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Applied Statistics in Agriculture 

ANALYSING BINARY DATA IN A REPEATED MEASUREMENTS 
SETTING USING SAS 

Abstract 

Eleanor F Allan 
Statistical Services Centre 

Department of Applied Statistics 
The University of Reading 

Reading RG6 6FN 
UK 

Whilst the repeated measurements methods appropriate for the analysis of normally distributed 
data are well established, methods for handling binary and categorical data in a repeated 
measurements context are not so commonly known or used. The application of population 
averaged models and subject effects models to repeated binary data are discussed and their 
implementation with the aid of SAS are illustrated by example. Comparisons with other 
approaches are also considered. 

1. Introduction 

Experiments to compare treatments often involve taking repeated measurements of a response 
variable (or response variables) for each experimental unit. Examples might be comparisons of 
different insecticides applied to crops, or different forage treatments fed to cattle, where interest 
is in the response to treatment over time. Since treatments are randomly allocated to the 
experimental units, with several units per treatment, whilst the repeated measurements are made 
on the experimental units, the data have two different levels of variability : within and between 
unit variability. When comparing treatments in such a setting, one is usually interested in how the 
response over time is influenced by treatment. This comparison of treatment profiles can be 
made by interpreting the treatment main effect and the treatment-by-time interaction 
simultaneously. 

When the response of interest is a normally distributed variable (or can be transformed to 
normality), there are many well-developed methods of analysis available for comparing 
treatments, which deal with the repeated measurements structure. One of these is the split-plot
in-time analysis of variance where the treatment main effect is assessed relative to the between 
unit variability and the treatment by time interaction relative to the within unit variability. 

Response variables in agricultural experiments however are not always normally distributed, but 
can be binary or even categorical. For instance, the presence or absence of aphids (yes, no) may 
be of interest in the crop experiment to compare insecticides or the condition score of a cow 
(1 =normal, 2=subdued, 3 =dull, 4=very dull) in a livestock study. These responses can be 
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2 Kansas State University 

recorded on several occasions throughout the experiment, in which case the objective is to assess 
the treatment effects over time. Methods of analysis which are available are based on the 
underlying assumption of a multinomial distribution. A full discussion of the different approaches 
to analysing binary and categorical repeated measurement data may be found in Kenward (1992). 
Agresti (1989) also gives an account of methods available when the data are of an ordered 
categorical structure. Two methods of analysis which can be used for binary repeated 
measurement data will be discussed here: the marginal probability model and the subject effects 
model. In the former a model is fitted to the probability of the level of a response at each time, 
irrespective of the observation recorded at other times. The subject effects model on the other 
hand, is the categorical equivalent of the split-plot analysis, including an effect for the 
experimental unit in the model. How these two analyses for binary data can be implemented in 
SAS and the results interpreted will be described here using an example. The details of the 
methodologies are described only briefly. 

2. Example 

Consider the following example looking at swine fever in pigs. Three treatments were randomly 
allocated to the pigs; treatment A is a currently used vaccine, Band C are new vaccines. The 
pigs were vaccinated on day -5, then challenged with the virus on day o. Respiratory rate was 
recorded daily for 7 days as either normal (0) or increased (1). The important times post
challenge were days 1, 3 and 7. The data recorded at these times are summarised in Table 1. 

From the joint frequencies presented in this table observed marginal proportions, i.e. proportions 
responding with a 0 or 1 on each day, can be calculated (Table 2). Inspection of these data 
suggests that the probability of having a normal respiratory rate increases with time. The effect 
of treatment is less clear, as is the treatment-by-time interaction. A marginal probability model 
would attempt to model the probability of a response on a particular day for a particular 
treatment in terms of effects due to treatment, time etc. 

3. Marginal Probability Model 

3.1 Method 

One method of fitting marginal probability models is the empirical generalised least squares 
approach as discussed by Koch and Landis (1977). This can be implemented in SAS using PROC 
CATMOD. 

The method fits a linear model to functions of the marginal probabilities : 

E{~(d= X~ 
where p is the vector of observed marginal probabilities 
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f(p) is a (nx 1) vector of functions of these marginal probabilities 

X is the design matrix 
f3 is a (p xl) vector of unknown parameters 

In the case of binary data, the most frequently-used function 1S the logit of the "success" 
probability, and in our example this is 

109{p(response = a)} 
P(response = 1) 

since a normal respiratory rate can be regarded as a "success". There is one observed response 
function for each margin (day) for each treatment. 

The covariance matrix of these functions, W, is block diagonal, with blocks for each treatment 
group. The functions are neither independent, nor do they have constant variance; hence the 
ordinary least squares method of model fitting does not apply. Parameters are estimated instead 
using generalised least squares : 

with estimated covariance matrix 

where W is the sample estimate ofW. 

To test for example the treatment effect, one can formulate a fiypothesis of the form 

and carry out a Wald test 

X2 _ AT --1 A 
- 1-'1 \If 1 1-'1 

(a subset of the parameters) 

which has an asymptotic X2 distribution with PI degrees of freedom (where PI is the number of 

independent parameters, and \VI' is the appropriate (PI x PI) subset of \V). 

The residual sum of squares, (f-Xj3)T W-I (f-Xj3) has an asymptotic X2 distribution with 
- -

(n-p) degrees of freedom, and can be used to assess the goodness-of-fit of the model. 
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3.2 Analysis 

Appendix 1 contains a SAS program for fitting a marginal probability model with effects for time 
(period) and treatment to the data in the example, using a logit transformation of the probability 
of a normal response (score=O). The resulting output is also presented. 

A model of the form: fjj = J..l + tj + P j is fitted to the data where fjj is the response function for 

treatment i in period j; i = 1,2,3; j = 1,2,3 

J..l is overall mean 
tj is the effect associated with the ith treatment 

p j is the effect associated with the jth period 

The residual chi-square on 4 degrees of freedom in the CATMOD output assesses the goodness
of-fit of the model, or the significance of the treatment-by-period interaction; and is clearly 
suggesting a model with just period and treatment effects is an adequate representation of the 

data. The Wald X2 -tests of 18.05 on 2 d.f for periods and 1.29 on 2 d.f for treatments, show 
no significant difference between treatments A, Band C, but a significant difference between days 
1,3 and 7. 

PROC CATMOD employs the constraint that the effect parameters sum to zero. Hence from the 
output, the estimates of treatment effects are: treatment 1 (A) = -0.2025, treatment 2 (B) 
-0.0535; and so treatment 3 (C) = 0.2560. Period effects are similarly estimated. 

Estimates of treatment differences, and period differences, can be derived from differences of the 
individual effect parameters and, using their variance-covariance matrix, standard errors of these 
differences can be calculated. Examples are illustrated in Table 3. 

Since a logit transformation was used in modelling the response probabilities, these differences 
can be interpreted as log odds ratios of having a normal respiratory rate (response = 0). 
Consequently estimates of odds ratios, and approximate 95% confidence intervals for odds ratios, 
can be derived. For instance the odds of having a normal respiratory rate as opposed to an 
increased one for day 1 as opposed to day 3 is 0.69. The period effects are therefore suggesting 
an improvement in respiratory rate over time. 

3.3 Comments on Approach 

One main disadvantage of the generalised least squares approach is a sample size consideration. 
The method is based on large sample approximations and requires a non-singular estimated 
covariance matrix for the response functions, Vi, for each "population" -x-period combination. 
Thus if there are several populations (e.g. combinations of treatment and other explanatory 
factors) then the table may be too sparse for this. The SAS manual suggests an effective sample 
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size of 25-30 for each response function. Koch and Landis in their paper also suggested that a 
sample size of ;:::25 is necessary. The method therefore does not seem inappropriate in the swine 
fever example. The other disadvantage of the approach is that it cannot handle continuous 
covariate information, other than by categorising it. This in turn could lead to a sparse data 
representation. 

Instead of using a least squares approach to fit a model to the observed marginal proportions, the 
modelling could have been carried out using the Liang and Zeger (1986) method of generalised 
estimating equations. This approach fits, using a 'working' correlation matrix, a model to data 
which otherwise would be analysed by a generalised linear model, but which have some 
correlation structure. Recent versions of SAS (version 6.12 for example) now contain a facility 
within PROC GENMOD for using generalised estimating equations. In the swine fever example 
the unknown marginal probabilities of respiratory rate response on the three different days in the 
study in the three groups were modelled, using a 'working' correlation matrix of the repeated 
measurements. To be consistent with the generalised least squares analysis, a model with only 
effects for treatment and period was fitted. The SAS output however only gives parameter 
estimates and standard errors; no significance tests are produced. Results for treatment effect 
differences obtained from PROC GENMOD are presented in Table 4. 

These estimates are slightly different from the ones obtained with the least squares approach, 
though when interpreted in terms of odds ratios (and approximate 95% confidence intervals for 
the odds ratios) they are fairly similar. The standard errors obtained with the generalised 
estimating equations were very slightly smaller. 

This method will work in situations where the generalised least squares assumptions might not 
hold e.g. when the data being analysed are from a sparse table. 

4. Subject Effects Model 

4.1 Method 

The second method of analysis for binary data is the subject effects model. Here the model 
incorporates an effect for the subject, just as in the split-plot analysis for normally distributed 
data. To investigate the effects of treatment and time on binary data the following model could 
be used: 

f{P(response = O)} = Il+ti +Pj + (tp)ij +15 if 

where 11 is the overall mean 
t i is the effect associated with treatment i 

p j is the effect associated with period j 

(tp) ij is the treatment-period interaction effect 

and 8 if is a subject effect for f th unit on the ith treatment. 
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As with other binary data situations the function being modelled is a logit of the probability of 
"success" . 

However, it is not possible to estimate effects for each subject and then base inferences on the 
estimates of the treatment effects, period effects etc.; the chi-square asymptotic approximations in 
the hypothesis testing will not hold, since the number of model parameters now increases as the 
number of observations increases. Two approaches are possible to address this problem. One is 
to assume that the subject effects are random effects from some particular distribution (such as 
the normal). Analysis is then possible, using maximum likelihood estimation, as with the package 
EGRET. 

A second approach is to carry out a conditional analysis, using a method suggested by 
Blackwood (1988) where the problem reduces to a conventional log-linear model. With this 
method the subject totals ( i.e. sum of responses over the times) form a sufficient statistic for the 
subject effects. Conditioning on these eliminates the subject effects and reduces the problem to a 
log-linear model on a multidimensional contingency table classified by treatment and response at 
each separate time point i.e. a t x 2 x 2x·· ·x2 contingency table where t is the number of 

~ 
q times 

treatments. Log-linear modelling can be carried out in SAS using PROC GENMOD. 

The main disadvantage of this analysis is that all between subject information, including treatment 
effects, is now lost. It is however possible to investigate a treatment by time interaction. 

To implement the conditioning, a model with effects for treatment, subject total score (S) and 
their interaction must be fitted in the model. This is the minimal model [Model (1)). In the swine 
fever example the factor S takes values as follows: 

S=1 
2 
3 
4 

if responses are (0,0,0) on days 1,3 and 7 
if responses are (0,0,1) or (0,1,0) or (1,0,0) on days 1, 3 and 7 
if responses are (0,1,1) or (1,0,1) or (1,1,0) on days 1, 3 and 7 
if responses are (1,1,1) on days 1, 3 and 7 

Time effects are added using 2-level factors (say PI, P2, ... Pq) associated with response in each 
period. The time main effect has only (q - 1) df, and hence only (q - 1) of the factors are needed 
for the model with time effects [Model (2)). The treatment-by-time interaction is addressed 
similarly by incorporating into the model terms for the interaction between treatment and these 
period factors [Model (3)]. Significance testing is then carried out using conventional deviance 
methods for log-linear modelling. Parameter estimates from the model are interpreted as log 
odds ratios. 
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4.2 Analysis 

The SAS program for the analysis of the swine fever data using this approach, and fitting the 
three models just discussed is presented in Appendix 2, along with the output from the model 
with no treatment-by-time interaction. Table 5 summaries the results of the model fitting process 
in terms of deviances and deviance differences. 

From this table both models (2) and (3) seem to be reasonable fits for the data (deviances were 
non-significant), and the change in deviance between the two shows that the treatment by period 

interaction is non-significant (X 2 test on 4 di). Comparison of models (1) and (2) shows period 

effects to be significant (X 2 test on 2 df; p<O.OOl). In the absence of a treatment by time 
interaction, estimates of period effects can be extracted from model (2). The GENMOD syntax 
which was used in this model incorporated factors for period 1 and 2 only (days 1 and 3), and 
consequently the model parameters are estimates relative to period 3 (day 7). Furthermore they 
are estimates of log odds ratios of a normal respiratory rate (score = 0) as opposed to an 
increased rate (score = 1) for each of these days relative to day 7. Estimates of log odds ratios 
for some period comparisons are presented in Table 6 along with (for interest) their EGRET 
counterparts. 

4.3 Comments on Approach 

The results of this conditional analysis are very similar to the result obtained using EGRET, 
where the change in deviance associated with the treatment-by-period interaction was 5.60 on 4 
d.f. Parameter estimates were slightly different, though when interpreted in terms of odds ratios, 
and confidence intervals for odds ratios, the results seem fairly similar. 

The main disadvantage with this conditional subject effects analysis is that all between subject 
information is lost in the conditioning, and consequently it is not possible to investigate treatment 
main effects. If this is of interest, then a summary statistics analysis could be performed. In the 
swine fever example the average score for an individual pig was taken as a suitable summary 
statistic, and a Kruskal-Wallis non-parametric analysis of variance used to compare the groups. 

This yielded a X2 value of 1.33, on 2 d.f., which is clearly not significant. 

5. Summary 

Two different types of models have been fitted to a repeated measurements binary data example 
using SAS. A marginal probability model was fitted via empirical generalised least squares in 
PROC CATMOD. Treatment, time and treatment by time effects could all be investigated. The 
method is based on some large sample approximations which appeared to hold in this particular 
instance. With smaller samples a generalised estimating equations approach may be more 
appropriate, but as yet this approach using PROC GENMOD in SAS only yields parameter 
estimates. 
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8 Kansas State University 

A subject effects model was also fitted to the same example. This can only be done in SAS via a 
conditional analysis, conditioning on subject total response, which reduces the problem to a 
conventional log-linear model for contingency table data. PROC GENMOD can be used for this. 
The analysis allows investigation of period effects and the treatment-by-period interaction, but 
because of the nature of the conditioning the treatment main effect cannot be investigated. A 
summary statistics analysis would be required to explore this. 

Finally, it should be noted that the interpretation of the parameters in the subject effects model 
and the marginal probability model is different. In the subject effects case, the model is describing 
how an individual's probability is modified over time. The marginal probability model, on the 
other hand is a population averaged model, and the parameter estimates relate to the probability 
of an individual chosen at random. 
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Table 1: Swine fever in pigs. Frequency of respiratory rate responses on the three days 
for each treatment group 

Treatment Response (day 1, day 3, day 7) 

(0,0,0) (0,0,1) (0,1,0) (0,1,1) (1,0,0) (1,0,1) (1,1,0) (1,1,1) Total 

A 4 1 2 2 1 1 6 13 30 

B 3 ° 1 2 3 4 8 8 29 

C 4 ° 2 ° 6 4 5 9 30 

Table 2: Swine fever in pigs. Proportion of animals responding 0 or 1 in each 
treatment group, by day 

Day 1 Day 3 Day 7 

° 1 ° 1 ° 1 
A 0.300 0.700 0. 233 0.767 0.433 0.567 

B 0.207 0.793 0.345 0.655 0.517 0.483 

C 0.200 0.800 0.467 0.533 0.567 0.433 

Table 3: Some estimates of treatment effect differences and period differences using 
PROC CATMOD in SAS for marginal probability modelling 

Treatments 
Estimate 

-0.4585 

-0.3095 

s.e. 

0.4159 

0.3870 

Estimate 

-03769 

-1.1189 

Periods 
s.e. 

0.2805 

0.2702 

Table 4: Some estimates of treatment effect differences using PROC GENMOD in SAS 
for fitting generalised estimating equations. 

Estimate s.e. 
t1 - t3 -0.4059 0.4123 

t2 - t3 -0.2454 0.3757 
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Table 5: Summary of models fitted in PROC GENMOD in SAS for the subject effects 
analysis 

Model Deviance df Change in: 
Deviance df 

(1) Minimal 29.25 12 

(2) + period effects 10.29 10 18.96 2 

(3) + treatment*period 4.90 6 5.39 4 

Table 6: Some estimated period differences (log odds ratios) for the subject effects 
model 

Genmod Anal~sis EGRET 
estimate s.e. estimate s.e. 

PI - P2 -0.8008 0.4146 -0.746 0.396 

PI - P3 -1.6627 0.4190 -1.653 0.414 
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Appendix 1: Marginal effects model for the analysis of respiratory rate in pigs with 
swine fever. 

SAS Program 

/*-------------------------------------
I Marginal effects model : EGLS I 
-------------------------------------*/ 

data a; 
do treat = 1 to 3; 
do p1 0,1; 
do p2 = 0,1; 
do p3 = 0,1; 
input resp @@; 
output; 
end; 
end; 
end; 
end; 

cards; 
4 1 2 2 1 1 6 
3 0 1 2 3 4 8 
4 0 2 0 6 4 5 

13 
8 
9 

proc catmod; 
population treat; 
weight resp; 
response logit; 
model p1*p2*p3 = response treat / covb; 
repeated period; 
run; 

Note: Variables pI, p2, p3 refer to the response recorded on days 1, 3 and 7. 

Treatments 1, 2 and 3 refer to treatments A, Band C. 

The data are being read in contingency table form. 
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Output 

ANALYSIS-OF-VARIANCE TABLE 

Source 

INTERCEPT 
PERIOD 
TREAT 

RESIDUAL 

ANALYSIS 

DF 

OF 

1 
2 
2 

4 

Chi-Square 

11.29 
18.05 

1. 29 

6.53 

Prob 

0.0008 
0.0001 
0.5234 

0.1630 

WEIGHTED-LEAST-SQUARES 

Standard 

ESTIMATES 

Chi-
Effect Parameter Estimate Error Square Prob 
----------------------------------------------------------

INTERCEPT 1 -0.5531 0.1646 11.29 0.0008 
PERIOD 2 -0.4986 0.1600 9.70 0.0018 

3 -0.1217 0.1596 0.58 0.4458 
TREAT 4 -0.2025 0.2395 0.72 0.3976 

5 -0.0535 0.2227 0.06 0.8100 

COVARIANCE MATRIX OF THE PARAMETER ESTIMATES 

1 
2 
3 
4 
5 

1 

0.02710199 
0.00345396 
-.00041280 
0.00314991 
-.00344501 

2 

0.00345396 
0.02561443 
-.01372379 
-.00300155 
0.00060463 

3 

-.00041280 
-.01372379 
0.02546448 
0.00506764 
-.00084245 

4 

0.00314991 
-.00300155 
0.00506764 
0.05733676 
-.02648665 

5 

-.00344501 
0.00060463 
-.00084245 
-.02648665 
0.04958796 
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Appendix 2: Subject effects model for the analysis of the respiratory rate in pigs with 
swine fever. 

SAS Program 

/*------------------------------------------------
I Subjects effects model : log-lin approach I 
------------------------------------------------*/ 

data a; 
do treat = 1 to 3; 
do p1 0,1; 
do p2 = 0,1; 
do p3 = 0,1; 
input count @@; 
output; 
end; 
end; 
end; 
end; 
cards; 
4 1 2 2 1 1 6 13 
3 0 1 2 3 4 8 8 
4 0 2 0 6 4 5 9 

data bi set a; 
s = p1+p2+p3 +1 

proc genmod; 
class treat p1 p2 p3 Si 
model count = treat s s*treat / d=poissoni 
run; 

proc genmod; 
class treat p1 p2 p3 s; 
model count = treat s s*treat p1 p2 / d=poisson; 
run; 

proc genmod; 
class treat p1 p2 p3 s; 
model count = treat s s*treat p1 p2 treat*pl treat*p2 

/ d=poisson; 
run; 
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Output 

Model : TREAT S TREAT*S P1 P2 

Criteria For Assessing Goodness Of Fit 

Criterion DF Value Value/DF 

Deviance 10 10.2949 1.0295 
Scaled Deviance 10 10.2949 1.0295 
Pearson Chi-Square 10 8.0902 0.8090 
Scaled Pearson X2 10 8.0902 0.8090 
Log Likelihood 56.1089 

Analysis Of Parameter Estimates 

Parameter DF Estimate Std Err ChiSquare Pr>Chi 

INTERCEPT 1 2.1972 0.3333 43.4502 0.0001 
TREAT 1 1 0.3677 0.4336 0.7191 0.3964 
TREAT 2 1 -0.1178 0.4859 0.0588 0.8085 
TREAT 3 0 0.0000 0.0000 
S 1 1 1.7137 0.8986 3.6373 0.0565 
S 2 1 0.2503 0.6099 0.1684 0.6815 
S 3 1 -0.4775 0.4879 0.9576 0.3278 
S 4 0 0.0000 0.0000 
TREAT*S 1 1 1 -0.3677 0.8295 0.1965 0.6575 
TREAT*S 1 2 1 -1. 0609 0.7504 1.9989 0.1574 
TREAT*S 1 3 1 -0.3677 0.6405 0.3296 0.5659 
TREAT*S 1 4 0 0.0000 0.0000 
TREAT*S 2 1 1 -0.1699 0.9052 0.0352 0.8511 
TREAT*S 2 2 1 -0.5754 0.7817 0.5417 0.4617 
TREAT*S 2 3 1 0.5596 0.6470 0.7480 0.3871 
TREAT*S 2 4 0 0.0000 0.0000 
TREAT*S 3 1 0 0.0000 0.0000 
TREAT*S 3 2 0 0.0000 0.0000 
TREAT*S 3 3 0 0.0000 0.0000 
TREAT*S 3 4 0 0.0000 0.0000 
P1 0 1 -1.6627 0.4190 15.7471 0.0001 
P1 1 0 0.0000 0.0000 
P2 0 1 -0.8619 0.3654 5.5639 0.0183 
P2 1 0 0.0000 0.0000 
SCALE 0 1.0000 0.0000 
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