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calculation of standard errors for the kinetic parameter 
estimates. 

Among the assumptions of the Claassen and Barber model is 
that absorption of nutrients by the roots is from the soil 
solution. This assumption allows for the estimation of 
absorption characteristics of the roots from plants growing in 
nutrient solution rather than soil. This simplifies experimental 
procedures since the kinetic parameters in the model can be 
estimated indirectly by measuring the rate of depletion of the 
nutrient solution over time. 

In this paper we investigate a stochastic version of the 
influx portion of the Claassen-Barber model. The model is 
developed in section 2 and model fitting is discussed in section 
3. Data on the uptake of potassium by corn plants are analyzed 
in section 4. 

2. Derivation of the kinetic model 

Influx (uptake rate) is the amount of an ion which moves 
from an external nutrient solution into the roots through one 
unit of root surface area per unit time. Net influx (influx 
minus efflux) can be measured indirectly by measuring ion 
depletion from a nutrient solution over time. 

Let y = ion concentration in solution and x = time. In the 
kinetic model, y will be expressed as a function of x. Assuming 
that uptake is governed by Michaelis-Menten kinetics, net influx 
is given by 

Imax (y - Cmin ) 
Km + y - Cmin 

where Imu = maximum influx, 

since 

where 

Cmin = minimum concentration at which influx can occur, 
Km = Michaelis constant. 

IN is a time rate of change, it can be expressed as 

IN = 
_ V dy 

A dx 
, 

V = solution volume, 
A = root surface area. 

Equating the expressions for IN from (1) and (2) leads to the 
differential equation 

(1 + 
Y 

AI max) dx 
-=V'-- o . 

(1) 

(2) 

Conference on Applied Statistics in Agriculture
Kansas State University

New Prairie Press
https://newprairiepress.org/agstatconference/1996/proceedings/7



Applied Statistics in Agriculture 

since the equation is separable, term by term integration yields 
the deterministic kinetic model 

(3) 

where Yo = concentration at time o. The kinetic parameters I max , 
Cmm , and ~ in (3) describe the absorption characteristics of the 
plant's root system. Note that (3) can not be explicitly written 
in the form y equals some function of x. 

A graph of solution concentration as a function of time is 
commonly referred to as a depletion curve and is visually similar 
to an exponential decay having a horizontal asymptote at y = Cmm . 
The value of Cmm in (3) is influenced primarily by time points at 
the end of the depletion. Imu is the maximum of the slopes of 
the tangent lines to the function and its value is influenced 
primarily by time points at the beginning of the depletion. Km is 
the concentration at which the slope is one-half of its maximum 
value and is influenced primarily by time points in the "middle" 
of the depletion. 

The kinetic model (3) can be rewritten in more familiar 
regression type notation as 

y + (31 ln (y - (32) = (30 - {33x 

where (30 = Yo + Km ln (Yo - Cmm ) , {31 = Km, {32 = Cmm , and 
{33 = AImax/ V. 

A stochastic version of (4) can be written as 

y = g(Xj(3) + € 

( 4 ) 

(5) 

where € is random error and the nonlinear regression function 
g(x,{3) can be written implicitly but not explicitly from (4). 
The € are assumed to be independent N(O,a2 ). By definition, the 
coefficients are subject to the constraints 

{31 > 0, {32 > 0, (33 > o. 
In addition, from the definition of Cmm , Y > (32. Note that the 
ion concentration, y, is stochastic and the time, x, is non­
stochastic. 

3. Model fitting 

Given data from a depletion curve, estimation of (3 in (5) 
can be accomplished by nonlinear least squares, which requires 
the minimization of 
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(6) 

with respect to~. In addition to the usual nonlinear least 
squares issues of starting values for ~ and partial derivatives 
of g(x;~), we need to consider how to compute values of g(x;~) 
for given x and~. Each of these issues will be discussed in 
turn. 

(i) Computing g(Xi~) : 

Based on (4), define the function 

G(YiX,~) = Y + ~lln(y - ~2) - ~o + ~3X , for y > ~2. 

Given x and~, solving the equation G(y) 0 for y is the same as 
solving (4) for y, which is the same as finding the value of 
g(x;~) in (6). 

For ~i > 0, i = 1,2,3, the following properties of G(YiX,~) 
can be derived using straightforward calculus techniques. 

(a) For fixed x and ~, G(YiX,~) is a strictly increasing 
and concave function of y, for y > ~2. 

(b) For fixed y and ~, G(YiX,~) is an increasing function 
of x. 

(c) For sufficiently large initial concentrations Yo, 
G(YoiO,~) > O. An example of a sufficient condition is 
Yo > max{~o, ~2 + 1}. 

(d) liIlly_i3; G(YiX,~) -00 

liIlly_+c» G(YiX,~) = +00 

Using the above properties, the equation G(y) = 0 has a 
unique root which is a decreasing function of x with limit ~2. 
To find the root, we can use Newton's method and shorten the 
search interval for each x within each iteration of the nonlinear 
least squares routine. 

The importance of the above properties of G(YiX,~) should 
not be underestimated. The equation G(y) = 0 must be solved for 
each x at each iteration of the nonlinear least squares routine. 
For example, if there were 50 time points in the depletion and 
there were an average of 10 iterations in the minimization, then 
G(y) = 0 would need to be solved 500 times for each set of 
starting values for~. If 4 sets of starting values were used 
and there were 10 experimental units (and hence, depletion 
curves) in the experiment, then G(y) = 0 would have been solved 
20,000 times. 
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(ii) Derivatives of g(x;~): 

Since g(x;~) is implicitly defined, the partial derivatives 
of g(x;~) with respect to each ~i can be obtained using implicit 
differentation techniques. The derivatives are as follows: 

ag(x;~) 
a{3o 

ag(x;~) 
a{31 

ag(x;~) 
a{32 

ag(x;~) 
a{33 

= 

= 

(31 + g (x; (3) - (32 

ag(x;~) [In(g(x;~) - ~2) ] 
a(3o 

~1 
(31 + g(x;(3) - (32 

_ ag (x; ~) x 
8(30 

(iii) Starting values for ~: 

One method of obtaining starting values for ~ is to solve 
(4) for x to get 

x 0:0 + O:IY + 0:2 ln (y - ~2) 

where 

~o 1 ~1 
0:0 = 7J;' 0: 1 = -7J;' 0:2 7J;' 

(7) 

An inital value for ~2 can be obtained from a data plot by 
graphically estimating the horizontal asymptote. Using this 
initial value for ~2' multiple linear regression can be used to 
estimate the o:'s and in turn, the remaining ~i'S. Recall that x 
(time) is not stochastic so that the estimated ~i'S do not have 
their usual statistical properties. 

4. Numerical example 

Unpublished data (courtesy of Dr. Moshe Silberbush) on 
potassium uptake by corn plants will be used to illustrate the 
estimation of the kinetic parameters in the model. Details on 
experimental methods for this type of experiment can be found in 
Claassen and Barber (1974). 

Corn plants were grown in 4 liter pots, 4 plants per pot, 
with continuously aerated nutrient solution. After 19 days, the 
plants were starved of potassium for 24 hours prior to data 
collection. A time 0, the plants were tranferred to a nutrient 
solution to which 100 MMjL of potassium had been added. The 
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solution was sampled continuously but bulked into 3 ml samples 
based on 5 minute time intervals. The samples were analyzed for 
potassium concentration by atomic absorption spectrophotometry. 
Immediately following the completion of sampling, root length and 
mean root radius were measured and root surface area was 
calculated under the assumption that the roots were smooth 
cylinders. The root surface area and the initial solution volume 
will be assumed to be known constants. 

The data are listed in Table 1 and plotted in Figure 1. The 
first two observations were discarded for reasons related to the 
startup of the depletion. From the figure the concentration at 
which the horizontal asymptote occurs is not obvious. A grid of 
values for ~2 (Cmm ) was used in (7) to obtain sets of starting 
values for the nonlinear least squares procedure. These sets of 
starting values are listed in Table 2. Some agronomists have 
used (7) with visual estimates of ~2 from the data plot to obtain 
kinetic parameter estimates. Table 2 indicates that the 
estimates of ~I and ~3 (and hence, Km and Imax) vary considerably 
depending on the "eyeballed" estimate for ~2' 

SAS's NLIN procedure was used to carry out the nonlinear 
least squares estimation. The NLIN statements are given in the 
Appendix. The nonlinear least squares procedure converged to the 
same minimum for all sets of starting values in Table 2 except 
for $2 = 0.5, which failed to converge after 50 iterations. The 
fitted model is given by 

y + 38.001 In(y - 1.995) = 271.183 - 0.994x , 

with SSE = 111.636. 

A plot of the Studentized residuals versus time is shown in 
Figure 2. Since it was anticipated that the data might be 
autocorrelated, the i fu residual was plotted against the (i-1)­
residual (Figure 3). The estimated autocorrelation coefficient 
was p = 0.443 with a p-value of 0.0033, indicating possible 
autocorrelation. 

Upon investigating the three consecutive large negative 
residuals beginning at x = 110, it was determined that the 
spectrophotometer had been recalibrated for samples collected 
after time x = 130 to compensate for the lower potassium solution 
concentrations. The concentrations for observations immediately 
preceeding recalibration were near the detection limit of the 
original calibration and it was thought that they might be 
unreliable. The observations at x = 110, 115, and 120 were 
deleted and the model was refit. The observations at x = 125 and 
130 were judged to be outliers in the refitted model. The new 
outliers were removed and the model was refit again for sets of 
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starting values with e 2 ranging from 1.0 to 2.5. In each case, 
the nonlinear least squares procedure converged to the same 
minimum. The fitted model without outliers is given by 

y + 37.234 In(y - 0.881) = 266.405 - 0.939x , 

with SSE = 40.363. 

A plot of the Studentized residuals versus time is shown in 
Figure 4. It appears that the variance is smaller after 
recalibration of the spectrophotometer than before. Variances 
were estimated for each time period separately, yielding 
estimates of 1.746 before and 0.460 after recalibration. 
Comparing their ratio 3.79 to an F-distribution with 18 and 19 df 
gives a p-value of 0.0059. Although the p-value is not exact 
since the estimated variances are not independent, it is 
reasonable to conclude that the variances are not equal. 

The plot of the iili versus (i-I)- residual did not indicate 
autocorrelation. The estimated autocorrelation for the entire 
depletion was p = 0.099. The estimated autocorrelation before 
recalibration was p = -0.208 and after recalibration was p = 
0.006. Thus, with the outliers removed, there appears to be no 
autocorrelation in the residuals. The data points which were 
removed as outliers in the refitted model are the extreme points 
in the third quadrant in Figure 3 so that the lack of significant 
autocorrelation is not suprising. 

A possible physical explanation for the lack of significant 
autocorrelation is that the relatively large time interval used 
when bulking the solution samples eliminates any time dependency. 
This explanation is consistent with preliminary data from another 
study in which samples from small time intervals were combined 
into larger intervals. Indications of strong autocorrelation 
disappeared as the length of the time interval increased. 

In the final model fit, we shall assume that there is no 
autocorrelation. A final weighted nonlinear least squares fit 
with empirical weights in the ratio of 3.8 to 1 produced the 
estimated coefficients and their estimated asymptotic standard 
errors and correlations given in Table 3. Note the strong 
correlations among the estimated parameters. Based on the 
estimates in Table 3, the estimated kinetic parameters are 

tm~ (= e2 ) = 1.07 ~M/L , 

~ (= e 1) = 34.11 ~M/L , 

Imax (= Ve3/A) = 0.001017 ~M/cm2 min = 0.17 ~M/m2 sec. 
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The estimated asymptotic standard error of fmn is 0.01 ~M/m2 sec. 
Residual plots from this fit did not indicate any problems with 
unequal variance or autocorrelation. 

The kinetic parameter estimates are in general agreement 
with values reported previously in the literature (e.g., Barber, 
1984, Chapter 10). The large estimated standard error for Cmm 
may simply be a reflection of the information content of the 
data. From the graphical interpretation of the kinetic 
parameters given in section 2, the information on Cmm is 
concentrated in the "final" portion of the depletion. Since the 
horizontal asymptote is not clearly defined in Figure 1, the data 
contain little information from which Cmm can be estimated 
accurately. 

5. Conclusion 

The stochastic model developed in section 2 from the 
mechanistic model of Claassen and Barber provides a sound basis 
from which estimates and approximate standard errors of kinetic 
parameters can be obtained by common statistical methods. Using 
this stochastic model, the effects of various factors on the 
kinetic parameters can be compared and the ability of the 
Claassen-Baraber model to predict nutrient uptake can be 
evaluated statistically under specified conditions. This has not 
been possible previously. 

The numerical results presented in section 4, while limited 
in scope, point out that the methods used previously in the 
subject matter literature have serious shortcomings. Our results 
demonstrate that the choice of an "eyeball" estimate of Cmm from 
a depletion curve graph can have a dramatic effect on the 
estimates of Km and Imax. While this is not suprising given the 
strong correlations among the estimates, it has not been clearly 
recognized in the literature. The large standard errors for some 
parameter estimates have implications for the design of depletion 
studies. Experimenters generally design depletions to be 
terminated when it is thought a priori that uptake will cease. 
In our results, the final estimate of Cmm was approximately one­
fourth of the smallest (and last) observation in the depletion. 
Thus, our numerical results indicate a need for research into the 
design of depletion studies of this type. 
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