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Applied Statistics in Agriculture 

BOOTSTRAP CONFIDENCE INTERVALS FROM ADAPTIVE 
SAMPLING OF AN INSECT POPULATION 

Jeffrey S. Pontius 
Department of Statistics 
Kansas State University 

Manhattan KS 66506-0802 

Mary C. Christman 
Department of Mathematics and Statistics 

The American University 
Washington D.C. 20016-8050 

Abstract We construct 90% normal, percentile, and bias-corrected and accelerated confidence 
intervals using a finite population bootstrapping algorithm based on adaptive sampling in an 
agroecosystem. We evaluate the interval estimates based on sampling simulations of a spatially 
arranged population of plots that contain counts of beet webworms and based on an adaptive 
condition that generates small networks. The sampling distributions of the original sample 
estimates and of the bootstrap estimates were generally similar and symmetric. The simulation 
coverages were from 84% to 90% and similar under any of the sample sizes and any of the three 
confidence interval types. This study also serves as an example of how adaptive sampling may 
be used to estimate population characteristics of insects in agroecosystems. 

Keywords: beet webworms, coverage, Horvitz-Thompson estimation, Sitter bootstrapping 

1. Introduction 
Adaptive sampling (Thompson and Seber 1996) is a design where units not in an initial 

sample can be added to the (final) sample if units in the initial sample meet a condition of 
interest (defined on the variable of interest, Y). Adaptive sampling can improve the efficiency 
of estimation when the units possessing the condition of interest are aggregated and occur 
infrequently in the population. The Horvitz-Thompson estimator of the parametric total 

" t y. 
't = -2. 

j = 1 1t j 

is usually used, where Yj is the total of the unit values (y) in network j, 
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is the probability that, with an initial without replacement simple random sample (srswor), 
network j is encountered by at least one unit in the initial sample (mj is the number of units in 
network J), and v is the number of distinct networks in the adaptive (final) sample. 

For example, consider a census of the counts of beet webworms per 3-foot of row (a plot) 
from a grid of plots (population) in a beet field (Beall 1940, Table VI; see Figure 1). If the 
counts are high in certain plots we might want to observe the adjoining plots if we suspect that 
they will contain high counts. To do this we set the condition of interest at, e.g., 3 or more 
webworms per plot (Yi ;::: 3). The shaded areas in Figure 1 label those plots that meet the 
condition. If the condition is satisfied for a plot in the initial sample, then we could observe the 
4 nondiagonal adjacent plots (the neighborhood) and count the number of webworms in each of 
those plots. If any of those plots meet the condition, then we observe their neighborhoods, and 
so on until no units satisfy the condition in neighborhoods being inspected. All of the units in 
the neighborhood that satisfy the condition are a network. 

For example, if the plot in row 3, column 4 (Yi = 4) of Figure 1, is in the initial sample 
(it meets the condition Yi ;::: 3), then we inspect the four adjacent plots (above, right, below, and 
left) and observe that two of the four plots (left and below) satisfy Yi;::: 3. Then we inspect each 
of their neighborhoods, adding two more plots (each with Yi = 3) to the sample. Because no 
other plots in the third series of inspections satisfy Yi;::: 3, we have found all of the plots in that 
network given the defined neighborhood. That network contains the five plots, as indicated by 
their Yi , {4, 3, 3, 3, 3} (the plot in row 1, column 4 is not in the neighborhood of the plot in row 
2, column 3). Then the next plot in the initial sample is observed and its neighborhood observed 
if that plot satisfies the condition. 

Confidence intervals for l' are typically based on the normal distribution. However, the 
sampling distribution of -r can be very asymmetric (Christman, 1997), which casts doubt on the 
usefulness of using normal distribution based confidence intervals. An alternative is to use 
bootstrapping to generate an empirical sampling distribution of -r, and compute interval estimates 
from the -r sampling distribution. Brown (1994) used bootstrapping to assess the bias of -r in 
adaptive sampling. However, the bootstrapping procedure was the usual one (see Efron and 
Tibshirani 1993), which is not appropriate for finite populations. 

Sitter (1992a, b) developed a bootstrapping algorithm for sampling from a finite 
population of size N with a fixed sample size n. In his algorithm, the original sample is 
res amp led according to the sampling design that was used to select the original sample from the 
population. Specifically, if the original sampling fraction is 11k = nlN, then take k independent 
subsamples of size n' = nlk = n21N from the original sample. The union of the k sub samples 
generates a bootstrap sample of size n. Sitter (1992a) showed that for linear estimators the 
bootstrap estimates are second order correct. For example, take a srswor of n = 65 plots from 
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the N = 325 plots. Using Sitter's algorithm, we take k = Nln = 5 independent subsamples of size 
n' = 13 units and combine them to obtain a bootstrap sample of size kn' = 65. 

Because the adaptive sample contains units from the initial sample and units adaptively 
observed, we use a data transformation that allows us to account for the spatial aspects imposed 
on the sampling and to treat the adaptive sample as a srswor of size n. Each observed Y j is 
replaced with the sum of the Yj in the network to which unit i belongs. Hence, sampling any 
single unit in the population is equivalent to sampling the entire network to which it belongs, 
which is exactly how adaptive sampling behaves. 

In adaptive sampling, each network is used once in i even though a network can appear 
in the adaptive sample more than once. Under the data transformation, the actual sampling 
design is that networks of size 1 are selected according to srswor and networks containing more 
than one unit are sampled with replacement. Hence, the sample may contain multiple copies of 
a network, but a network is used only once in i. We modified Sitter's algorithm so that each 
subsample is selected srswor from the initial sample, and in each subs ample duplicates of each 
network are removed so that each subsample contains only unique networks. Note that the 
bootstrap sample may contain multiple copies of a network. Hence, the bootstrap estimate is 
computed using these multiple copies. 

2. Simulation Procedure 
The population is the set of N = 325 plots (Figure 1) with associated values of interest, 

Yj, being the counts of beet webworms per plot. Our statistical goal is to estimate the total 
number of beet webworms in the field ('t' = 277 webworms) using a confidence interval estimate. 
We use adaptive sampling with the condition Y j ~ 3 webworms in a plot, and use the symmetric 
four unit neighborhood. The initial design is srswor with sample sizes n = 18, 26, 36, and 65. 
The number of subsamples and subs ample sizes are (k, n'): (18, 1), (13, 2), (9, 4), and (5, 13), 
respectively on n. Note that some of the k or n' are not exact integers, but are very close 
approximations, hence the selected n. The noninteger k or n' will invoke a small amount of bias 
in the estimation. 

For each n, generate 500 adaptive samples using the population of plots and, for each 
generated sample, take 1000 bootstrap samples using Sitter's algorithm for srswor. For each 
subsample of each bootstrap sample remove units so that unique networks remain within each 
subsample. Compute i, say i b, on each bootstrap sample (of size:::; n). Then compute percentile, 
normal, and bias-corrected and accelerated (BCa) interval estimates (Efron and Tibshirani 1993) 
based on the 1000 i b. The interval endpoints in the percentile method are computed by 
evaluating the ordered sample of 1000 i b at the 0.05 and 0.95 percentiles. The normal interval 
endpoints are computed using ib ± 1.645s.d.(ib). The BCa method is used to adjust percentile 
endpoints for bias in i b relative to 't' and for changes in the standard deviation of i b. An 
advantage of BCa intervals over percentile intervals is that they are second order accurate 
(percentile intervals are first order accurate). That is, in general, BCa intervals give more 
accurate coverage than percentile intervals. We used S+ (version 3.4, release 1 for Sun SPARC 
1966) (see Venables and Ripley 1994 for S+) to implement the simulations. BCa was 
implemented using the S+ function bcanon in Efron and Tibshirani (1993). 
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As an example, suppose we take an initial sample of n = 26 plots by srswor using the 
population in Figure 1. Then we use k = 13 and n' = 2. With r labeling a row and c labeling 
a column, suppose our (partially displayed) initial sample is {(r, c; y) : (3, 4; 4), (27, 4; 3), (5, 
1; 1), (48, 3; 0), (48, 2; 2), (3, 3; 3), ... } of n = 26 plots. In one of the 1000 bootstrap samples 
of this original sample, suppose three of our thirteen subsamples are s] = {(48, 3; 0), (5, 1; I)}, 
S2 = {(3, 4; 4), (3, 3; 3)}, and S3 = {(3, 4; 4), (27,4; 3)} (there are ten other subsamples). In s] 
each plot is a network of size one (they are in the initial sample), so both are retained for the 
final bootstrap sample. In s 2 both plots are members of the same network, so one copy of that 
network is retained. In s 3 both plots are in separate networks, so both networks are retained. 
This approach is applied to all of the other ten subsamples. Then ibis computed on that 
bootstrap sample by combining the thirteen subsamples. 

3. Results and Discussion 
3.1 P eiformance 
First we look at the performance of the adaptive bootstrapping approach. In general, the 

means of the bootstrapped estimates were close to the sample estimates (Figure 2). The deviates 
from the line are probably because of some bootstrap samples that contained a high proportion 
of networks repeated in the bootstrap sample. Sampling distributions for sample estimates 
(Figure 3) and bootstrapped estimates (Figure 4) are reasonably symmetric, with the variability 
being slightly less for the bootstrapped sample estimates (means over 1000 bootstrap samples) 
than for the sample estimates (Table 1). Note that these results are not unexpected because the 
network sizes are small relative to the size of the population (Figure 1). 

3.2 Confidence Intervals 
The adaptive bootstrap approach is a method of calculating confidence interval estimates 

that does not rely on large sample theory for the sampling distribution of i. Because of the 
potential bias introduced by the modified use of Sitter's algorithm, we considered two types of 
confidence interval estimation methods: the percentile and the BCa. The results of the 
simulations are shown in Figures 5-1 and 5-2. For all three confidence interval types, the biases 
are minimal and the interval widths are similar for a given sample size, n. In fact, the average 
widths of the three interval types are similar as are the standard deviations of those widths (Table 
2). Not surprisingly, for each of the types, the average widths and standard deviations of the 
widths decrease as the sample sizes increase. 

All interval types for estimating the total abundance somewhat underestimated the actual 
90% confidence interval (Table 3). Coverage ranged from a low of 84% for the intervals based 
on the normal approximation to a high of 90% for the BCa intervals. If one were to use the 
adaptive bootstrap approach to estimate the actual number of beet webworms in a field similar 
in environment to the one used in this study, the interval estimate would probably be slightly too 
narrow. We think that the undercoverage may be because of the use of Sitter's algorithm for 
taking bootstrap samples. The algorithm was originally constructed for use with sampling 
strategies that do not rely on either random sample sizes nor deletion of some of the sample data 
under the estimation procedure. Both of these are inherent in adaptive sampling designs which 
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use the Horvitz-Thompson estimator of 't'. Although similar in their coverages, the confidence 
interval based on the normal approximation had the worst coverage for all of the sample sizes, 
whereas the BCa interval always had the best coverage. 

In our example, the sampling distributions of the estimator were reasonably symmetric 
and hence confidence intervals based on the normal approximation are appropriate. However, 
in most situations in which adaptive sampling is more efficient than srswor, it is likely that the 
sampling distributions will be highly skewed. For populations in which individual networks 
comprise a large portion of the total size, we would expect the sampling distributions to be 
asymmetric. In such cases, the normal approximation would be invalid. 

4. Summary 
Sitter's bootstrap algorithm worked reasonably well given the population and the network 

sizes used. We would anticipate that with larger networks (proportional to the size of the 
population) that the variability in interval estimates would increase. The bootstrapped estimates 
were generally close to the sample estimates, and the simulated sampling distributions were 
reasonably symmetric. 

Simulated confidence interval coverages were from 84% to 90% of the 90% target, close 
to the parametric total (essentially no bias), and similar over sample sizes and confidence interval 
types. Interval estimates became narrower as sample sizes increased. 

We are extending this initial research to look at the effect of proportional increases in 
networks (relative to the size of the population), bias, and second-order accuracy to further 
explore the application of Sitter's bootstrapping algorithm to interval estimation in adaptive 
sampling. 
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Figure 1. Spatial layout of the 
treatment 3 beet field in Beall 
(1940, Table VI). Squares are 
3-foot of row of beets, and 
numbers are counts of beet 
webworms. Shaded plots meet 
the condition of interest Yi ~ 3. 
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Table 1. Standard deviations of the sample estimates (f) and of the averages of bootstrapped 
estimates. 

n 

67.9 66.3 

56.0 55.4 

42.8 40.7 

Table 2. Average widths and standard deviations of the widths of estimated confidence intervals. 

type 

217 (40) 218 (40) 

182 (29) 182 (27) 

134 (15) 134 (15) 

Table 3. Estimated confidence interval coverages from simulations. 

type 

.86 .85 

.87 .87 

.85 .86 

218 (41) 

183 (27) 

133 (15) 

.86 

.90 

.88 
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Figure 2. Sample estimates, ~, and means of 1000 bootstrap estimates. A circle on the line 
indicates that the mean of the bootstrap estimates agrees with the sample estimate. 
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Figure 3. Simulation sampling distributions of 500 sample estimates. 
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Figure 4. Simulation sampling distributions of 500 means of 1000 bootstrap estimates. 
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Figure 5-1. Coverage plots (n = 65 and 36) of percentile, normal and BCa confidence 
interval estimates. The horizontal dashed lines are at .9 confidence coefficient, and the 

vertical dashed lines are at -r = 277. The ideal plot should have the peak of a symmetric 
curve at the intersection of the two dashed lines, and small width at the baseline. 
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Figure 5-2. Coverage plots (n = 26 and 18) of percentile, normal and BCa confidence 
interval estimates. 
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