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ALTERNATIVE PROCEDURES FOR ESTIMATION 
OF NONLINEAR REGRESSION PARAMETERS 

William J. Price and Bahman Shafii 

Statistical Programs 
College of Agriculture 

University of Idaho 
Moscow, Idaho 83844-2337 

ABSTRACT 

Biological research data are often represented using nonlinear model specifications that 
lend themselves to the testing of relevant hypotheses concerning the model parameters. This 
is typically achieved with classical nonlinear least squares techniques such as Gauss-Newton 
or Levenberg-Marquardt which allow for both the estimation and inference phases of the 
analysis. Under some circumstances, however, sensitivity to data or model specifications may 
lead these methods to fail convergence tests or exhibit nonlinearity in the parameter estimates, 
which will in turn limit the usefulness of inferential results. In such cases, other estimation 
methods may present a means of avoiding these problems while providing analogous results. 
The genetic algorithm combined with bootstrapping and Bayesian estimation are two such 
alternatives. Genetic algorithms represent a nonparametric approach which, when augmented 
with bootstrap methods, result in both parameter estimation and approximation of the 
distribution(s). Bayesian estimation, on the other hand, leads directly to parameter 
distribution and achieves the required moments. These methods and classical nonlinear least 
squares are demonstrated utilizing a four- parameter cumulative Wei bull function fitted to 
onion seed germination data. 

Keywords: Least Squares Estimation, Genetic Algorithm, Bayesian Techniques 

I. INTRODUCTION 

Nonlinear models provide a flexible framework for describing biological phenomena. 
They can often effectively capture the complex patterns and structure present in many 
biological problems while possessing parameters with relevant biological interpretation. 
Thus, nonlinear models not only describe general trends within a system, but they may also 
provide insight into the underlying processes. 

In general, the nonlinear model may be given as: 

(1) 
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where Y is the n x 1 response vector, Xi are n x 1 regressor vectors, i=l, 2, ... , k, ()j are 
unknown parameters, j=l, 2, ... , p, and € is a nxl residual vector customarily assumed € ~ 

NID(O, ~In)' Parameter estimation is traditionally achieved via iterative least squares 
techniques such as Gauss-Newton or Levenberg-Marquardt with subsequent statistical 
inference based on linear approximations assuming asymptotic normality. In some cases, 
however, these iterative methods may have convergence problems or lead to nonlinearity of 
the estimation situation which can affect the validity of inferential results. These 
circumstances may arise from problems associated with model specification or sensitivity to 
the data being used. Procedures for diagnosing nonlinearity such as profile t-plots and profile 
pair sketches have been suggested by Bates and Watts (1988), however in practice, the 
computational requirements for these techniques are often excessive or exhibit instability. 
One possibility for avoiding nonlinearity problems is to employ alternative estimation 
techniques. Two procedures considered here are a nonparametric bootstrap genetic algorithm, 
and a numerically integrated Bayesian method. In both cases, parameter estimation and 
inference can be developed directly from data derived parameter distributions. 

One biological problem which displays complex behavior is the process of seed 
germination over time. When expressed as cumulative percentages, germination exhibits three 
distinct phases: a lag phase from an initial time until the onset of germination, an increasing 
phase where germination accumulates in an approximately linear fashion, and a plateau phase 
where germination slows to an asymptotic maximum (Figure 1). Nonlinear growth models 
provide a good basis for describing this process if specified with biologically relevant 
parameters. Examples of such specifications would be the Logistic, Gompertz, Richards and 
Weibull growth models (Jansen, 1993; Tipton, 1984; Brown and Mayer, 1988; Torres and 
Frutes, 1990; Shafii et. aI., 1991). 

as: 

where 

Germination will be represented here by a four-parameter Weibull function expressed 

Y = M(1 - exp(-K(x - L)C)) 

Y = {YI' Y2, ... , Yo} = n x 1 vector of cumulative germination %, 
x = {Xl' x2, ... , Xn} = n x 1 vector of times, 

M = theoretical maximum for cumulative germination, 
K = rate of increase, 
L = lag time to onset of germination, and 
C = shape parameter. 

(2) 

This parameterization allows for the estimation of all three phases of germination: lag phase 
(L), increasing phase (K), and plateau phase (M). The shape parameter, C, has no direct 
biological interpretation, but is often necessary to capture the skewed nature of germination 
data. The four-parameter Wei bull model will be used to demonstrate and compare traditional 
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nonlinear least squares methods with alternative estimation techniques in terms of 
distributional assumptions, parameter estimation, and inferential results. 

II. METHODS 

Iterative Least Squares 

The form of the Wei bull model used with iterative least squares is: 

Y = M(1 - exp( -K(x - L)c)) + e 

where the variables and parameters are those defined in (2) and e is a gaussian error term, 
e~NID(O,crln). Least squares estimation is achieved by an iterative optimization algorithm 
such as Levenberg-Marquardt, Gauss-Newton or similar which minimize a sum squared 
residual loss function through a matrix of partial derivatives. Techniques for inferential 
results are analogous to that of linear least squares with an additional assumption of 
asymptotic normality. For example a (I-a) joint confidence region is given by: 

(3) 

(4) 

where (J and & are the parameter and estimate vectors, respectively, ~ is the partial derivative 
matrix evaluated at &, and S2 is the sample variance. This region defines an ellipsoid in p 
space centered at & which can be reduced to 

for inferences concerning a single parameter, &j' with associated standard error, SEj . 

Bootstrap Genetic Algorithm 

The genetic algorithm is an optimization technique which draws on the concepts of 
biological natural selection for its methods. The Weibull model assumed is: 

Y(g) = M(1 - exp(-K(x - L)c)) 

where the subscript g indicates final estimation and is determined from a finite number of 
bootstrap samples. The genetic algorithm is a nonparameteric procedure and therefore no 
inferential assumptions are required. 

(5) 

(6) 

Estimation with a genetic algorithm is an iterative technique which proceeds as 
outlined in Figure 2. The parameters are defined in vector form as "genomes", i.e. [M, L, K, 
C] and may be coded in either binary format (Davis, 1991) or floating point format 
(Michalewicz, 1992). A set or population of parameter genomes is initialized with random 
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values. Each member of the initial population is then evaluated against the data by means of 
a predefined loss function (fitness). Although the loss function can be defined in any manner, 
squared or absolute residual sums are customary (Davis, 1991). After evaluation, the most fit 
genomes, i.e. those with smallest loss function, are retained. This subset is subjected to a 
"reproduction" phase where a new genome population is created for the next evaluation cycle. 
The reproduction process is guided by two controlling mechanisms (operators) of mutation 
and cross-over. Mutation is defined as a random permutation in the off-spring of one or more 
genome elements (parameters). Cross-over occurs when two genomes trade parameter 
elements to create new genomes (Davis, 1991). The rate of mutation and cross-over 
operations are determined by preset probabilities. Once reproduction is completed, the new 
population is evaluated and the most "fit" subset again selected. This will continue until 
minimal difference among the selected genomes is reached according to a previously 
determined tolerance limit. Convergence will be affected by the size of the populations as 
well as the values given for mutation and cross-over probabilities. Determination of these 
settings is specific to both the problem type and the exact algorithm employed and therefore, 
must be optimized on a case by case basis. Generally, however, cross-over operators yield 
better convergence than mutation operators and thus, cross-over probabilities are generally set 
higher than those for mutation. Population size must be large enough to capture population 
variability without becoming excessively large leading to slower computation. 

The process described above is a deterministic one. At the completion of the final 
iteration, the single most fit genome is selected as the solution. Additional methods must 
therefore be carried out to obtain a measure of variability for the estimates. The bootstrap 
simulation technique provides a good mechanism to achieve this objective. 

In a bootstrap simulation, a large number of samples are taken from the data with 
replacement. Each sample is subjected to the genetic algorithm resulting in a collection of 
parameter estimates. If G is the cumulative distribution of e, percentile intervals (Efron and 
Tibshirani, 1993) can be constructed as: 

(7) 

where G -I is based on the collection of sample based parameter estimates. For a finite 
number of bootstrap samples, B, and given G-1(al2) = ()(0//2), a (I-a) percentile interval is given 
by: 

These percentile intervals may then be used to make inferences concerning the parameter 
estimates. 

Bayesian Estimation 

Bayesian estimation is based on the Weibull model 

(8) 
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y* = M(l - exp(-K(x - L)c)) (9) 

where y* is the predicted response according to the most probable parameter values of the 
posterior probability distribution. This distribution is developed as follows. 

If the response, percent germination, is assumed gaussian, 

the parameter vector is 

{e, a} = {M, L, K, C, a} (11) 

then the likelihood for {e, a} given Y is: 

(12) 

Further, the general form of the prior distribution of {e, a} is: 

pee, a) oc gee, a). (l3) 

When prior distributions are unknown, then a noninformative or diffuse prior may be defined 
as: 

gee, a) <X K (Laplace, 1812) 
or (14) 

g(1og(e, a)) oc K (Jeffreys, 1939; Box and Tiao, 1973) 

for K = constant. Thus, the final form of the posterior distribution of {e, a} is: 

pee, a:Y) oc gee, a) '~(e:Y) 

On combining Jeffreys noninformative prior (14), with the likelihood function (12), the 
posterior probability density function becomes: 

(15) 

(16) 

Estimation and inference for the Bayesian model is obtained through integration of the 
posterior distribution. This may be accomplished by either analytical or numerical methods. 
In the analytical case, integrating out a in (16) results in ej ~ Univariate t(n_p) and joint e ~ 
Multivariate t. Conversely, integrating out e in (16) gives a ~ inverse gamma (Zellner, 1971). 
However, for nonlinear models, analytical integration is rarely feasible (Seber and Wild, 
1989), and thus, numerical techniques must be used. Numerical integration of posterior 
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distributions can be carried out with Monte Carlo integration methods (Press, et. aI., 1995). 
This would result in parameter probability distributions from which moments and probability 
intervals may then be achieved directly. 

III. EMPIRICAL RESULTS 

The data used in this study concern the germination of onion seed. Eight replications 
of 100 seeds were incubated at a constant temperature of 25 C and cumulative germination 
recorded daily for 20 days at various water potential levels. Only the control treatment is 
presented here. For a full analysis of the data see Shafii, et. aI., 1991. 

Computations were performed using Linux 2.0.25 and GCC 2.7.2 (Public domain). 
Least squares solutions and graphics were carried out using SAS 6.12 (SAS, 1991). Program 
codes are available from the authors upon request. 

Least squares estimates are presented in Table 1a. Solution convergence was quick, 
however it was noted that the estimation procedure was sensitive to the starting values for 
parameter L and careful consideration of its value and the Levenberg-Marquardt iteration 
method were necessary to obtain convergence. The underlying residuals were of acceptable 
magnitudes and showed no excessive patterns or trends. Correlations among parameter 
estimates were nominal. Maximum germination was estimated at 83% with a lag time to 
initial germination of approximately 2 days. 95% confidence bounds based on asymptotic 
normality were reasonably narrow and did not encompass zero. The resulting predicted 
Weibull curve appeared to follow the data well (Figure 3a). 

For the genetic algorithm, the floating point method of Michalewicz (1992) was used 
with settings: population size = 500, probability of cross-over = 0.8 and probability of 
mutation = 0.18. The resulting parameter estimates are given in Table 1 b. The estimate 
values were similar to those of least squares with a maximum germination of 86% and lag 
time of 2 days. The rate parameter K and shape parameter C were also similar in value to the 
least squares estimates. Residual analysis indicated no problematic patterns or trends, so no 
action was deemed warranted. Estimation of parameter variability was based on a bootstrap 
simulation using 1500 samples of size 60. The 95% percentile intervals were wider than the 
corresponding confidence bounds of least squares, but still tightly bounded the estimates and 
did not cover zero. Wider bounds are not unexpected since the bootstrap method assumes less 
information is known about the system, i.e. no distributional assumptions, and thus is more 
conservative. The predicted model from the bootstrap genetic algorithm also followed the 
data well (Figure 3b). 

Bootstrap frequency distributions and least squares approximations for each parameter 
are given in Figure 4. Here differences from least squares approximations become evident. 
The bootstrap distributions for parameters M, L, and C appear skewed. The distribution for L 
also shows a sharp truncation at 2 days. These are indications of parameter-effect 
nonlinearity and demonstrate the potential inadequacy of the least squares method. Only 
parameter K has a good correspondence with the least squares distribution. Joint distributions 
between parameter sets may also be examined. For example, the joint distribution between 
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parameters M and C is given in Figure 5. Although this plot does not necessarily have a 
biological significance, it effectively illustrates the parameter-effect nonlinearity. The ellipse 
represents the least squares 95% joint confidence region as defined in (4), while the dots 
indicate the 1500 bootstrap solutions. Clearly the least squares approximation does a poor job 
of representing the joint region. Joint inferences based on linear approximations would 
therefore be misleading without adjustments to the significance level. 

Before Bayesian analysis can be carried out a prior distribution for (J must be chosen. 
Jefferys noninformative prior (14) does not provide a good approximation with high 
parameter-effects nonlinearity (Seber and Wild, 1989). Furthermore, controversy surrounds 
the use of improper priors in multiparameter situations (Stone, 1976). In this case, it was 
possible to construct an informative prior due to previous experience with germination data 
and known theoretical considerations. Bounds on M and L were defined from practical limits, 
i.e. U[0,100] and U[O, 20], respectively. Earlier use of the Weibull model in germination 
found the maximum values for K and C to be positive and practically limited to 2 and 3, 
respectively, leading to U[0,2] and U[0,3] (Shafii, 1991). Given the range of the response, 
o to 100, the largest possible value for a is 70.71 producing a prior of U[O, 70.71]. 
Although both the informative and noninformative priors were investigated, only the former is 
reported here. 

Most probable values based on numeric integration of the resulting posterior 
distribution are presented in Table 1c along with 95% probability intervals. The estimates 
corresponded closely to those of the previous two methods and provided a Weibull curve 
which fit the data well (Figure 3c). Maximum germination is predicted at 83% while lag time 
is 2 days. Rate and shape parameters are 1.08 and 0.36 ,respectively. Bayesian analysis also 
provides an estimate of a of 4.69. The 95% intervals are much narrower than either least 
squares or the genetic algorithm. This is evident in the spread of the marginal distributions 
shown in Figure 6. The Bayesian analysis allows for less variability in parameter values than 
traditional normal approximations. The skewness in distributions for some parameters is less 
noticeable than was observed with the genetic algorithm, but is still present. Parameter L also 
continues to show a sharp truncation at approximately 2 days. Only the distribution of a 
agrees closely with that of least squares. 

Unlike the genetic algorithm, joint confidence regions were not feasible due to 
computational restrictions of p-dimensional integration. Further refinement of the numerical 
integration algorithm or program codes may reduce computational requirements, however, the 
large number of iterative integrations needed for this problem presented overwhelming time 
and storage constraints. 

The alternative estimation procedures described above produced essentially identical 
fitted germination response curves as that of the least squares method (Figure 7). Although 
this would seem to negate any necessity in using alternative methods, it actually demonstrates 
their value in cases where standard nonlinear estimation algorithms fail. This is particularly 
true in multiparameter situations where problems such as local minima, parameter-effects 
nonlinearity and lack of convergence can arise with Gauss-Newton, Levenberg-Marquardt and 
other iterative optimization routines. Furthermore, these alternatives are a means of achieving 
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simultaneous estimation in problems which are composed of multiple nonlinear relationships 
or systems which cannot be expressed in closed form. 

IV. CONCLUSIONS 

Nonlinear growth models provide a flexible framework for describing biological 
processes. While ordinary nonlinear least squares techniques are appropriate for many 
applications, they may encounter difficulties in estimation or inference phases of the analysis. 
The bootstrap genetic algorithm provides a nonparametric approach which yields analogous 
results to that of least squares with fewer restrictions and assumptions. The Bayesian method 
is an attractive alternative which leads directly to parameter probability distributions and 
achieves the required moments. Some inferential aspects of the Bayesian approach warrants 
further investigation. 
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Table 1. Parameter estimates and upper and lower 
95% bounds for a) Least Squares, b) Genetic 
Algorithm, and c) Bayesian Estimation. 

a) Least Squares Asymptotic 95% 
Confidence Bounds 

Parameter Estimate Lower U~~er 

M 83.36 80.54 86.17 

K 1.10 0.86 1.33 

L 1.95 1.89 2.00 

C 0.56 0.41 0.71 

b) Genetic Algorithm 95% 
Percentile Intervals 

Parameter Estimate Lower U~~er 

M 86.57 81.58 94.12 

K 1.09 0.84 1.38 

L 2.05 1.67 2.49 

C 0.49 0.27 0.93 

c) Bayesian Estimation 95% 
Probability Intervals 

Parameter Estimate Lower U~~er 

M 83.98 82.26 85.12 

K 1.10 0.95 1.19 

L 1.99 1.98 2.00 

C 0.36 0.35 0.37 

u 4.69 3.49 6.20 
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Figure 1. The three phases of cumulative gemlination over time. 
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estimation. 
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