January 2016

Foreword and Supplemental Information, Swine Day

R. D. Goodband
Kansas State University, Manhattan, goodband@k-state.edu

M. D. Tokach
Kansas State University, Manhattan, mtokach@k-state.edu

S. S. Dritz
Kansas State University, Manhattan, dritz@k-state.edu

See next page for additional authors

Follow this and additional works at: https://newprairiepress.org/kaesrr

Part of the Other Animal Sciences Commons

Recommended Citation

This report is brought to you for free and open access by New Prairie Press. It has been accepted for inclusion in Kansas Agricultural Experiment Station Research Reports by an authorized administrator of New Prairie Press. Copyright 2016 the Author(s). Contents of this publication may be freely reproduced for educational purposes. All other rights reserved. Brand names appearing in this publication are for product identification purposes only. No endorsement is intended, nor is criticism implied of similar products not mentioned. K-State Research and Extension is an equal opportunity provider and employer.
Foreword and Supplemental Information, Swine Day

Authors
Foreword

It is with great pleasure that we present the 2016 Swine Industry Day Report of Progress. This report contains updates and summaries of applied and basic research conducted at Kansas State University during the past year. We hope that the information will be of benefit as we attempt to meet the needs of the Kansas swine industry.

2016 Swine Day Report of Progress Editors
Bob Goodband, Mike Tokach, Steve Dritz, Joel DeRouchey, and Jason Woodworth
Standard Abbreviations

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ADG</td>
<td>average daily gain</td>
</tr>
<tr>
<td>ADF</td>
<td>acid detergent fiber</td>
</tr>
<tr>
<td>ADFI</td>
<td>average daily feed intake</td>
</tr>
<tr>
<td>AI</td>
<td>artificial insemination</td>
</tr>
<tr>
<td>avg</td>
<td>average</td>
</tr>
<tr>
<td>bu</td>
<td>bushel</td>
</tr>
<tr>
<td>BW</td>
<td>body weight</td>
</tr>
<tr>
<td>cm</td>
<td>centimeter(s)</td>
</tr>
<tr>
<td>CP</td>
<td>crude protein</td>
</tr>
<tr>
<td>CV</td>
<td>coefficient of variation</td>
</tr>
<tr>
<td>cwt</td>
<td>100 lb</td>
</tr>
<tr>
<td>d</td>
<td>day(s)</td>
</tr>
<tr>
<td>DE</td>
<td>digestible energy</td>
</tr>
<tr>
<td>DM</td>
<td>dry matter</td>
</tr>
<tr>
<td>DMI</td>
<td>dry matter intake</td>
</tr>
<tr>
<td>F/G</td>
<td>feed efficiency</td>
</tr>
<tr>
<td>ft</td>
<td>foot(foot(s))</td>
</tr>
<tr>
<td>ft²</td>
<td>square foot(foot(s))</td>
</tr>
<tr>
<td>g</td>
<td>gram(s)</td>
</tr>
<tr>
<td>µg</td>
<td>microgram(s), .001 mg</td>
</tr>
<tr>
<td>gal</td>
<td>gallon(s)</td>
</tr>
<tr>
<td>GE</td>
<td>gross energy</td>
</tr>
<tr>
<td>h</td>
<td>hour(s)</td>
</tr>
<tr>
<td>HCW</td>
<td>hot carcass weight</td>
</tr>
<tr>
<td>in</td>
<td>inch(es)</td>
</tr>
<tr>
<td>IU</td>
<td>international unit(s)</td>
</tr>
<tr>
<td>kg</td>
<td>kilogram(s)</td>
</tr>
<tr>
<td>kcal</td>
<td>kilocalorie(s)</td>
</tr>
<tr>
<td>kWh</td>
<td>kilowatt hour(s)</td>
</tr>
<tr>
<td>lb</td>
<td>pound(s)</td>
</tr>
<tr>
<td>Mcal</td>
<td>megacalorie(s)</td>
</tr>
<tr>
<td>ME</td>
<td>metabolizable energy</td>
</tr>
<tr>
<td>mEq</td>
<td>milliequivalent(s)</td>
</tr>
<tr>
<td>min</td>
<td>minute(s)</td>
</tr>
<tr>
<td>mg</td>
<td>milligram(s)</td>
</tr>
<tr>
<td>mL</td>
<td>cc (cubic centimeters)</td>
</tr>
<tr>
<td>mm</td>
<td>millimeter(s)</td>
</tr>
<tr>
<td>mo</td>
<td>month(s)</td>
</tr>
<tr>
<td>N</td>
<td>nitrogen</td>
</tr>
<tr>
<td>NE</td>
<td>net energy</td>
</tr>
<tr>
<td>NDF</td>
<td>neutral detergent fiber</td>
</tr>
<tr>
<td>NFE</td>
<td>nitrogen-free extract</td>
</tr>
<tr>
<td>ng</td>
<td>nanogram(s), .001 µg</td>
</tr>
<tr>
<td>no.</td>
<td>number</td>
</tr>
<tr>
<td>NRC</td>
<td>National Research Council</td>
</tr>
<tr>
<td>ppb</td>
<td>parts per billion</td>
</tr>
<tr>
<td>ppm</td>
<td>parts per million</td>
</tr>
<tr>
<td>psi</td>
<td>pounds per square inch</td>
</tr>
<tr>
<td>PUFA</td>
<td>polyunsaturated fatty acid</td>
</tr>
<tr>
<td>SD</td>
<td>standard deviation</td>
</tr>
<tr>
<td>SE</td>
<td>standard error</td>
</tr>
<tr>
<td>SEM</td>
<td>standard error of the mean</td>
</tr>
<tr>
<td>SEW</td>
<td>segregated early weaning</td>
</tr>
<tr>
<td>SFA</td>
<td>saturated fatty acid</td>
</tr>
<tr>
<td>UFA</td>
<td>unsaturated fatty acid</td>
</tr>
<tr>
<td>wk</td>
<td>week(s)</td>
</tr>
<tr>
<td>wt</td>
<td>weight(s)</td>
</tr>
<tr>
<td>yr</td>
<td>year(s)</td>
</tr>
</tbody>
</table>
K-State Vitamin and Trace Mineral Premixes

Diets listed in this report contain the following vitamin and trace mineral premixes unless otherwise specified.

- **Trace mineral premix:** Each pound of premix contains 10 g Mn, 33 g Fe, 33 g Zn, 5 g Cu, 90 mg I, and 90 mg Se.

- **Vitamin premix:** Each pound of premix contains 1,600,000 IU vitamin A, 400,000 IU vitamin D3, 8,000 mg vitamin E (dl-α-tocopherol acetate or 4,000 mg d-α-tocopherol acetate), 800 mg menadione, 1,500 mg riboflavin, 5,000 mg pantothenic acid, 15,000 mg niacin, and 7 mg vitamin B12.

- **Sow add pack:** Each pound of premix contains 100,000 mg choline, 40 mg biotin, 300 mg folic acid, 400 mg pyridoxine, 4,000 mg Vit E (dl-α-tocopherol acetate or 2,000 mg d-α-tocopherol acetate), 9,000 mg L-carnitine, and 36 mg Cr.

Note

Some of the research reported here was carried out under special U.S. Food and Drug Administration (FDA) clearances that apply only to investigational uses at approved research institutions. Materials that require FDA clearances may be used in the field only at the levels and for the use specified in that clearance.
Biological Variability and Chances of Error

Variability among individual animals in an experiment leads to problems in interpreting the results. Animals on treatment X may have higher average daily gains than those on treatment Y, but variability within treatments may indicate that the differences in production between X and Y were not the result of the treatment alone. Statistical analysis allows us to calculate the probability that such differences are from treatment rather than from chance.

In some of the articles herein, you will see the notation “P < 0.05.” That means the probability of the differences resulting from chance is less than 5%. If two averages are said to be “significantly different,” the probability is less than 5% that the difference is from chance, or the probability exceeds 95% that the difference resulted from the treatments applied.

Some papers report correlations or measures of the relationship between traits. The relationship may be positive (both traits tend to get larger or smaller together) or negative (as one trait gets larger, the other gets smaller). A perfect correlation is one (+1 or -1). If there is no relationship, the correlation is zero.

In other papers, you may see an average given as 2.5 ± 0.1. The 2.5 is the average; 0.1 is the “standard error.” The standard error is calculated to be 68% certain that the real average (with unlimited number of animals) would fall within one standard error from the average, in this case between 2.4 and 2.6.

Using many animals per treatment, replicating treatments several times, and using uniform animals increase the probability of finding real differences when they exist. Statistical analysis allows more valid interpretation of the results, regardless of the number of animals. In all the research reported herein, statistical analyses are included to increase the confidence you can place in the results.
Index of Key Words

alternative amino acid fat source nursery feed
amino acid ratio feed additive nursery pigs
antibiotic feed manufacturing particle size
antimicrobial feed matrix PEDV
blending finishing feed pharmacological trace
bone ash fish meal minerals
carbadox flush phosphorous
butyric acid gilt training phytase
calorie:lysine ratio gluco-oligosaccharide phytogens
carbadox glutamate pigs
carcass characteristics glutamine post-farrow maternal
chemical sanitation group-housed gestating weight
chemical treatment sows
chlorine (Cl) growing-finishing pig
carcass characteristics growth pigs
chemical sanitation growth performance pigs
chemical treatment HP 300 pigs
chlromium propionate isoleucine pigs
chloride (Cl) K-value pigs
chromium propionate lactation pigs
cooper Lactobacillus plantarum pigs
cooper amino acid-complex late finishing pigs

crude protein level pork

crude protein level net energy pork

diet complexity nutrition pork

dietary electrolyte balance phosphorous pork

duration phosphorous pork

Elarom-F Plus probiotic pork
Elarom SES protein source pork
electrolyte balance reproduction pork

electronic sow feeders sample preparation pork

electronic sow feeding space allowance pork

enzymatically fermented sow(s) pork
soybean meal stocking density pork
essential oil superdose pork
Evosure swine pork

Evosure tri-basic copper chloride pork

fat source uniformity of mix pork

feed additive valine pork
feed manufacturing wet mix pork
feed matrix yeast pork
finishing feed yeast pork
fish meal yeast pork
flush yeast pork

gilt training yeast pork

gluco-oligosaccharide yeast pork
glutamate yeast pork
glutamine yeast pork

group-housed gestating sows pork

lysine pigs pork

growth pigs pork

growth performance pigs pork

HP 300 pigs pork

isoleucine pigs pork

K-value pigs pork

lactation pigs pork

Lactobacillus plantarum pigs pork

late finishing pigs pork

level pigs pork

liquid addition pigs pork

lysine pigs pork

marketing pigs pork

medium chain fatty acids pigs pork

Micro-Aid pigs pork

mix time pigs pork

Sodium (Na) pigs pork

net energy pigs pork

nursery pigs pork

nursery feed pigs pork

nursery pigs pigs pork

particle size pigs pork

PEDV pigs pork

pharmacological trace minerals pork

minerals pigs pork

phosphorous pigs pork

phytase pigs pork

phytogens pigs pork

pigs pigs pork

post-farrow maternal weight pork

weight pigs pork

sample preparation pigs pork

space allowance pigs pork

source pigs pork

sow(s) pigs pork

stocking density pigs pork

superdose pigs pork

swine pigs pork

tri-basic copper chloride pigs pork

uniformity of mix pigs pork

valine pigs pork

valine pigs pork

wet mix pigs pork

yeast pigs pork

zinc pigs pork

zinc hydroxychloride pigs pork

zinc sulfate pigs pork
Acknowledgments

Appreciation is expressed to these organizations for assisting with swine research at Kansas State University.

Abilene Animal Hospital, Abilene, KS
Ajinomoto Heartland LLC, Chicago, IL
Dave and Lois Baier, Abilene, KS
BASF Corporation, Florham Park, NJ
Biomin USA, San Antonio, TX
DNA Genetics, Columbus, NE
DSM Nutritional Products, Parsippany, NJ
Elanco Animal Health, Indianapolis, IN
Farmland Foods LLC, Crete, NE
Feedlogic Corporation, Willmar, MN
Hamlet Proteins, Findlay, OH
Haverkamp Brothers, Bern, KS
Holden Farms, Northfield, MN
Hubbard Feeds, Mankato, MN
ILC Resources, Urbandale, IA
International Ingredient Corporation, St. Louis, MO
JYGA Technologies, St. Nicolas, Quebec, Canada
Kalmbach Feeds, Upper Sandusky, OH
Kansas Pork Association, Manhattan, KS
Kansas Swine Alliance, Abilene, KS
Kemin Industries, Inc., Des Moines, IA
Lesaffre Yeast Corporation, Milwaukee, WI
Livestock and Meat Industry Council, Manhattan, KS
Micronutrients, Indianapolis, IN
Midori USA, Cambridge, MA
National Pork Board, Des Moines, IA
Natural Foods Holdings, Sioux City, IA
New Fashion Pork, Jackson, MN
New Horizon Farms, Pipestone, MN
Novus International, St. Charles, MO
Nutraferma, Dakota Dunes, SD
Nutraquest, Mason City, IA
Pancosma North America, Drummondville, Quebec, Canada
PIC USA, Hendersonville, TN
Purco, Edgerton, MN
Thomas Livestock Company, Broken Bow, NE
Trouw Nutrition USA, Highland IL
Triumph Foods, St. Joseph, MO
United Sorghum Checkoff Program, Lubbock, TX
USDA National Institute of Food and Agriculture, Washington, D.C.
Zinpro Corp., Eden Prairie, MN
Zoltenko Farms Inc., Hardy, NE
We especially appreciate the assistance and dedication of Kansas State University employees Duane Baughman, Frank Jennings, Mark Nelson, Chance Fiehler, Caitlin Evans, Ashton Yoder, and Theresa Rathbun.

Appreciation is also expressed to: Allan Morris, Heath Houselog, Marty Heintz, Craig Steck, and Bob Taubert, New Horizon Farms, Pipestone, MN, for their dedicated support.

Appreciation is expressed to Triumph Foods LLC, St. Joseph, MO, and Jerry Lehenbauer, David Donovan, Ann Smith, Brad Knadler, and Brittany Kimler for technical assistance.

Swine Industry Day Committee

Duane Davis
Joel DeRouchey
Steve Dritz
Bob Goodband
Joe Hancock
Jim Nelssen
Mike Tokach
Jason Woodworth
The Livestock and Meat Industry Council, Inc.

The Livestock and Meat Industry Council, Inc. (LMIC) is a nonprofit charitable organization supporting animal agriculture research, teaching, and education. This is accomplished through the support of individuals and businesses that make LMIC a part of their charitable giving.

Tax-deductible contributions can be made through gifts of cash, appreciated securities, real estate, life insurance, charitable remainder trusts, and bequests as well as many other forms of planned giving. LMIC can also receive gifts of livestock, machinery, or equipment. These types of gifts, known as gifts-in-kind, allow the donor to be eligible for a tax benefit based on the appraised value of the gift.

Since its inception in 1970, LMIC has provided student scholarships, research assistance, capital improvements, land, buildings, and equipment to support students, faculty, and the industry of animal agriculture. If you would like to be a part of this mission or would like additional information, please contact the Livestock and Meat Industry Council/Animal Sciences and Industry, Weber Hall, Manhattan, Kansas 66506 or call 785-532-1227.

LMIC Board Members
Kyle Bauer Roy Henry Bill Miller
David Clawson Patsy Houghton Lisa Moser
Doug Deets Virgil Huseman Stanton O’Neil
Mark Gardiner Justin Janssen Rich Porter
Craig Good Mark Knight Tom Toll
Ken Grecian Kelly Lechtenberg Warren Weibert
Frank Harper Steve Mangan

Royal Board Members
Dell Allen Greg Henderson Phil Phar
Jerry Bohn Steven Hunt Harland Priddle
Richard Chase Steve Irsik Lee Reeve
Calvin Drake Larry Jones Don Smith
Stan Fansher Kenny Knight Ken Stielow
Galen Fink Pat Koons Mikel Stout
Randy Fisher Jan Lyons Kathleen Strunk
Lyle Gray Gina Miller Duane Walker
Sam Hands Andrew Murphy
Bernie Hansen Tom Perrier

Kansas State University Agricultural Experiment Station and Cooperative Extension Service