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OPTIMUM DESIGN ON STEP-STRESS LIFE TESTING 

C. XIONG 

Department of Mathematics, Southeast Missouri State University 

Abstract This paper presents exact optimum test plans for simple time-step stress models in 

accelerated life testing. An exponential life distribution with a mean that is a log-linear function 

of stress, and a cumulative exposure model are assumed. Maximum likelihood methods are used 

to estimate the parameters of such models. Optimum test plans are obtained by minimizing the 

mean square error between the maximum likelihood estimate of a certain moment of the lifetime at 

a design stress and the real moment. The advantage of our optimum test plans is that it does not 

require large number of items to be tested. We also compare our results with test plans obtained 

by minimizing the asymptotic variance of the maximum likelihood estimate of the mean life at a 

design stress. 

Keywords Cumulative exposure model; exponential distribution; extrapolation; loss function; 

maximum likelihood 

1. INTRODUCTION 

Accelerated life testing of a product or material is used to quickly obtain information on its life 

distribution. Test units are tested at high-than-normal levels of stress such as high temperature, 

voltage, pressure, vibration, cycling rate, or load to induce early failure. Data obtained from 

accelerated life testing are then analyzed based on models which relate the life time to stress. Then 

the method of extrapolation is used to estimate the life distribution at a design stress. 

Accelerated life testing can be carried out using either constant stress or step-stress. The 

time-step stress scheme applies stress to the experimental units in the way that the stress setting 
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of a unit will be changed at prespecified times. Generally, a test unit starts at a specified low 

stress. If the unit does not fail at a specified time, stress on it is raised and held a specified 

time. Stress is repeatedly increased and held, until the test unit fails. A simple time-step stress 

accelerated life testing plan uses only two stress levels. The problem of making inferences and 

finding optimum test plans in accelerated life testing has been studied by many authors. Meeker 

and Nelson (1975) obtained optimum test plans for Weibull and extreme value distributions with 

censored data. Nelson and Kielpinski (1976) studied optimum test plans for normal and lognormal 

life distributions. Nelson (1980) obtained maximum likelihood estimators for the parameters of a 

Wei bull distribution under the inverse power law using the breakdown time data of an electrical 

insulation. Miller and Nelson (1983) studied optimum test plans which minimized the asymptotic 

variance of the maximum likelihood estimator of the mean life at a design stress for simple step

stress testing when all units were run to failure. Bai, Kim and Lee (1989) further studied the 

similar optimum simple step-stress accelerated life tests for the case where a prespecified censoring 

time was involved. Meeker and Escobar (1993) briefly surveyed optimum test plans in accelerated 

life testing. Nelson (1982, 1990) provided an extensive and comprehensive source for theory and 

examples for accelerated testing. 

While most of the above mentioned work obtained optimum test plans by minimizing the 

asymptotic variance of the maximum likelihood estimate of the mean life at a design stress, this 

paper considers the exact optimum test plan for the simple time-step stress tests with exponential 

life distributions at constant stresses and the cumulative exposure model. The mean life at a 

constant stress level is assumed to be a log-linear function of the stress. Our criterion of optimum 

test plans is to minimize the mean square error between the maximum likelihood estimate of a 

certain moment of the lifetime at a design stress and the real moment. We also present some 
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216 Kansas State University 

numerical results to compare our test plans with the test plan of Miller and Nelson (1983) obtained 

by minimizing the asymptotic variance of the maximum likelihood estimate of the mean life at a 

design stress. The data of Miller and Nelson (1983) are also used to illustrate our test plans. 

Notations 

Xo design stress 

Xl, X2 design stress 

n number of test units 

T stress change point 

nl number of units failed before stress change 

n2 number of units survived the stress change point 

Iij failure time of j-th test unit under stress Xi, i = 1, 2,j = 1,2, ... , ni 

Ti . 2:,;::1 Tij , i = 1,2. 

()i mean life at stress Xi, i = 0,1,2 

Fi(.) cumulative distribution function of exponential distribution with mean ()i 

G(.) cumulative distribution function of a test unit under simple time-step stress test 

Assumptions 

1. Two test stress levels Xl and X2 are used with Xl < X2. 

2. For any level of stress, the life distribution of a test unit is exponential. 

3. At stress level X, the mean life of a test unit is a log-linear function of stress. That is, 

log ()(x) = a. + {3x, (1) 

where a. and {3 are unknown parameters depending on the nature of the product and the method 

of test. 
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4. A cumulative exposure model holds. That is, the remaining life time of a test unit depends only 

on the cumulative exposure it has seen. (Miller and Nelson (1983)) 

2. MODEL AND MAXIMUM LIKELIHOOD ESTIMATION 

Suppose that n test units are initially placed on low stress level Xl and run until time T, when 

stress is changed to X2 and the test is continued until all units fail. nl failure times {Tlj} j;'l are 

observed under stress Xl and n2 failure times {T2j }j~l are observed under stress X2 after time T. 

The assumptions of cumulative exposure model and exponentially distributed life at any constant 

stress imply that, the cumulative distribution function of a test unit under simple step-stress test 

IS 

for 0::; t < T 

for T::; t < 00 

where s is the solution of F2 (s) = F1 (T). 

Since Fi(t) = 1- e-tjr\ s = fhTje1 . Thus, the probability density function of a test unit is 

for 0::; t < T 

(2) 

for T::; t < 00 

The likelihood function from observations Tij , i = l,2,j = 1,2, ... , ni, is then 

where n1 + n2 = n. Substituting (1) for e1 and 82 in the likelihood function, the log likelihood 

function is a function of unknown parameter a and /3: 
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218 Kansas State University 

Letting 8 log L( 0:, (3) /80: = 0 and 8 log L( 0:, (3) /8(3 = 0 yields the maximum likelihood estimators 

for 0: and (3 when nl > 0 and n2 > 0: 

& = (x l log(n2/U2) - x2 log(nl/Ud)/(x2 - Xl) 

j3 = (10g(nlU2/(n2 Ul)))/(X2 - xd· 

3. OPTIMUM TEST PLANS 

Suppose that n test units are tested according to model (2). Vve will only focus on the designs 

with n > n2 2:: 2 (or equivalently, 1 ::; nl ::; n - 2). Let ~ = (Xl - XO)/(X2 - Xl) be the amount 

of extrapolation. Let p = 1 - exp( -7/01 ) be the probability that a test unit fails before the stress 

change time 7 according to model (2). For 1 ::; k ::; n - 2, we define several notations: 

91 (k,~, n) = 2-mr(n - k - f-h )/r(n - k); 

92(k,~, n) = 2-r:kr(n - k - rh)/r(n - k); 

hl(Ol, 7, k, n) = k(20~ - 7(7 + 201)(1 - p)/p) + k(k - 1)(01 - 7(1- p)jp)2 

+2k(n - k)7(01 - 7(1 - p)/p) + ((n - k)7)2; 

h2(01, 7, k, n) = k(e1 - 7(1 - p)/p) + (n - k)7. 

Let eo = exp(& + j3xo) be the maximum likelihood estimate of the mean life 00 = exp(o: + (3xo) 

at design stress Xo. In order to measure the distance between eo and eo, Miller and Nelson (1983) 

used the square loss function (ifo - 00)2 and obtained the optimum test plans by minimizing the 

asymptotic expectation of the loss. We propose to use the loss function ((eo/OO)l/(l+E,) - 1)2 to 

measure the distance between eo and eo. This loss function has the similar mathematical property 

as the square loss function (00 - 00)2. More specifically, if the maximum likelihood estimate eo of 
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eo at design stress Xo is close to the real eo at design stress xo, then Bo/eo would be close to 1, and 

((Bo/eo)l/(l+f,) _1)2 would be close to zero. Our criterion of optimum test plans is to minimize the 

expectation of the loss ((Bo/eo)l/(l+f,) - 1)2. Notice that Bo l/(l+f,)r(l + 1/(1 + ~)) is the maximum 

likelihood estimate of the 1/(1 + ~)-th moment e~/(l+f,)r(l + 1/(1 + ~)) of the lifetime at design 

stress xo, ((Bo/eo)l/(l+f,) -1)2 is a multiple of the square error loss between the maximum likelihood 

estimate of the 1/(1 + ~)-th moment of the lifetime and the real 1/(1 + ~)-th moment at design 

stress Xo. The expected loss, given 1 :S n1 :S n - 2, can be computed as (see Appendix for the 

derivation) 

E(((Bo/eo)l/(l+f,) - 1)211 :S n1 :S n - 2) 

= 1 + I:~:~[e12(2n - 2k)2f,/(1+f,) hI (el , T, k, n)gl (k,~, n)k-2 - 2e11 (2n - 2k)f,/(1+f,) 

To find the optimum test plan, we need to minimize E(((Bo/eo)l/(1+f,) - 1)211 :S n1 :S n - 2) over 

the choices of T, Xl and X2. Miller and Nelson (1983) pointed out that Xl (X2) should be chosen as 

low (high) as possible as long as the choices do not cause failure modes different from those at the 

design stress so that the model remains valid over the range of the test and design stresses. We 

will assume that Xl and X2 are specified by experimenters. Our optimization criterion is then to 

minimize E(((Bo/eo)l/(l+f,) - 1)211 :S nl :S n - 2) over T. The optimum stress change time T can be 

found by solving the equation 

(4) 

There exists no close form solution to equation (4) in general, and hence the equation has to be 

solved by numerical methods such as Newton-Raphson's method. Since unknown parameter e1 is 

involved in E(((Bo/eo)l/(l+f,) -1)211 :S nl :S n - 2), it has to be estimated from experience, similar 
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data or preliminary tests before an optimum test plan can be found. 

Miller and Nelson (1983) use model (2) to obtain the optimum stress change time T by minimiz

ing the asymptotic variance of the maximum likelihood estimate of the mean life at design stress 

Xo. Notice that our results use a different criterion for the optimization of T and provides the exact 

optimum test plans. Table 1 presents a comparison between the optimum stress change time T* 

of Miller and Nelson (1983) and our optimum stress change time T** for several different choices 

of ~. We choose (h = 10 and n = 30 in Table 1. Notice that, as ~ -+ 0, (({fQ/OO)l/(l+f,) - 1)2 is 

approximately a multiple of the square error loss between {fQ and 00 . This explains why the results 

of Miller and Nelson (1983) and our results become very close when ~ is small in Table 1. 

Table 1. Comparison between optimum asymptotic test plan T* and optimum exact test plan T** 

~ T** T* 

3.00 8.96 8.47 

2.50 9.21 8.75 

2.00 9.58 9.16 

1.75 9.84 9.45 

1.50 10.16 9.81 

1.25 10.60 10.30 

1.00 11.23 10.99 

0.75 12.18 12.04 

0.50 13.88 13.86 

0.25 17.84 17.91 

To examine the effect of the sample size n on the optimum stress change time T, we compute the 
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optimum stress change time T when Xo = 0, Xl = 1, X2 = 2 , 81 = 10 and n = 10, 20, 30, 50, 

80, 100, 150, 200. We find that, after n reaches 80, the optimum stress change time stabilizes at 

about T** = 11.12. Finally, in order to compute the optimum stress change time T**, one must 

know 81 in advance. Suppose one incorrectly uses 8~ for 81 . Then the actual test plan is no longer 

optimum and has a higher expected loss. Table 2 presents the percentage of the increase of the 

expected loss at the optimum stress change time T** = 11.23, (E(((Bo/8o)1/(1+~) - 1)211 :S n1 :S 

n - 2) - E(((Bo/8o)1/(1+~) - 1)211 :S n1 :S n - 2))/ E(((Bo/8o)1/(1+~) - 1?11 :S n1 :S n - 2), when 

~ = 1,81 = 10, n = 30, and 81 is misspecified as 8i. 

Table 2. The effect of misspecified 81 

8U81 % of the increase of the expected loss 

2.00 51.62% 

1.75 32.34% 

1.50 16.79% 

1.25 5.26% 

1.00 0.00% 

0.75 14.33% 

0.50 166.77% 

0.25 1015.36% 

Example: 

Miller and Nelson (1983) reported an accelerated life test with 76 times (in minutes) to break

down of an insulating fluid at constant voltage stresses (kV). The extreme (transformed) test 

stresses are Xl = In(26.0) = 3.2581, and X2 = In(38.0) = 3.6376. The (transformed) design stress 
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is Xo = In(20.0) = 2.9957. Miller and Nelson (1983) obtained the maximum likelihood estimates 

of the model parameters for those data: a = 64.912 and jj = -17.704. The maximum likelihood 

estimates of the means at stresses Xl and X2 are Or = 1380 minutes and ~ = 1.67 minutes. The 

estimate of the mean life at the design stress is eo =144,000 minutes. By minimizing the asymp-

totic variance of the maximum likelihood estimate of the mean at the design stress, Miller and 

Nelson (1983) also reported the optimum stress change point T* = 1707 minutes. By minimizing 

E(((eo/eo)l/(l+~) -1)211 :S nl :S n-2), we found that the optimum stress change time is T** = 1729 

minutes when n = 76. 

APPENDIX 

We give the derivation for (3). First, Let a random variable T be distributed as in (2). Then it 

is easy to verify that the random variable 

for O:S T < T 

(5) 
for T:S T < 00 

is exponentially distributed with mean 1. Thus, for any constant a > 0, (S - a)IS > a is also 

exponentially distributed with mean 1. 

The following lemma from Lawless (1982) is used in our derivation. 

Lemma: Suppose that {Sd ~=l are i.i.d. exponential random variables with mean 1. Let M = 

min{Si' i = 1,2, ... , n} and S. = I:?=l Si. Then 2nM has a X2-distribution with 2 degrees offreedom 

and 2(8. - nAt) has a X2-distribution with 2n - 2 degrees of freedom. Further, these two random 

variables are independent. 

Next we transfer all random variables Tij into Sij through (5). Let 1 :S k :S n - 2. Given nl = k 
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( or equivalently, given n2 = n - k ~ 2), by the Lemma, 2U2/()2 has a X2-distribution with 2(n - k) 

degrees of freedom. Thus 

gl (k, f;, n) = E((2U2/()2)-2~/(1H)lnl = k) 

= 2-2~/(1+0r(n - k - 2f;/(1 + f;))/r(n - k) 

and 

g2(k,f;,n) = E((2U2/()2)-~/(l+Olnl = k) 

= 2-~/(1+~)r(n - k - f;/(1 + f;))/f(n - k). 

Since the distribution of Tl ., given nl = k, is the same as the distribution of 2:;=1 TIj , given 

Tn S T, T12 S T, ... , Tlk ST. It follows that 

E(Tl·lnl = k) = kE(TIT S T) 

= k(()l - T(l - p)/p) 

and 

E(Tl-lnl = k) = kE(T2IT S T) + k(k - l)(E(TIT S T))2 

= k(2()i - T(T + 2()1)(1 - p)/p) + k(k - 1)(()1 - T(l _ p)/p)2 

where p = P(T S T) = 1 - exp( -T/()l). Hence 

hl(()l,T,k,n) = E(Urlnl = k) 

and 

= k(2()y - T(T + 2()d(1 - p)/p) + k(k - 1)(()1 - T(l _ p)/p)2 

+2k(n - k)T(()l - T(l - p)/p) + ((n - k)T)2 

h2(el ,T,k,n) = E(Ullnl = k) 

= k(()l - T(l - p)/p) + (n - k)T. 

Since 
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E(((eQ/Bo)l/(l+f.) - 1)211 :::; nl :::; n - 2) 

= E(WIIUl)2n~f./(1+f.) /((B21U2)2U(1+f.lnnI1 :::; nl :::; n - 2) 

-2E((BIIUl)n~j(1+f.) /((B2 l U2)f./(l+Onl)!1 :::; nl :::; n - 2) + 1. 

Finally, since Ul and U2, given nl = k, are independent, 

E((BIIUl)2n~f.j(1+f.) /((B2 1U2)2U (lH)nn!1 :::; nl :::; n - 2) 

= L~:i B12(2n - 2k)2f./(1+f.) hI (01 , T, k, n)91 (k,~, n)k-2 (~) (1 - exp( -T /OJ)k 

X (exp( -T /B1))n-k /(1 - (1 - pt - npn-l(l _ p) _ pn), 

E((B1lUl)nf(l+f.) /((B21U2)f./(lHlnl)!1 :::; nl :::; n - 2) 

= L~:i 011(2n - 2k)f./(1H) h2(B1, T, k, n)92(k, C n)k-1 (~) (1 - exp( -T /Ol))k 

x(exp(-T/Ol))n-k/(l- (1- p)n _ npn-l(l_ p) _ pn). 

(3) is now proved by combining the above equations in (6). 
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