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ABSTRACT 

A family of procedures is given to construct confidence intervals for the heritability of a trait 
in a mixed linear model. The procedures are applicable for constructing confidence intervals for 
a ratio of variance components in a mixed linear model having two sources of variation. The 
resulting intervals are evaluated in terms of expected length. The investigator may select the best 
confidence interval procedure from the family of procedures based on the interval( s) having short 
expected length. Confidence intervals for loineye data using bulls from a Red Angus seed stock 
herd will be presented. 

1 Introduction 

Linear models are frequently used in applications such as plant and animal breeding. In 
these fields of study the components of variation are often perceived as having either a ge­
netic or environmental (non-genetic) origin. Mixed linear models (models which take into 
account both fixed and random effects) having two variance components are often used 
with the random effect corresponding to the genetic source and the error corresponding to 
the environmental source. In many cases it is assumed that the genetic and environmen­
tal effects are independent. However, the observational units are not independent of one 
another if they possess common genetic material. In other words, the covariance between 
two observations will usually involve the genetic component of the overall variance. Addi­
tionally, the random effects themselves may be correlated with one another depending on 
the genetic relationship between the corresponding observational units. 

In plant and animal breeding, inferences concerning functions of variance components 
are often of primary importance. We define the ratio of variance components, denoted by "I, 
as the genetic component of variance divided by the environmental component of variance. 
It follows that p = "1/(1 + "I) is the proportion of total variation due to genetic effects. p is 
sometimes referred to as the heritability of the trait under study. 

One of the complexities in applying mixed linear models to plant and animal breeding 
problems is accurately modeling the covariances among observations. The approach used to 
accomplish this task is to obtain a matrix that describes the (additive) genetic relationship 
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between the observations. This matrix, denoted by A, is called the relationship matrix. 
Henderson (1976) devised a recursive method for computing A as well as a rapid method 
for computing the inverse of A. 

The most common method of developing confidence intervals is the pivotal quantity 
technique. This approach centers on finding a function of the data and the parameter of 
interest, say, p, whose distribution is free of all model parameters. If this quantity is a 
monotone function of p, a confidence interval for p can be obtained. There are cases in 
which numerous pivotal quantities are available that result in exact confidence intervals for 
p. LaMotte et al. (1988) discussed the use of these quantities in the context of hypothesis 
tests. 

The paper is organized as follows. In Section 2 we provide an overview of a general 
mixed linear model having two variance components. The variance components are denoted 
by a~ and a; where a~ is the "additive" component of genetic variance and a; is the "envi­
ronmental" variance component. The structure of the model, observable random variables, 
unobservable random variables, unknown parameters, and distributional assumptions are 
discussed. In our case, the parameters under study are the variance components. With 
this in mind, minimal sufficient statistics are derived for the model void of the location 
parameters. 

The particular function of variance components we are interested in is p = a~/ (a~ + a;). 
Confidence intervals for p are discussed and we employ the pivotal quantity method to ob­
tain these confidence intervals. Due to the multitude of possible pivotal quantities, criteria 
of good confidence intervals are entertained. Expected length is a traditional measure of 
goodness and is the one used in this paper. In fact, we investigate the expected length prop­
erties of confidence intervals for p as developed from the pivotal quantities considered by 
LaMotte and McWhorter (1978) for mixed linear models having two variance components. 
Expected length computations are made possible by a result given by Pratt (1961). 

In Section 3 we present data that consists of measurements on one hundred and seventy 
one yearling bulls from a Red Angus seed stock herd in Montana (Evans et al. (1995) ). 
We demonstrate that it is possible to numerically compute expected lengths for confidence 
intervals for moderately sized data sets. For this data set, there are one hundred and 
sixty four pivotal quantities that may be inverted to obtain confidence intervals for p. The 
expected length of 90% confidence intervals for a few of these pivotal quantities are given 
as a function of the parameter. In Section 4 we provide a summary of the paper and discuss 
how one may use the expected length results to make decisions related to confidence interval 
construction. 

2 Mixed Linear Model 

The mixed linear model under consideration is 

Y = Xp+Zu+e, (1) 
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where Y is a n x 1 vector of observable random variables, (J is a p x 1 vector of unknown 
parameters, and u and e are vectors of unobservable random variables of size m X 1 and 
n x 1, respectively. The matrices X and Z are known and without loss of generality, 
rank( X) = p. It is assumed that u and e are independent where u "-' N(O, O"~A) and 
e f'V N(O, 0";1 n). In animal breeding contexts, the known matrix A is referred to as the 
relationship matrix since it describes the degree to which the u's are related. In that 
scenario, if the elements 'Ul and 'U2 of u are the (additive) genetic effects corresponding to 
a parent and offspring, respectively, then Cov( 'Ul, 'U2) = 0"~/2 (see Falconer, 1989, p.150). 
It follows that Y f'V N(X (J, 0";1 n + O"~ZAZ'). 

We now illustrate how the mixed linear model notation is used in a simple example. 
Consider a situation in which there are five animals under study. These animals reside at 
two different ranches and the relationships among the animals are depicted in Figure 1. 
Animals 1,3, and 4 belong to ranch 1 and animals 2 and 5 belong to ranch 2. 

Let Yi be the response of the ith animal, i = 1, ... ,5. Then y' = [11,12, Y3, Y4, 15J is 
the vector of responses for the animals. Taking into account the location (i.e., ranch) effect 
and (additive) genetic effect on the observations, the mixed linear model may be expressed 
as 

11 1 0 1 0 0 0 0 'Ul el 

12 0 1 

[ ~~ 1 + 
1 0 0 0 'U2 e2 

Y3 1 0 1 0 0 'U3 + e3 (2) 
Y4 1 0 1 0 'U4 e4 

15 0 1 1 'U5 e5 

From Figure 1, animals 1, 3, and 4 are related and animals 2 and 5 are related. The 
relationship matrix A for the example is 

A 

1 0 .5 .5 0 
1 0 0 .5 

1 .25 0 
1 0 

1 

(3) 

Since animal 3 and animal 4 are offspring of animal 1, and animal 5 is an offspring of 
animal 2, Cov( 'Ul, 'U3) = 0"~/2, Cov( 'Ul, 'U4) = 0"~/2, and Cov( 'U2, 'U5) = 0"~/2. Also note 
that animals 3 and 4 are half-sibs. That is, they have one parent in common and the other 
parent is different. It follows that Cov( 'U3, 'U4) = O"~/ 4. 

In order to construct confidence intervals for the heritability of a trait, it is advantageous 
to find the statistics that are useful in estimating the variance components. Using the 
notation given in Section 1, 'Y = O"~/O";. In the usual manner, we take O"~ ;:::: 0,0"; > 0 so that 
o ::; 'Y < 00 and 0 ::; p < 1. Let H be a n x (n - p) matrix whose columns span the space 
orthogonal to the space spanned by the columns of X and satisfy H' H = 1 n-p. Then 
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H'Y rv N(O, 0';1 n-p + O'~H' ZAZ' H). Let 0 :::; ~l < ... < ~d be the distinct eigenvalues 
of H' ZAZ' H having multiplicities rl, ... , rd, respectively. There exists an (n - p) x (n - p) 
orthogonal matrix P such that P'(H' ZAZ' H)P = Diag(~l' ... , ~l, ... , ~d, ... , ~d) where 
each ~i is repeated ri times, i = 1, ... , d. It follows that H' ZAZ' H = Zf=l ~iP iP~ where 
P = [P 1, ... , P d] and each matrix Pi corresponding to ~i is of size (n - p) x r i. For i = 
1, ... , d, P~H'Y rv N(O, (a; + O'~~i)1 rJ. So YI(HPiP~H')Y = Qi rv (a; + O'~~i)x2(ri)' 
i = 1, ... , d. By construction, the quadratic forms Ql, ... , Qd are independent. In addition, 
they are a set of minimal sufficient statistics associated with the reduced linear model void 
of the fixed effect. Rewriting the distribution of Qi in terms of p and the nuisance parameter 
a;, we have that Qi rv 0';(1 + ~iP/(1 - p))x2(ri), i = 1, ... ,d. These quadratic forms play 
a central role in the construction of the confidence intervals. 

Using the results of LaMotte and McWhorter (1978), a pivotal quantity that can be 
inverted to obtain confidence intervals for p and its associated distribution is 

(4) 

where k ranges from 1 to d - 1. Since there are d distinct eigenvalues, there are d - 1 
possible pivotal quantities that are monotone decreasing functions in p. These quantities 
can be inverted numerically to obtain confidence intervals for p. Notationally, a 100(1-a)% 
confidence interval for p is given by the set 

(5) 

where al + a2 = a and FCX1 ' FI- CX2 are the aI, 1 - a2 percentiles of the F distribution having 
numerator and denominator degrees of freedom equal to Zf=k+l ri and Z7=1 ri, respectively. 
Let L denote the infimum of this set and U the supremum. Then P [L :::; p :::; U] = 1 -
a. Figure 2 depicts the process of inverting Gk(p) to obtain a confidence interval for p. 
The probability that the pivotal quantity Gk(p) is between FCXl and FI- CX2 is equal to the 
probability that p is between Land U. 

The confidence intervals obtained by inverting the pivotal quantity in (4) depend on 
the quadratic forms Ql, ... , Qd. For Q = (Ql, ... , Qd), the expected length of a confidence 
interval [L,U] = [L(Q),U(Q)] is 

E[U(Q)-L(Q)] = j ... j[U(Q)-L(Q)]fQ(q)dq (6) 

where f Q is the d-dimensional probability density function of Q. For large values of 

d, evaluating the expectation in (6) by direct numerical integration techniques may be 
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computationally infeasible. An alternative expression for expected length is 

E [U(Q)]- E [L(Q)] = J viv(v)dv - J wiw(w)dw (7) 

where V = U(Q), W = L(Q), and iv, iw are the one dimensional probability density 
functions of V, W, respectively. Using (7) appears intractable since the distributions of the 
endpoints of the confidence interval are not known. 

Pratt (1961) derived a relationship between the expected length of a confidence interval 
and the probability of false coverage. That is, 

EpT [U(Q) - L(Q)] = J PPT [L ~ P ~ U] dp (8) 
P:f-PT 

where PT is the true value of the parameter and PPT [L ~ P ~ U] is the probability that 
the confidence interval covers an arbitrary value of p. Note that PPT [L ~ PT ~ U] = 1- D:. 

The subscripts in (8) accentuate the fact that the probability and expectation are functions 
of PT. Using notation involving the quadratic forms QI, ... , Qd, the expression for expected 
length becomes 

EpT [U(Q) - L(Q)] (9) 

which can be computed numerically since the integrand in (9) can be written as the dif­
ference in probabilities of linear combinations of independent chi-square random variables. 
Based on the work of Imhoff (1961), Davies (1980) developed an algorithm that computes 
the cumulative distribution function of a linear combination of independent chi-square 
random variables. Our program to compute expected lengths of confidence intervals uses 
Davies' FORTRAN routine which is also known as algorithm AS 155 from Applied Statis­
tics. 

Inverting the pivotal quantity in (4) may result in values of P that are outside the 
parameter space. When this occurs, the confidence intervals considered in this paper are 
appropriately truncated so that they only contain values in the parameter space. The 
coverage probabilities, of course, are unaffected by this truncation. One may also note that 
EpT [U( Q) - L( Q)] ~ 1 since the limits of integration in (9) are from 0 to 1. 

3 Example 

Data were obtained on one hundred and seventy one yearling bulls from a Red Angus seed 
stock herd in Montana (Evans et al. (1995)). A trait of interest was the loineye (i.e., ribeye) 
muscle area measured in square inches. Ultrasound techniques were used to procure these 
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measurements. The measurement was taken on the dorso-ventralline between the 12th and 
13th ribs on the left side of each animal. Figure 3 displays a histogram of the loineye data. 
The fixed effect was age of dam which had been originally recorded as belonging to one of 
eight categories: 2 years, 3 years, 4 years, 5-9 years, 10 years, 11 years, 12 years, and 13 or 
more years. Since there were only a few observations associated with dams greater than or 
equal to 10 years of age, our analysis used five categories for age of dam: 2 years, 3 years, 
4 years, 5-9 years, and 10 or more years. The random effects are the animal's (additive) 
genetic effect and error. 

The mixed linear model we consider is 

Y = XfJ+Zu+e, (10) 

where Y is a 171 x 1 vector of observable random variables, X is a 171 x 5 incidence 
matrix, fJ is a 5 x 1 vector of unknown parameters, Z = 1 171 , and u and e are vectors of 
unobservable random variables of size 171 x 1. 

The relationship matrix, denoted by A, was determined using a recursive method given 
in Henderson (1976). It uses knowledge of the animal's sire, dam, and grandparents. Note 
that some animals are inbred so that it is possible that Va1'(ui) > O"~. For instance, it turns 
out that Va1'( Ul) = 1.031250"~. 

The number of distinct eigenvalues of H' Z AZ' H is d = 165. Eigenvalues range in 
magnitude from .6.1 = 0.56569 to .6.165 = 8.65925. Except for .6.61 = 0.67188 having 
1'61 = 2, all eigenvalues have a multiplicity of one. There are one hundred and sixty 
four possible versions of the pivotal quantity of the form (4) that can used to construct 
confidence intervals for p. In this paper we consider equal-tailed confidence intervals where 
al = a2 = 0.05. 

Figure 4 depicts the expected lengths for selected confidence intervals as a function of PT. 
The numerical label on each curve indicates the value of k. Recall that k is the number of 
quadratic forms in the denominator of the pivotal quantity (4). Over the entire parameter 
space, k = 150 and 155 correspond to those confidence intervals having relatively short 
expected lengths. Although not shown in Figure 4, the confidence intervals corresponding 
to values of k between 150 and 155 also have short expected lengths. In fact, Figure 4 
suggests for a fixed value of PT the expected length is minimum when k is between 150 and 
155. The value of k that corresponds to the shortest expected length depends on the value 
PT. In other words, for this application of the pivotal quantity technique, there does not 
exist an interval having minimum expected length across the entire parameter space. 

The actual confidence intervals were computed using the one hundred and seventy 
one loineye measurements. In many cases, inverting the pivotal quantity in (4) results in 
confidence intervals whose endpoints fall outside of the parameter space. That is, inverting 

2:=d Q 2:=d 
F < ,=k+1 l+p(di 1) / i=k+1 ri < F _ may result in L < 0 and U > 1 where Land 

0'1 _ ""k Q, / ""k . _ 1 0'2 -
ui=l l+p(~i 1) ui=l r, 

U are illustrated in Figure 2. Of the one hundred and sixty four confidence intervals, the 
shortest interval is (0.00,0.42). This confidence interval corresponds to the pivotal quantity 
having k = 153. It should be noted that employing expected length as a criterion for good 
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confidence intervals does not gnarantee the selected interval frOID a single reali7.:ation will 
have minimal length. 

4 Summary 

Confidence intervals for p provide information concerning the likely values of the heritability 
of a specific trait under study. The endpoints of the intervals are a function of the data 
through the quadratic forms Ql, ... , Q d. The number of quadratic forms depend on the 
mixed linear model employed as well as the relationships among the animctls. For the data 
set in Section 3, d = 164. 

In general, there are many versions of the pivotal quantity that may be used to obtain 
confidence intervals for p. In this paper we have examined expected length properties 
with the intention of providing guidance to users for selecting a member of this family 
in any particular application. It seems reasonable to select the confidence interval that 
has relatively short expected lengths across the entire parmeter space. Expected length 
computations depend on the structure of the mixed linear model and not on the actual 
observations. The investigator may compute expected lengths without looking at the data 
and then select the pivotal quantities that .yield short expected lengths. The actual value of 
k that corresponds to the shortest expected length depends on PT, 6i) and Ti,i = 1, ... , d. 

For the data set in this paper, the pivotal quantities having k = 150 through k = 15.5 
result in intervals having short expected lengths. That is,we have narrowed the search 
for "good" confidence intervals from one hundred and sixty four to j Llst a few. If the 
investigator believes PT is small, Figure 4 indicates k = 155 is a good choice. If PT is large, 
k = 150 is a good choice. For intermediate values of PT, values of k between 150 and 155 
are adequate and produce similar results. 

The data set considered above exemplifies the fact that in many cases there does not 
exist a uniformly minimum expected length confidence interval. The computed expected 
lengths depend heavily on the trne value of the parameter. This prompts one to consider 
additional criteria such as minimax or minimizing the average expected length, where the 
averaging is over the possible parameter values having preassigned weights. Similarly, 
Bayesian analysis could be employed by assuming an appropriate prior distribution for p. 
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Figure 1: Pedigree Structure 
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Figure 2: Inverting the Pivotal Quantity 

37 

u 1 p 

Conference on Applied Statistics in Agriculture
Kansas State University

New Prairie Press
https://newprairiepress.org/agstatconference/1997/proceedings/4



38 

p 
e 
r 
c 
e 
n 
t 

25 

20 

15 

10 

5 

o I 
6 7 

Kansas State University 

I I , 
8 9 10 11 12 13 14 15 16 17 

Ribeye Area (in 2 ) 

Figure 3: Histogram of Loineye Data 

Conference on Applied Statistics in Agriculture
Kansas State University

New Prairie Press
https://newprairiepress.org/agstatconference/1997/proceedings/4



Applied Statistics in Agriculture 

o . 95 

0.90 

0.85 

o . 80 

....c: 
...w 
t:n 0 . 75 
~ 
Q) 

f-=l 

..-0 o . 70 
Q) 

...w 
u 

~ 0.65 
:x: 

I::LI 

0.60 

o . 55 

o . 50 

o . 45 

1 
164 

1 

25 

50 

82 

100 

125 

00 

60 

25 

160 
150 55 

155 

0.00.10.20.30.40.50.60.70.80.91.0 

PT 

Figure 4: Expected Length of 90% Confidence Intervals for Loineye Data 
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