analysis of variance with the structure shown in Table l. 
If we used only rows and columns as blocking factors, the Row x Column and 
Plot strata in the analysis of variance would be combined. Thus all treatment 
comparisons would be made with 100% efficiency, but the residual variance 
would include the variation between blocks (having removed variation be­
tween rows and between columns). On the other hand, if we used only 
blocks in the analysis, the Row, Column and Row x Column strata would be 
combined into a single stratum for Blocks. Since the residual variance in 
the Blocks stratum would then include variation between rows and variation 
between columns, it will not provide much information if either of these two 
sources of variation is large. With the form of analysis in Table 1, if the 
variation between blocks is relatively small (having removed variation be­
tween rows and between columns) then we may get a considerable amount of 
inter-block information which can then be combined with the within-block 
information to get improved estimates of the treatment comparisons. If the 
variation between blocks is very large, we essentially end up with the same 
analysis as from the within-blocks analysis alone (i.e. treating Block as a 
fixed effect). 

4 Factorial Treatment Structure 

The design and analysis considered above are appropriate for experiments to 
compare unstructured treatments. What if the treatments have a factorial 
structure? For example, consider an experiment where the treatments have 
a 23 structure with factors Variety (P), Rate of aeration (Q) and Rate of 
nutrient feed (R). Edmondson (1998) described a similar experiment, but 
with a 4 x 2 structure. It is now no longer true that all treatment compar­
isons are of equal interest. Instead we are interested in the usual factorial 
contrasts, which themselves have the following order of priority: (i) main ef­
fects, (ii) two-factor interactions, (iii) three-factor interaction. We then have 
to consider which treatment should be allocated to which treatment label. 

By complete enumeration of all the possible allocations, we discovered 
that there are two types of solution for this problem. Table 2 gives an example 
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of each type. The first type of design involves allocating the treatments so 
that a particular factorial contrast is obtained from the comparison between 
alphabets, thus ensuring that contrast is better estimated than the others, 
which are obtained from comparisons between letters. In the example in 
Table 2 (Design 1), the main effect of factor P is obtained from the main 
effect of the pseudo-factor Alphabet. The second type of design involves 
allocating the treatments so that four of the factorial contrasts are obtained 
partly from the comparison between alphabets and partly from comparisons 
between letters, thus ensuring that these contrasts are all slightly better 
estimated than the others, which are obtained entirely from comparisons 
between letters. In the example in Table 2 (Design 2), all three main effects 
and the three factor interaction are obtained partly from the main effect of 
the pseudo-factor Alphabet. 

Another way to regard this allocation is to think of aliasing the contrasts 
of interest with the contrasts corresponding to the pseudo-factors, and in 
particular the contrast for the main effect of the pseudo-factor Alphabet. See 
Box, Hunter and Hunter (1978) for a fuller explanation of aliasing. Table 3 
gives the coefficients of the contrasts for Design 1. This shows that, for 
example, the main effect of P is estimated from 

(Vc< + v/3 + V, + vo) - (VA + VB + VC + VD), 

where VI is the estimate of the parameter VI in the model given by equation 
(1). It is easily seen that the main effect of P is completely aliased (i.e. 
has correlation 1) with the Alphabet contrast, while the other effects are 
completely unaliased (i.e. have correlation 0) with the Alphabet contrast. 
Note that this aliasing is not harmful, as we will not actually estimate the 
Alphabet contrast. It is simply a device to illustrate how the estimates of 
the contrasts of interest relate to the analysis of variance in Table 1. 

Table 4 gives the contrasts for Design 2. Here, the main effects and the 
three-factor interaction are all partially aliased with the Alphabet contrast. 
It is easily shown that they have correlation 0.5. The two-factor interactions 
are not aliased with the Alphabet contrast. 

The efficiencies (in the Plot stratum) for estimating the factorial effects 
from the designs in Table 2 are shown in Table 5. As expected, Design 1 
gives full efficiency for estimating the main effect of P, but only 50% effi­
ciency for estimating all other effects. Similarly, Design 2 gives higher than 
50% efficiency for the main effects and three-factor interaction and 50% ef­
ficiency for the two-factor interactions. The results for Design 2 may seem 
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disappointing. The relatively small increases in efficiency are due to the fact 
than the estimates of P, Q, Rand PQR are correlated with each other. De­
sign 1 allows orthogonal estimation of the effects, which slightly simplifies the 
interpretation of the results (although the correlations in Design 2 are only 
-~). On the other hand, Design 2 is factorially balanced (i.e. the factors 
can be interchanged without changing the efficiencies) which, as Bailey and 
Royle (1997) point out, makes interpretation simpler. 

Presented with Table 5, most experimenters would probably prefer De­
sign 1, especially if one of the factors was of particular interest. If the factors 
were all of equal interest and main effects were of particular interest (e.g. if 
interactions were expected to be small) then Design 2 might be preferred. 

We can also consider versions of the optimality criteria, but with attention 
restricted to the contrasts of interest - the factorial contrasts. We consider: 

• AA- (usually called L-) optimality, i.e. minimizing the average variance 
of the contrasts of interest; 

• D A -optimality, i.e. minimizing the generalized variance of the contrasts 
of interest; 

• EA-optimality, i.e. minimizing the maximum variance of any contrast 
of interest. 

Table 6 summarizes the optimality properties of Designs 1 and 2, showing L-, 
DA - and EA - optimality assuming the contrasts of interest are those corre­
sponding to the factorial models of different orders. However, this is probably 
less informative than Table 5. 

5 Summary and Conclusions 

We can summarize our conclusions from this work as follows. 

• Careful thought should be given to the appropriate form of blocking. 
Nested blocking structures should be considered if they might allow 
recovery of more inter-block information. 

• Latinized block designs, such as Trojan squares, allow flexible blocking 
in these circumstances. 
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interpretation of the results (although the correlations in Design 2 are only 
-~). On the other hand, Design 2 is factorially balanced (i.e. the factors 
can be interchanged without changing the efficiencies) which, as Bailey and 
Royle (1997) point out, makes interpretation simpler. 

Presented with Table 5, most experimenters would probably prefer De­
sign 1, especially if one of the factors was of particular interest. If the factors 
were all of equal interest and main effects were of particular interest (e.g. if 
interactions were expected to be small) then Design 2 might be preferred. 

We can also consider versions of the optimality criteria, but with attention 
restricted to the contrasts of interest - the factorial contrasts. We consider: 

• AA- (usually called L-) optimality, i.e. minimizing the average variance 
of the contrasts of interest; 

• D A -optimality, i.e. minimizing the generalized variance of the contrasts 
of interest; 

• EA-optimality, i.e. minimizing the maximum variance of any contrast 
of interest. 

Table 6 summarizes the optimality properties of Designs 1 and 2, showing L-, 
DA - and EA - optimality assuming the contrasts of interest are those corre­
sponding to the factorial models of different orders. However, this is probably 
less informative than Table 5. 

5 Summary and Conclusions 

We can summarize our conclusions from this work as follows. 

• Careful thought should be given to the appropriate form of blocking. 
Nested blocking structures should be considered if they might allow 
recovery of more inter-block information. 

• Latinized block designs, such as Trojan squares, allow flexible blocking 
in these circumstances. 

145 

Conference on Applied Statistics in Agriculture
Kansas State University

New Prairie Press
https://newprairiepress.org/agstatconference/1998/proceedings/12



146 Kansas State University 

• Careful thought should be given to which treatment contrasts are of 
interest. If all contrasts are not of equal interest then the allocation of 
treatments to treatment labels is important. 

• Allocation of treatments to labels should be done to meet the require­
ments of the experiment. Thus the contrasts of most interest can be 
estimated with higher precision than the others. 

We believe that Latinized block designs, especially with factorial treat­
ment structures, deserve much wider application than they have received up 
to now. The corresponding author would be glad to hear from anyone who 
has used, or is contemplating using, such a design. 
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Figure 1: Typical greenhouse layout in a research station. 
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A a 

Figure 2: Inflated Latin square design to compare 8 varieties. 

D D 

Figure 3: Partially balanced incomplete block design to compare 8 varieties. 
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A B {3 D 

D (3 

Figure 4: Trojan square design to compare 8 varieties. 

Stratum Source df Efficiency (%) 
Row Residual 3 

Column Residual 3 

Row x Column Letter 3 50 
Alphabet x Letter 3 50 
Residual 3 

Plot Alphabet 1 100 
Letter 3 50 
Alphabet x Letter 3 50 
Residual 9 

Table 1: Outline analysis of variance for the Trojan square design in Figure 4. 
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Design 1 Design 2 
Label P Q R P Q R 

A 0 0 0 0 0 0 
B 0 0 1 0 0 1 
C 0 1 0 0 1 0 
D 0 1 1 1 0 0 
a 1 0 0 1 1 1 

P 1 0 1 1 1 0 
I 1 1 0 1 0 1 
b 1 1 1 0 1 1 

Table 2: Two allocations of 23 treatments to treatment labels. 

Alphabet P Q R PQ PR QR PQR 
A -1 -1 -1 -1 1 1 1 -1 
B -1 -1 -1 1 1 -1 -1 1 
C -1 -1 1 -1 -1 1 -1 1 
D -1 -1 1 1 -1 -1 1 -1 
a 1 1 -1 -1 -1 -1 1 1 

P 1 1 -1 1 -1 1 -1 -1 

I 1 1 1 -1 1 -1 -1 -1 
b 1 1 1 1 1 1 1 1 

Table 3: Coefficients of the contrasts of interest and the pseudo-factor con-
trast from Design 1 
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Alphabet P Q R PQ PR QR PQR 
A -1 -1 -1 -1 1 1 1 -1 
B -1 -1 -1 1 1 -1 -1 1 
C -1 -1 1 -1 -1 1 -1 1 
D -1 1 -1 -1 -1 -1 1 1 
0: 1 1 1 1 1 1 1 1 
(3 1 1 1 -1 1 -1 -1 -1 

I 1 1 -1 1 -1 1 -1 -1 
8 1 -1 1 1 -1 -1 1 -1 

Table 4: Coefficients of the contrasts of interest and the pseudo-factor con-
trast from Design 2 

Effect 
P 
Q 
R 
PQ 
PR 
QR 
PQR 

Efficiency (%) 
Design 1 Design 2 

100 57.1 
50 57.1 
50 57.1 
50 50 
50 50 
50 50 
50 57.1 

Table 5: Efficiencies for the designs in Table 2. 

Model 
3rd order 
2nd order 
1st order 

Design 1 
L-, D A -optimal 
L-, D A -optimal 
L-, D A -optimal 

Design 2 
L-, DA -, EA-optimal 
EA-optimal 
EA-optimal 

Table 6: Optimality of the designs in Table 2. 
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