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MARKOV CHAIN MONTE CARLO METHODS FOR MODELING THE 
SPATIAL PATTERN OF DISEASE SPREAD IN BELL PEPPER 

Jonathan M. Graham 
Department of Mathematical Sciences 

University of Montana 
Missoula, MT 59812 

With exponential family models for dependent data, such as the autologistic model for 
binary spatial lattice data, maximum likelihood estimates can be obtained using Markov 
chain sampling methods by simulating an ergodic Markov chain which converges weakly to 
the equilibrium distribution of the model. This Markov chain Monte Carlo maximum likeli­
hood (MCMCML) procedure provides a competitor to the usual pseudolikelihood estimation 
method often used for modeling discrete lattice data. Within this MCMCML framework, it 
is also possible to conduct formal inference using MCMC analogues to the usual likelihood 
ratio, Wald, and Lagrange multiplier tests, for which the asymptotic distributions are known 
subject to some mild regularity conditions. Here, the MCMC methodology will be discussed 
as it pertains to the autologistic model for binary data and will be used to model the spatial 
pattern of disease spread in bell pepper caused by the pathogen Phytophthora capsici. 

Keywords: Autologistic model, Markov chain Monte Carlo (MCMC) 

1. Introduction 
Markov chain Monte Carlo (MCMC) methods for estimating parameters from distribu­

tions which have an intractable form have been used increasingly in applications in recent 
years. Examples include the analysis of disease incidence data in agricultural studies (Be­
sag 1974, Gumpertz et. al. 1995), the distribution of plant species (Huffer & Wu 1995), 
genealogical studies (Geyer & Thompson 1994), and image restoration (Geman & Geman 
1984). However, little attention has been given to the parallel development of formal infer­
ence procedures within this MCMC framework. Here, an application is considered which 
necessitates the use of hypothesis testing to address important physical questions about 
the data. Three MCMC inference procedures corresponding to the usual likelihood ratio 
test, Wald test, and Lagrange multiplier test, are developed and compared to other related 
procedures based on the pseudolikelihood estimation method, through simulation and an 
application to Phytophthora root and crown rot disease incidence data in bell pepper plants. 

Data collected over a geographical region are often not independent. Hence, modeling 
spatial data should incorporate this spatial dependence. In some cases, as with binary 
data on a lattice or grid, a Markov random field (MRF) assumption on the dependence 
structure may be appropriate. Under such an assumption, the dependence structure of the 
data can be defined through interactions between groups of neighboring sites on the lattice. 
Because the realization of a random variable at a given site is dependent on the values at 
neighboring sites, this MRF assumption enables lattice data to be modeled in a natural way 
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through conditional probabilities, where the probability distribution for each site-random 
variable conditioned on the values at neighboring sites is specified. Under a properly defined 
neighborhood system, this conditional probability model has an equivalent joint specification 
known as the Gibbs distribution (Geman & Geman 1984). For binary data under an MRF 
assumption, a special type of Gibbs model known as the autologistic model is often used. 

The impetus for much of the work in this paper originated from an applied problem in 
plant pathology, where interest lay in understanding the mechanism of disease spread in bell 
pepper plants caused by the pathogen Phytophthora capsici (Ristaino, et. al. 1993). To study 
this, the spatial patterns of spread were analyzed for disease incidence data collected from 
three North Carolina bell pepper fields, using autologistic models of different orders and 
directions of dependence. Viewing each field as a 20x20 lattice of sites, each consisting of 2 
or 3 plants, a "0" or "I" is recorded at each site indicating whether the plants at that site 
are healthy or diseased respectively. In this way, binary spatial lattice data were collected 
at different times and fields over the 1992 growing season. An example of the data from one 
of these fields appears in Figure 1, where "." and "0" indicate diseased and healthy sites, 
respectively. An initial inspection of this field (labeled Field 1 1992) reveals a greater degree 
of disease spread within rows than across rows. 

The primary objective of this paper is to investigate the applicability of formal MCMC­
based inference procedures, specifically to autologistic models in the spatial lattice data 
setting. Such procedures will enable the practitioner to test for differences in the direction 
and magnitude of disease spread in the Phytopthora data. Section 2 reviews the form of 
autologistic model and demonstrates its flexibility in modeling data with the different levels 
and directions of spatial dependence. Sections 3 and 4 provide the necessary background 
for the estimation and inference procedures respectively. After developing these inference 
methods and the corresponding asymptotic theory, two simulation studies comparing the 
adequacy and power of tests using these methods are summarized in Section 5. Finally, 
Section 6 presents an example using Phytophthora capsici disease incidence lattice data to 
illustrate the use of the inference procedures in performing model selection and for answering 
specific questions pertaining to the mechanism of disease spread. 

2. Autologistic Model 

Binary data, often collected as the presence or absence of some characteristic under 
study, are frequently analyzed using a logisitic regression model. However, binary spatial 
lattice data may exhibit some form of spatial dependence, rendering the usual logistic model 
inappropriate. Under such a scenario, an alternative model of "logistic" form, where the 
site random variables are now regressed on themselves through their dependence on random 
variables at neighboring sites is termed the autologistic (AL) model. Besag (1974) formalized 
the notion of an AL model, establishing various properties of the model and demonstrating 
its flexibility in modeling different levels and directions of spatial dependence. 

2.1 Background 

Let D = {Sl, ... , sm} C R d , d a positive integer, be a lattice of m( < 00) sites on which 
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a realization of the spatial process Z = {ZI,"" Zm} is observed, and let SN = {(Si' Ni) : 
i = 1, ... , m} be a neighborhood system defined on D, where Ni is the set of all neighbors 
of site Si, i = 1, ... ,m. A Markov random field (MRF) assumption on Z with respect to SN 
requires the form of the resulting conditional probability distribution to satisfy the spatial 
Markov Property: Pr(Zi = Zi I Zj = Zj : j #- i) = Pr(Zi = Zi I Zj = Zj : Sj E Ni), Vi, j, 
namely that the conditional distribution of Zi given all other Zj in the lattice depends only 
on the Zj at neighboring sites of Si. Under the additional assumptions of positivity and 
pairwise-only site dependence, application of the Hammersley-Clifford Theorem necessarily 
yields the general form of the AL model for binary data as: 

where () = ({ai},i = 1, ... ,m;{,8ij},i,j = 1, ... ,m) is the vector of model parameters and 
,8ii = 0 for identifiability (Besag 1974, Cressie 1993). 

In this general framework, suppose now for simplicity that the data z = {Zjk : j = 

1, ... , ml, k = 1, ... , m2} are collected on a two-dimensional lattice D = {(j, k) : j = 
1, ... , ml, k = 1, ... , m2}' The further restrictions, a = ai and,8 = ,8ij VS j E Ni, give rise 
to the simplest form of the AL model with first-order dependence structure known as the 
Ising model. The resulting first-order AL(a,,8) or Ising model has the form: 

( I ( ., k') -I- ( . k) 4) . ( 4) exp{ a + ,8njd Pr Zjk = 1 Zj'k': ), I)' ;a,fJ = explt a+ fJnjk = {4}' 
1 + exp a + fJnjk 

where: njk = L Zj'k' = [Zj-1,k + Zj+l,k + Zj,k-1 + Zj,k+1], 
(j' ,k')EN(j,k) 

the number of nearest neighbors which are diseased. This model resembles the classic logistic 
regression model; however, the njk are not independent of the Zjk. The corresponding joint 
(Gibbsian) distribution is given by: Pr(Z = zla,,8) = [c(a, ,8)]-1 exp{ as + ,8N} where 
S = Ej';l Er~l Zjk, and N = ~ Ej';l Er~l Zjknjk are the sufficient statistics for (a, ,8), and 
c(a,,8) is the normalizing constant. To avoid edge effects on a finite lattice, these sums are 
computed only over the inner lattice sites (those with a complete set of neighbors). 

The ,8-parameter measures the strength of the spatial dependence in the data, and the 
a-parameter contains information about the number of one-realizations in the lattice. A 
unit increase in njk corresponds to an increase by ,8 in the log odds of observing a one to a 
zero at a particular site, given the values at neighboring sites. In terms of the Phytophthora 
data, this translates to an increase by ,8 in the log odds of disease at a given site for each 
additional neighboring site with diseased plants. Larger values of ,8 indicate stronger spatial 
dependence between neighboring sites, with ,8 = 0 giving the independent logistic regression 
model. The correlation between sites generally decreases with distance; however, there is 
a critical point for ,8 at ,8e = 2sinh- I (1) ~ 1.76 where for ,8 > ,8e and a = -2,8, the 
model exhibits long-range correlation yielding two completely different types of realizations 
from the same model parameters (Pickard 1987). In models with high dependence, this 
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can cause severe problems with estimation, as the estimation methods are highly sensitive 
to small changes in the data. Pickard (1987) explores the effects of this critical value on 
estimation and inference for the Ising model, showing that the underlying MRF can exhibit 
phase transitions and long-range correlation, leading to identifiability problems. Gidas (1993) 
concludes that under an identifiability assumption, consistency of the parameter estimates 
for points beyond the critical value is achieved, whereas asymptotic normality is not. 

2.2 Model Hierarchy 

There are two natural extensions of this first-order Ising model to higher orders and 
different directions of dependence respectively. For the former, the obvious extension is to a 
second-order model which includes diagonally adjacent sites as neighbors in addition to the 
first-order neighbors. This second-order AL model, denoted AL(a, (3, 6), is given by: 

( _ I . (., ') (.). ) - exp{Zjk(a + (3njk + 6djk )} . 
Pr Zjk - Zjk Zj',k'· J, k #- J, k ,a, (3, 6 - 1 { (3 Ad} where. + exp a + njk + U jk 

njk and djk represent the number of adjacent (horizontal and vertical) and diagonal near­
est neighbors with a value of one, respectively. Here, (3 describes the dependence be­
tween horizontally or vertically adjacent neighbors, and 6 the dependence between diag­
onally adjacent neighbors. Extensions to higher-order dependence models might be use­
ful with the Phytophthora data in examining the extent of spatial dependence between 
pepper plants at varying distances of separation. The corresponding joint specification 
is: Pr(Z = zla, (3, 6) = [c(a, (3, 6)J-1 exp{ as + (3N + 6D}, where S = Lj~l L;~l Zjk, 

N = ~ Lj~l L;~l Zjknjk, and D = ~ Lj~l L;~l Zjkdjk are the sufficient statistics for (a, (3, 6) 
and c(a, (3, 6) is the normalizing constant. 

The second extension of the first-order Ising model is to split the dependence parameter (3 
into two parameters to incorporate two possible directions of dependence. This bi-directional 
first-order AL model, denoted AL(a, (31, (32), has the form: 

where: n1jk = [Zj,k-1 + Zj,k+1], and n2jk = [Zj-1,k + Zj+1,k], the number of within-row 
and between-row nearest neighbors with a value of one respectively. (31 represents the 
between-rows spatial interaction, and (32 the within-row interaction. Such a distinction 
may be important if one is interested in investigating differences in the spread of dis­
ease between rows and within rows in the field. The corresponding joint specification is: 
Pr(Z = zla, (31, (32) = [c(a, (31, (32)J-1 exp{ as + (31 N 1 + (32 N 2}, where S = L~l L~l Zjk, 
N - 1 ",ml ",m2 d N - 1 ",ml ",m2 th ffi· t .. f 

1 - 2 6j=1 6k=1 Zjkn 1jk, an 2 - 2 6j=1 6k=1 Zjkn 2jk are e su clen statIstIcs or 
(a, (31, (32) and c(a, (31, (32) is the normalizing constant. The hierarchy inherent with these 
AL models enables the study of different levels and directions of dependence in the neighbor­
hood structure through parameter estimation and hypothesis testing, so that model selection 
can be performed. 
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3. Estimation Methods 
Parameter estimation methods in models of intractable form such as the AL model have 

received significant attention in the literature. Early methods such as coding (Besag 1974) 
and pseudolikelihood (Besag 1975) maximized certain functions of the conditional probability 
distribution. More recently, efforts to estimate the unwieldy normalizing constant present in 
the joint probability specification have led to a variety of approximate maximum likelihood 
estimation procedures, as summarized in Geyer & Thompson (1992). This latter paper 
is the origin of the Markov chain Monte Carlo (MCMC) maximum likelihood estimation 
procedure upon which the inference procedures developed here are based. MCMC methods 
have become increasingly popular in recent years with efforts focused primarily on Markov 
chain convergence rates and the development of more efficient estimation algorithms (Besag 
& Green 1993, Geyer & Thompson 1994). 

This section provides a brief review of the pseudolikelihood (PL) and Markov chain 
Monte Carlo maximum likelihood (MCML) estimation methods, both of which will be used to 
develop inference procedures in a later section. Some discussion on the asymptotic properties 
of the resulting estimators is also given. Although asymptotic theory is typically studied 
on the basis of increasing sample sizes, it is here viewed with respect to increasing lattice 
sizes. Under the framework of Gidas (1993), let D(m) denote the d-dimensionallattice of 
m sites, and consider a sequence of samples {Zm = {Zi : Si E D(m)} for increasing m, 
and an associated expanding sequence of MRFs {7rm } with common parameter vector 0 
E 8 c ~p. Throughout this paper, the limit as the lattice size m = ID(m)1 -+ 00 will 
be interpreted in the manner given by van Love (Gidas 1993), namely that as m -+ 00, 

ID(m/) - D(m)I/ID(m)1 -+ 0 for every m and m' where m' > m is the number of sites in 
the next step of the sequence of increasing lattices. 

3.1 Pseudo likelihood Method 
Likelihood functions resulting from MRF models generally contain an intractable nor­

malizing constant, preventing maximum likelihood estimation in even simple AL models. 
The pseudolikelihood (PL) estimation method attempts to circumvent this problem by max­
imizing the product of the conditional densities. The normalizing constant is absent from 
the conditional densities allowing this PL function to be maximized by standard numerical 
methods. This method was developed by Besag (1975) and a good general introduction to 
PL functions can be found in Strauss (1992). 

For binary lattice data Z = z on a lattice D = {(j, k) : j = 1, ... , ml, k = 1, ... , m2} 
where Z has a Gibbs distribution with parameter vector 0 E 8, the PL function is defined 
as the product over all sites in D of the conditional probability densities of the Zjk given the 
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_ .1 1 . _ exp{Zjk·tjkO} 
PL(Olz)= II Pr(Zjk-Zjklzj'kl,(J,k)#(J,k))- II 1+ {t' O}' 

(j,k)ED (j,k)ED exp jk 

in the context of the autologistic model, where tjk is the vector of sufficient statistics for 0 
associated with the site (j, k). For example, in the Ising model, tjk = (1, njk) and 0 = (0:, f3) 
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following earlier notation. The popularity of the PL method in practice stems from its ease of 
implementation and well-behaved concave PL functions, which can be numerically maximized 
to obtain the maximum pseudolikelihood estimator (MPLE) OPL. Although maximization 
of this PL function yields consistent estimators (see Geman & Graffigne 1987 for a proof 
of consistency), it should be emphasized that the PL function is not a true likelihood, so 
that estimators obtained are not MLEs and hence not necessarily asymptotically efficient 
(Strauss 1992). Asymptotic normality of the MPLE, to this author's knowledge, has not 
been proven for increasing lattice sizes; and in fact, the asymptotic standard errors from the 
"pseudolikelihood information matrix" are valid only in the case of spatial independence. 

3.3 Markov Chain Monte Carlo Maximum Likelihood Method 
The inability to compute MLEs directly with Gibbs-MRF models led to the use of pseudo­

likelihood as a method of estimation for the model parameters. Geyer & Thompson (1992) 
developed a Monte Carlo Maximum Likelihood (MCML) method which relies on Markov 
chain sampling methods such as the Gibbs sampler to simulate an ergodic Markov chain 
which converges in distribution to the desired MRF. 

Suppose we have a single realization z = (Zl, ... , zm) on a lattice D(m) of m sites from 
a spatial lattice process Z = (Zl, ... , Zm) with Gibbs density given by: 

fez I 0) = c-l(O) exp {t, Ui(Z)()i} , (1) 

where c(O) = J exp{2:f=l Ui(z)()i}d/-l(z) is the normalizing constant, and /-l is counting mea­
sure over n = 0 1 X ... x Om, where 0i is the single-site state space (Oi = {a, 1} for binary 
data). The vectors 0 = (()l,""()p) and U(·) = (Ul(·), ... ,Up(·)) are the natural parame­
ter vector and statistic respectively for this exponential family distribution. When c( 0) is 
not of closed form, straightforward maximum likelihood estimation is not feasible; however, 
Geyer & Thompson (1992) show that the generation of a Markov chain of n lattice sam­
ples YI, Y2, ... ,Yn using MCMC sampling methods yields a consistent MCMC estimator of 
c(O)jc('ljJ) for any 0, 'ljJ E 8, given by: 

1 ~ {' ( )} a.s. c( 0) dn (0) = - L..- exp TkO - 'ljJ --+ ("I.) as n -+ 00, 
n k=l c 0/ 

(2) 

for any fixed O. Using (1), the log-likelihood of 0 given z can be rewritten in terms of 
the ratio c( 0) j c( 'ljJ), and approximated via (2) to give a Monte Carlo approximate log­
likelihood: In(O I z) = -log[dn(O)] + 2:f=l Ui(Z)()i. Assuming OMC and OML, the maxima of 
the approximate and true likelihoods, respectively, exist and are unique, strong convergence 
of the maximizers of the form OMC ~ OML as n -+ 00 follows from the concavity of the 
likelihoods (Geyer & Thompson 1992). A unique maximum OMC of In(O I z) exists if the 
vector of sufficient statistics U (z) is contained in the convex hull of the vectors of sufficient 
statistics T I , ••• ,Tn from the Markov chain 'ljJ-samples (Pentinnen 1984). 

The method of Markov chain Monte Carlo maximum likelihood (MCML) has received 
much attention in recent years, and has been useful in solving a variety of complex prob­
lems (Geyer & Thompson 1992). The main drawback of this method is the tremendous 

96 Kansas State University 

following earlier notation. The popularity of the PL method in practice stems from its ease of 
implementation and well-behaved concave PL functions, which can be numerically maximized 
to obtain the maximum pseudolikelihood estimator (MPLE) OPL. Although maximization 
of this PL function yields consistent estimators (see Geman & Graffigne 1987 for a proof 
of consistency), it should be emphasized that the PL function is not a true likelihood, so 
that estimators obtained are not MLEs and hence not necessarily asymptotically efficient 
(Strauss 1992). Asymptotic normality of the MPLE, to this author's knowledge, has not 
been proven for increasing lattice sizes; and in fact, the asymptotic standard errors from the 
"pseudolikelihood information matrix" are valid only in the case of spatial independence. 

3.3 Markov Chain Monte Carlo Maximum Likelihood Method 
The inability to compute MLEs directly with Gibbs-MRF models led to the use of pseudo­

likelihood as a method of estimation for the model parameters. Geyer & Thompson (1992) 
developed a Monte Carlo Maximum Likelihood (MCML) method which relies on Markov 
chain sampling methods such as the Gibbs sampler to simulate an ergodic Markov chain 
which converges in distribution to the desired MRF. 

Suppose we have a single realization z = (Zl, ... , zm) on a lattice D(m) of m sites from 
a spatial lattice process Z = (Zl, ... , Zm) with Gibbs density given by: 

fez I 0) = c-l(O) exp {t, Ui(Z)()i} , (1) 

where c(O) = J exp{2:f=l Ui(z)()i}d/-l(z) is the normalizing constant, and /-l is counting mea­
sure over n = 0 1 X ... x Om, where 0i is the single-site state space (Oi = {a, 1} for binary 
data). The vectors 0 = (()l,""()p) and U(·) = (Ul(·), ... ,Up(·)) are the natural parame­
ter vector and statistic respectively for this exponential family distribution. When c( 0) is 
not of closed form, straightforward maximum likelihood estimation is not feasible; however, 
Geyer & Thompson (1992) show that the generation of a Markov chain of n lattice sam­
ples YI, Y2, ... ,Yn using MCMC sampling methods yields a consistent MCMC estimator of 
c(O)jc('ljJ) for any 0, 'ljJ E 8, given by: 

1 ~ {' ( )} a.s. c( 0) dn (0) = - L..- exp TkO - 'ljJ --+ ("I.) as n -+ 00, 
n k=l c 0/ 

(2) 

for any fixed O. Using (1), the log-likelihood of 0 given z can be rewritten in terms of 
the ratio c( 0) j c( 'ljJ), and approximated via (2) to give a Monte Carlo approximate log­
likelihood: In(O I z) = -log[dn(O)] + 2:f=l Ui(Z)()i. Assuming OMC and OML, the maxima of 
the approximate and true likelihoods, respectively, exist and are unique, strong convergence 
of the maximizers of the form OMC ~ OML as n -+ 00 follows from the concavity of the 
likelihoods (Geyer & Thompson 1992). A unique maximum OMC of In(O I z) exists if the 
vector of sufficient statistics U (z) is contained in the convex hull of the vectors of sufficient 
statistics T I , ••• ,Tn from the Markov chain 'ljJ-samples (Pentinnen 1984). 

The method of Markov chain Monte Carlo maximum likelihood (MCML) has received 
much attention in recent years, and has been useful in solving a variety of complex prob­
lems (Geyer & Thompson 1992). The main drawback of this method is the tremendous 

Conference on Applied Statistics in Agriculture
Kansas State University

New Prairie Press
https://newprairiepress.org/agstatconference/1996/proceedings/9



Applied Statistics in Agriculture 

amount of computing effort required to obtain the Monte Carlo maximum likelihood estima­
tor (MCMLE) in some large-scale problems. The major advantages of MCML lie with the 
corresponding asymptotic theory and its reliance on maximum likelihood theory. 

Note that the convergence of the MCMLE iiMC , given above, is to the MLE iiML , not 
the true Bo. Under an identifiability assumption on the true Bo, Gidas (1993) proved the 
strong convergence of the MLE to Bo for any Bo E e as the lattice size m increases subject 
to the van Love conditions stated earlier. This result and the convergence of iiMC to iiML as 
n ~ 00 can be combined to give the convergence of iiMC ~ Bo a~ first n and then m ~ 00. 

A related result on the asymptotic normality of the MCMLE BMC also involves a simul­
taneous treatment of the two types of asymptotics present, again stemming from initially 
separate results. Under simple regularity conditions, Geyer (1994) demonstrates the asymp­
totic normality of iiMC - iiML at a rate of Vii, where n is the Monte Carlo sample size. 
Under stricter conditions, Gidas (1993) establishes the asymptotic normality of the true MLE 
iiML at a rate of y'rii, where m is the lattice size. These two asymptotic results may be com­

bined to give: y'rii(iiMC - Bo) Et N(O, I-l(Bo)) as n, then m ~ 00, under the assumptions 
discussed. The primary motivation for reviewing results on the consistency and asymptotic 
normality of the MCML estimator is to use these results to find the asymptotic distributions 
of test statistics resulting from this method. In the subsequent sections, test statistics based 
on these estimation procedures will be developed, their asymptotic distributions found, and 
the adequacy of the asymptotics with simulated and real data examined. 

4. Inference Methods 
In this section, several methods for testing hypotheses on the model parameters in autol­

ogistic models are presented. In general, for a vector of model parameters B = (()l, ... , ()p), 
tests of general form H: B E e H vs. A: B E e~ will be considered, where e H is the pa­
rameter space for B under the null hypothesis H. The first two presented methods treat the 
PL function as a likelihood, yielding "pseudolikelihood ratio test (PLRT)" statistics which 
are transformed to approximate a chi-square distribution. The final three testing methods 
extend the Markov chain Monte Carlo maximum likelihood methodology to a Monte Carlo 
likelihood ratio test (MCLRT), Wald test (MCWT), and Lagrange multiplier test (MCLMT). 

4.1 Pseudolikelihood Ratio Tests 
Since the pseudolikelihood (PL) is not a true likelihood function, it does not make sense 

to develop a pseudolikelihood ratio test (PLRT) as a ratio of likelihoods in the usual way. 
Letting Ap denote the PLRT statistic, simulation demonstrates clearly that - 2log Ap is 
not approximately chi-squared distributed. However, given the ease of implementation and 
popularity of the PL method in practice, a formal testing procedure based on some transfor­
mation of Ap would be extremely useful. Here, two tests which match the first two moments 
of a transformed PLRT statistic to those ofax2-random variable are discussed. No formal 
justification for these transformations is provided; however, a heuristic argument is given. 

The coding method of estimation (Besag 1974) considers a partition of the lattice D 
into particular sublattices D i , i = 1, ... ,s, such that the random variables Zjk at sites in a 
given sublattice are conditionally independent, given the values at neighboring sites. Taking 
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the product of the site probabilities over the sites in each sublattice yields a sequence of 
"coding likelihood" functions C L1 ( () I z), ... , C L s ( () I z) corresponding to D1, ... , D s' Because 
{D1 , ... , Ds} partition D, the PL function can be expressed as: PL((}lz) = nf=l CLi((}lz). 
Using this equality, and letting iiPL and ii:tL be the unrestricted and restricted MPLEs 
respectively, the PLRT statistic can be approximated as: 

s 

II ACi, 
i=l 

where the ACi, i = 1, ... , s are LRT statistics for the coding likelihoods. Under Ho, the 
-210g ACi statistics, i = 1, ... , s, are dependent identically-distributed random variables 
with an asymptotic X2-distribution, so -210g Ap is approximately the sum of dependent 
identically-distributed x2-random variables. This provides the basis for the first PLRT, 
denoted by P LRTc , which is an approximation for a sum of dependent x2-random variables. 

P LRTc Method: Viewing -210g Ap as 2.:f=l Xi where Xl, ... ,Xs are dependent identically 
distributed X 2(r) random variables with an assumed common correlation p between each 
pair (of CLRT statistics), the first two moments of a chi-squared random variable can be 
matched with those of ac 2.: Xi where ac > ° is a constant. Simple computation verifies that 
if ac = 1/[1 + (s - l)p] where s is the number of coding sets, then the means and variances 
of ac 2.: Xi and a x 2(srac)-variable are equal. Hence, if an estimate of p = Corr(Xi' Xj) = 
Corr(-2 log ACi, -210gAcj) can be obtained, the PLRT may be useful as an asymptotic 
chi-squared test. This can be done with the Gibbs sampler by generating sample data from 
the distribution with the PL estimates as parameter values, and calculating the sample 
correlation between pairs of - 210g ACi test statistics as estimates of p. 

PLRTp Method The second potential PLRT, denoted PLRTp, attempts to match the mean 
and variance of the statistic - 2ap log Ap (ap > 0, a constant) to that ofax2-random variable. 
Suppose J1p and a~ are the mean and variance of -210g Ap, Then matching the first two 
moments of - 2ap log Ap with those ofax2-random variable yields ap = 2J1p / a~ as the choice 
of ap such that -2ap log Ap has the same mean and variance as a X2[2J1~/a~]-distribution. 
Again, J1p and a~ are in general unknown but can be estimated using the Gibbs sampler. 

Both of these PLRT methods will be investigated through simulation studies in later 
sections. The chi-square approximations can be justified by examining plots of the empirical 
density of -210g Ap for simulated data. Other efforts to develop a test procedure based 
on PL estimation include a Cholesky decomposition of the PL-based estimated information 
matrix which also exploits the coding-PL relationship (Miller 1981), and a subset selection 
method based on the deviance statistic in the presence of covariate data (Huffer & Wu 1995). 

4.2. Monte Carlo Likelihood Ratio Test 
A natural question stemming from the MCML method is whether similar ideas (estima­

tion of the ratio of normalizing constants) can be used for developing a hypothesis testing 
procedure. Suppose that a realization z on a lattice D(m) of size m is observed. As with 
MCML estimation, we choose some 1/; E E> c RP, where E> is the unrestricted parameter 
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space for 8, and let P'l/J denote the probability measure having density f'l/J with respect to a 
measure J-t. With the likelihood L(8Iz) given by (1), the usual likelihood ratio test (LRT) 
statistic for testing H: 8 E 8 H vs. A: 8 tJ. 8 H , is: 

sup L(8Iz) 
8 E 8 H 

sup L(8Iz) 
8E8 

p 

sup [(c( 8) c('l/J»-l exp{L Ui (z)6lJ] 
8 E 8 H i=l 

p 

sup [(c(8) C('l/J»-l exp{L Ui(Z)ei}] 
8 E 8 i=l 

[c(jl~·L)/c('l/J)]-l exp{L:f=l Ui(z)BftfLJ _ L(OZ-Llz) 
[c(OMd C('l/J)]-l exp{L:f=l Ui(z)BMLi } - L(OMLlz) ' 

(3) 

where oz.L is the MLE of 80 under H, and OML is the unrestricted MLE of 80 . Application 
of the MCMC methodology is now clear from expression (3). Generation of a sufficiently 
large number of 7,b-samples will enable estimation of the numerator and denominator ratios 
C(0Z-L)/C('l/J) and C(OML)/C('l/J) in (3) using the Monte Carlo approximant dn(8) in (2). The 
critical point here is that the same 'l/J needs to be used for both approximations, making the 
choice of'l/J an important consideration in terms of the number of Monte Carlo 'l/J-samples 
required for convergence of dn ( 8) in the two maximizations. Intuitively, choices of'l/J between 
80 and 8f! should allow for more rapid convergence and more accurate approximations. 

For all n = 1,2, ... , define Amn as: 

Amn = [dn(~Z-c)]-l exp{L:i Ui(Z)~~CJ = L:k=l exp{(Tk - U)'(~~c - 'l/J)}, 
[dn(8MC )]-1 exp{L:i Ui(Z)eMCi} L:k=l exp{(Tk - U)'(8MC - 'l/J)} 

where In (,1 z) is the Monte Carlo approximant to the likelihood. The terms Tk and U are the 
vector of sufficient statistics for 'l/J from the kth Monte Carlo sample, and for 8 respectively. 
It then follows from the MCML development that as n -+ 00, Amn ~ Am. 

In well-behaved distributions, such as the exponential family models studied here, the 
statistic - 2log Am converges in distribution to a chi-squared random variable as the "sample 
size", or number of sites m increases. Appealing to the general theory for exponential 
families of distributions, the convergence of - 2 log Am Et X2 (r) as m -+ 00 follows from 
the consistency and asymptotic normality of the MLE shown by Gidas (1993). Letting 

n,m -+ 00 in sequence, it is then straightforward to show that -2logAmn Et x2(r). 

4.3. Monte Carlo Wald Test 
In maximum likelihood estimation, the inverse of the observed information matrix is an 

asymptotic estimator for the variance-covariance matrix of the parameter estimates. Here it 
is shown that the MCML methodology leads naturally to a MCMC-based estimator of the 
inverse information matrix, providing the basis for a Monte Carlo Wald Test (MCWT). 

For the class of Gibbs distributions within the exponential family, the information matrix 
is given by: J(8) = E[(8 log L/8(J) (8 log L/(8)'] = [Var(U(z»J-l, where Var(U(z») is 
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simply the variance-covariance matrix of the sufficient statistics. Computation of the first­
and second-order partials of log c( B) yields an alternative expression for I (B) as: 

02 02 

I (B) = oBoB' [log c( B)] = oBoB' [log( c( B) / c( 'l/J))], (4) 

where division by c( 'l/J) in the final equality in (4) does not change the expression. Written 
this way, the application of the MCMC methodology is apparent. Using (2) to estimate 
c( B) / c( 'l/J) provides a Monte Carlo approximation to the information matrix as: 

02 02 In 
I Me (B) = oBoB' [log {dn (B)}] = oBoB' [log{;:;: {; exp{ T~ (B - 'l/J)}}]. (5) 

where Tk is the vector of sufficient statistics in the kth 'l/J-generated lattice sample, k = 

1, ... ,n. Finally, substitution of the MCMLE iiMC for B in (5) gives the estimated Monte 
Carlo information matrix. 

Consider a test of the form H: R( B) = 0 vs. A: R( B) =I=- 0, where R( B) = 
(Rl (B), ... , Rr(B) is a vector of r :::; p independent hypotheses on B. Assume that each 
RiC) possesses continuous first-order partial derivatives, and let D(B) = oR(B)/oB' = 
{oRi/oejh,j, i = 1, ... ,r, j = 1, ... ,p, be the r x p matrix of all first order partials. The 
Monte Carlo Wald test statistic is then defined as: 

As with the MCMC likelihood ratio test statistic, this MCMC Wald test statistic can be 
shown to converge in distribution to a chi-square distribution with degrees of freedom equal 
to the number of independent hypotheses r, as the Monte Carlo size n and lattice size m 
increase sequentially to 00. A proof of this result follows from the strong convergence and 
asymptotic normality of the MCMLE shown by Gidas (1993) under fairly strict regularity 
conditions, and can be found in Graham (1995). 

4.4. Monte Carlo Lagrange Multiplier Test 
In addition to the likelihood ratio test and Wald test, a third commonly used testing pro­

cedure which requires only one maximization under the reduced model is the Lagrange mul­
tiplier test or Rao's score test. Suppose again that we wish to test the set of independent hy­
potheses on the p x 1 vector of model parameters B with form: H: R( B) = 0 vs. A: R( B) =I=­

o. Let s(B) = [(I/ym)(8lm(Blz)/oB)]pxl' and C(B) = [(I/m)(02lm(Blz)/oBoB')]pxp, with 
sand C representing the values of sand C evaluated at the restricted MLE iiH , and lm (·1 z) 
denoting the true unrestricted log-likelihood. Under suitable regularity conditions, the La­
grange multiplier test statistic given by: LM = s'C-Is has an asymptotic X2-distribution 
with degrees of freedom equal to r, the number of independent hypotheses being tested. 

For Gibbs models, however, closed form expressions for the first and second partials of 
the log-likelihood function lm(B) = -logc(B) + U'(z)B do not exist. Using again the fact 
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that f} / f}9 log c( 9) = f} / f}9 log[ c( 9) / c( 'l/J)], it can be shown that the LM test statistic takes 
the form: 

[ a C(O)]'[ a2 C(O)]-l [ a c(O)]1 
LMm = U(z) - ao log c(1jJ) - aoao' log c(1jJ) U(z) - ao log c(1jJ) jjH (6) 

where as before, the Monte Carlo approximant dn (9) can be used to estimate c( 9) / c( 'l/J), and 
OZ.c to estimate jjH, yielding a Markov chain Monte Carlo Lagrange multiplier (MCLM) 
test statistic LMmn (see Graham (1995) for details). 

Under the assumption that the first and second order partials of c( 9) are continuous 
in a neighborhood of 90 , it can be shown that LMmn ~. LMm as n -+ 00. And as with 
the previous two MCMC test statistics, convergence in distribution under H of LMm to 
a chi-square random variable with r degrees of freedom follows from the convergence and 
asymptotic normality of the MCMLE (Graham 1995). Combining these results, it follows 

that under H, LMmn Et x2 (r) random variable as n and then m -+ 00. 

5. Simulation Studies 
In an effort to compare the PL and MCMC inference procedures, two simulation studies 

are performed. The first of these investigates the accuracy of the asymptotic distributions of 
the test statistics for a number of different sets of hypotheses and lattice sizes. The second 
study examines the power of different tests and how it changes under different levels of 
spatial dependence. In all cases, only first- and second-order AL models are considered over 
nested lattices of size 20x20, 40x40, and 60x60. Edge effects were handled by performing 
inference only on an inner portion of each lattice with an outer "guard" region of width 1 
used only in the conditioning. Values at the edge sites of the lattice samples were generated 
under a torus assumption. 

5.1 Simulation Study: Empirical Distributions of Test Statistics 
The purpose of this first series of simulations is to compare the empirical distributions of 

the test statistics under the null hypothesis, computed from generated Markov chain lattice 
samples, to their hypothesized asymptotic X2-distributions. Five separate simulations are 
run for five different models and corresponding tests on the model parameters. The first three 
of these analyzed the test H: f3 = f30 vs. A: f3 =1= f30 for f30 = 0.25,0.50, 1.00 respectively, for 
lattice samples from a first-order AL(a, f3) distribution (a = -2f3 in all cases). The fourth 
examines the test H: f3 = ,vs. A: f3 =1= , for f3 = , = 0.5 in the bi-directional first-order 
AL(a, f3, ,) model, and the fifth the test H: 0 = 0 vs. A: 0 =1= 0 for 0 = 0 in the second-order 
AL(a, f3, 0) model. The following general procedure is used for each of these five cases. 

Let 9 represent the vector of parameters for a given model, and 90 the true value of 
9 under H. Using a Gibbs sampler, 500 lattice samples of size 64x64 are generated from 
the autologistic model under the null hypothesis 9 = 90 . From each of the 500 generated 
samples, the unrestricted and restricted MPLEs, OPL, O:;L' and MCMLEs OMC, Oz'c, are 
calculated. To compute the MCMLEs, an additional single stream of 2000 MCMC samples 
from the autologistic model with parameter 'l/J = OPL is used. Using these maxima, the 
various test statistics for the PLRTc , PLRTp , MCLRT, MCWT, and MCLMT methods, 
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given by -2ac log Ap, -2ap log Ap, -2log Amn , Wmn , and LMmn respectively, are found. 
The resulting 500 values for each test statistic comprise the empirical distribution of the test 
statistics. To compare this to the proposed X2-distributions, the 500 values were categorized 
into the 20 groups with endpoints at every fifth percentile of the proposed distribution. 
With each group having an expected count of 25 under H, the accuracy of the asymptotics 
is assessed using a simple chi-squared GOF test for each of the five testing methods over all 
five cases and all three lattice sizes, with the final results reported in Table 1. 

The details of this simulation study are not reported here (see Graham 1995 for details); 
only the salient features are indicated. In viewing the table, it is clear that there are severe 
departures from a chi-squared distribution for the test statistics under the P LRT c testing 
method in two cases. The two problematic cases represent the presence of moderately high 
dependence (/3 = 1.00), and second-order dependence (/3 = <5 = 0.50). This poor behavior 
for the P LRTc was consistently observed in AL models with high first-order dependence 
or second-order dependence. For each of the remaining methods except for the MCLRT 
method, there were minor departures at the 5% significance level. Based on this study, the 
test statistics for the MCMC methods as well as for the P LRTp method seem to approximate 
a chi-squared distribution reasonably well for simple AL models. It is also encouraging that 
neither the lattice size nor the level of dependence (/30 = 0.25,0.50,1.00 indicating low, 
moderate, and high dependence) seem to affect the accuracy of these inference procedures. 

5.2 Simulation Study: Power Comparison of Test Statistics 
A standard way of comparing hypothesis testing procedures is through the power of a 

test. To calculate the power for a given test, say H: /3 = 0.5 vs. A: /3 # 0.5, we would need 
to compute the power function P(/3o) = Pr(Reject H I /30 is the true value) for different 
values of /30. Since this function is computed through simulation for autologistic models, 
this entails the generation of sample lattices via the Gibbs sampler, for each value of /30. 
Unfortunately, this MCMC calculation of P(/3o) , even with a moderately small sample size 
of 500 over a small range of /30 values is prohibitively computationally intensive. In an effort 
to circumvent this problem and still make a meaningful comparison of the power for the 
inference procedures, an alternative procedure is employed. 

Instead of performing power calculations for a fixed hypothesis through the generation 
of different lattice samples for each /30, the power is calculated at a fixed /30 (where the data 
are generated under /30) for different hypotheses. As an example, for /30 = 0.5 (ao = -1.0) 
as above, 500 lattice samples are generated from the AL (ao, /30) distribution. In addition 
to computing the various PLRT, MCLRT, MCWT, and MCLMT test statistics for H 
above, these test statistics are computed for many other hypotheses, such as (H: /3 = 0.4 
vs. A: /3 # 0.4) or (H: /3 = 0.6 vs. A: /3 # 0.6). This is simple to do since the test 
statistics are computed from the same set of generated data; only separate maximizations 
of the pseudolikelihood and Monte Carlo likelihoods are required for each case. 

This procedure is performed using the /3-values from the first three of the five cases 
from the previous simulation study as true values, at lattice sizes of 20x20, 40x40, and 
60x60. For each lattice-case combination, 15 tests of the form H( /3 = /3i vs. A: /3 # /3i, 
i = 1, ... ,15 were performed for each of the 500 samples generated from the autologistic 
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(a, (3) distribution. The (3i values were chosen at varying distances both above and below (30 
to give a wide range of power values. This resulted in 15 test statistics corresponding to the 
15 (3i values for each testing method, for each of the 500 samples. 

These 500 test values are compared to the proper 95% critical value for each test, and 
the number of significant values (values larger than the critical value) is recorded. Naturally, 
with a significance level of 0.05 for testing H: (3 = (30 vs. A: (3 i: (30, we expect 25 of the 500 
values to be significant for each method if the approximate X2-distributions are accurate. 
These proportions of significant values are simply estimates of the size of the test, or power 
at (30, P((3o) = Pr(Reject Hi I (30), for the 15 tests (HI vs. AI)' ... , (HI5 vs. AI5). These 
power values, referred to as rejection probabilities, are plotted against the (3i, i = 1, ... , 15, 
the test values for (3 used in the 15 tests. It is important to note that the resulting curve is 
not a standard power curve, but gives the power for rejecting various hypotheses Hi given 
that the data are distributed according to (3 = (30. 

Figure 2 contains four of these rejection probability plots. The first three plots represent 
the three cases (or levels of dependence) studied: (3 = 0.25,0.50, and 1.00 for the 20x20 
lattice, and the last examines the differences in power for different lattice sizes for the 
MCLRT method. Plots for other lattice sizes and cases not shown here are qualitatively the 
same. It is worth emphasizing that these plots are not empirical power curves, but do enable 
a worthwhile comparison between the various tests by examining each test's probability of 
rejecting the null hypothesis when it is false, for different types of tests. 

In viewing these plots, a number of observations can be made. First, it is clear from each 
of the first three plots that the MCMC testing procedures have greater power for rejecting 
each test Hi: (3 = (3i vs. Ai: (3 i: (3i, than the PLRT procedures for larger (3i. This 
difference is especially noticeable in the moderately high dependence test case: H: (3 = 1.00 
vs. A: (3 i: 1.00. The same general result holds true for the larger lattice sizes, although the 
effects were less pronounced. One might conclude from this that there may be significant 
gains in power to using the MCMC procedures over the PLRT procedures when spatial 
dependence is large, although many other types of tests should be examined. 

A second point worth emphasizing from these plots is an apparent bias in the MCLMT 
method. Although the MCLMT method appears to have greater power than the MCLRT and 
MCWT methods, at (3 = (30, the power of rejection for the MCLMT statistic is greater than 
the expected 0.05 significance level. Hence, this test is too liberal under the null hypothesis, 
possibly giving the rejection probability curve an upward bias. The source of this bias is 
unclear, and was not present in the other two MCMC test procedures. 

Third, the fourth plot in Figure 2 demonstrates the tremendous gains in power available 
with larger lattice sizes for tests on the dependence parameter. As an example, if the true 
(3 = 0.5, and we test Hi: (3 = 0.4 vs. A: (3 i: 0.4, we only have about a 10% chance of rejecting 
Hi with a 20x20 lattice, 30% with a 40x40 lattice, and 60% with a 60x60 lattice. As a general 
conclusion from these two simulation studies, the MCLRT and MCWT inference procedures 
seem to perform favorably to the other test procedures considered in terms of accuracy and 
precision under different levels of dependence and different lattice sizes. In addition, lattice 
size has a profound effect on the variability inherent with these test statistics and hence on 
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the power of the various tests. 

6. Application: Phytophthora Disease Incidence Data in Bell Pepper Plants 
The primary objective of this section is to demonstrate the use of the MCMC inference 

procedures developed in answering specific physical questions concerning the direction and 
magnitude of disease spread in the data. The use of these methods in performing stepwise 
model selection is also indicated. One question of interest to a plant pathologist might be 
whether or not the spread of the pathogen P. capsici is more prevalent within a row of pepper 
plants than it is between rows. This might indicate that surface water within a row is acting 
as an important mechanism of spread as compared to root-to-root contact. Using only the 
20x20 lattice of data shown in Figure 1, a test of the presence of spatial dependence in this 
data using these procedures indicates (p < 0.0001) that some form of spatial dependence is 
present. To then test the proposed question above, a bi-directional first-order AL(a, /3, ,) 
model is fit to the data, where /3 and, represent the within-row and across-row first-order 
dependence, respectively. Table 2 contains the parameter estimates, estimated standard 
errors, and test statistics for testing the hypothesis H: /3 = ,vs. A: /3 =1= " namely whether 
the first-order dependence is the same across rows as it is within rows. 

In viewing Figure 1, the disease spread appears to be more prevalent within rows; so we 
might expect there to be a difference in the two directions of dependence, with /3 being larger. 
The results from Table 2 support this belief for the most part, although the P LRTp method 
performs terribly. The Monte Carlo tests agree fairly well here (especially the first two), all 
giving p-values less than or equal to 0.002, indicating that the within-row and across-row 
dependence are different at a 0.05 significance level. As we noted in the simulation studies, 
the MCLMT statistic is biased toward the alternative hypothesis, and so the smaller p­
value is not surprising. One final point worth mentioning is the rather large standard errors 
associated with the parameter estimates. Larger lattice sizes or less discretized data would 
reduce this variation, but such large variability is common with binary data on a lattice of 
size 20x20. The large standard errors may seem troublesome to the practitioner interested 
in precise estimates of the model parameters, but are not so large as to weaken the utility 
of the inference procedures. 

7. Summary 
The simulation studies and application to the Phytophthora data in this paper indicate 

that the MCMC methodology for parameter estimation in AL models can be extended to 
include formal methods of inference. Both the MCLRT and MCWT perform favorably 
in terms of accuracy of the asymptotics and power in comparison to the other methods 
considered, and are the recommended methods of inference for use with autologistic models 
based on this study. The MCLMT appears to be too liberal, and neither of the PL-based tests 
are reliable in the presence of spatial dependence. In practice, the PL estimation method has 
been preferred to the MCML method due primarily to computational requirements. However, 
even with AL models of up to seven parameters, less than ten minutes on a Sparc-l0 are 
necessary to obtain parameter estimates, their estimated variances, and the test statistics 
using the MCMC procedures. 

Conference on Applied Statistics in Agriculture
Kansas State University

New Prairie Press
https://newprairiepress.org/agstatconference/1996/proceedings/9



Applied Statistics in Agriculture 

Acknowledgements 
As much of this research was conducted as part of the author's doctoral work, the author 
thanks Dr. Marcia Gumpertz and Dr. B.B. Bhattacharyya for their many helpful sugges­
tions, and Dr. Jean Ristaino for the use of her data. 

References 

[1] J. Besag. Spatial interaction and the statistical analysis of lattice systems. Journal of 
the Royal Statistical Society, Series B, 36:192-236, 1974. 

[2] J. Besag. Statistical analysis of non-lattice data. The Statistician, 24:179-195, 1975. 

[3] J. Besag and P. Green. Spatial statistics and bayesian computation. Journal of the 
Royal Statistical Society, Series B, 55(1):25-37, 1993. 

[4] N. Cressie. Statistics for Spatial Data. John Wiley, New York, 1993. 

[5] S. Geman and D. Geman. Stochastic relaxation, Gibbs distributions, and the Bayesian 
restoration of images. IEEE Transactions on Pattern Analysis and Machine Intelligence, 
6:721-741, 1984. 

[6] S. Geman and C. Graffigne. Markov random field image models and their application 
to computer vision. Proceedings of the International Congress of Mathematics, pages 
1496-1517,1986. 

[7] C. J. Geyer. On the convergence of Monte Carlo maximum likelihood calculations. 
Journal of the Royal Statistical Society, B, 56(1):261-274, 1994. 

[8] C. J. Geyer and E. A. Thompson. Constrained Monte Carlo maximum likelihood for 
dependent data. Journal of the Royal Statistical Society, B, 54(3):657-699, 1992. 

[9] C. J. Geyer and E. A. Thompson. Annealing Markov chain Monte Carlo with appli­
cations to ancestral inference. Technical Report 589, University of Minnesota, October 
1994. 

[10] B. Gidas. Parameter Estimation for Gibbs Distributions from Fully Observed Data. 
In Markov Random Fields: Theory and Applications (R. Chellapa and R. Jain, eds.) , 
chapter 17, pages 471-498. Academic Press, Inc., 1993. 

[11] J. Graham. Markov chain Monte Carlo inference procedures for Discrete Spatial Lattice 
Models. PhD thesis, North Carolina State University, 1995. 

[12] M. L. Gumpertz, J. M. Graham, and J. B. Ristaino. Autologistic model of spatial 
pattern of Phytophthora epidemic in bell pepper: Effects of soil variables on disease 
presence. Proceedings of 1994 Kansas State University Conference on Applied Statistics 
in Agriculture, 1995. 

105 

Conference on Applied Statistics in Agriculture
Kansas State University

New Prairie Press
https://newprairiepress.org/agstatconference/1996/proceedings/9



106 Kansas State University 

[13] F. Huffer and H. Wu. Variable selection in auto-logistic models. Presented at 1995 ASA 
Meetings in Orlando, August 1995. 

[14] A. J. Miller. Conditional likelihood estimation for lattice schemes. CSIRO Division of 
Mathematics & Statistics, Newtown, Australia, September 1981. 

[15] A. Pentinnen. Modelling Interaction in Spatial Point Patterns: Parameter Estimation 
by the Maximum Likelihood Method. PhD thesis, University of Jyvaskyla, 1984. 

[16] D. K. Pickard. Inference for discrete Markov fields: The simplest nontrivial case. Journal 
of the American Statistical Association, 82(397):90-96, March 1987. 

[17] J. B. Ristaino, R. P. Larkin, and C. L. Campbell. Spatial and temporal dynamics of 
Phytophthora epidemics in commercial bell pepper fields. Phytopathology, 83: 1312-1320, 
1993. 

[18] D. J. Strauss. The many faces of logistic regression. The American Statistician, 
46(4):321-327, November 1992. 

Row 
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0 0 0 0 0 • • 0 0 0 • 0 • • • 0 0 0 0 0 
0 0 0 0 0 0 • 0 • 0 0 0 • • • • 0 0 0 0 

• • 0 0 0 0 0 0 • 0 • • • 0 • • 0 0 0 0 

• • 0 0 0 0 0 • 0 • 0 • • 0 0 0 0 0 0 0 

• • 0 0 0 0 • • • • • • • • 0 0 0 0 0 0 

• • 0 0 0 0 • • 0 • • • • 0 0 • 0 0 0 0 

• • 0 0 0 0 • • • • • • • 0 • 0 • 0 0 0 

• • 0 0 0 0 • • 0 • • • • • 0 0 • 0 • 0 

• • • 0 0 0 • • • 0 • • • • • • • 0 0 0 

• • 0 0 0 • • • • 0 • • • • • • • 0 0 0 

• • 0 0 0 • • • • • • • • • • • • 0 0 0 

Figure 1: Field 1 1992 Pepper Field Data 
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Table 1: Table of Pearson X2 LOF Test Statistics for Testing Cases 1-5 

Case 1 Case 2 Case 3 Case 4 Case 5 
Testing Lattice H:/3 = 0.5 H :/3 = 1.0 H :/3 = 0.25 H:/3 = r H:/3 = 6 
Method 

PLRTc 

PLRTp 

MCLRT 

MCWT 

MCLMT 

Size A : /3 i= 0.5 A : /3 i= 1.0 A :/3 i= 0.25 A:/3i=r 
20 23.84 **171.60 22.24 12.40 
40 13.52 **146.96 17.52 15.36 
60 *34.24 **176.00 17.68 *31.12 
20 25.04 20.00 *30.72 19.52 
40 20.16 15.44 24.40 26.96 
60 *31.44 28.96 15.28 25.44 
20 7.12 14.00 11.60 18.08 
40 15.28 17.28 12.48 15.92 
60 18.72 10.64 26.56 15.76 
20 10.40 15.36 12.08 21.20 
40 15.52 24.16 16.48 18.48 
60 19.84 11.68 25.76 13.36 
20 20.88 15.44 17.44 21.36 
40 20.00 18.56 17.04 22.88 
60 22.88 12.48 *30.64 18.72 

* Mild Departure from the Asymptotic Distribution 
** Severe Departure from the Asymptotic Distribution 

A:/3i=6 
**136.64 

**99.92 
**110.96 

22.48 
11.76 
26.08 
13.60 
28.32 
14.64 
24.40 

*32.32 
16.96 
29.44 
27.60 
20.80 

Table 2: Table of Parameter Estimates, Estimated Standard Errors, and Test Statistics for 
Testing /3 = r in the Bi-Directional First-Order Autologistic Model. 

Estimates 
Estim. a /3 ;Y Test X2 Testing 
Method SE(Ei) SE(~) SE(;Y) Value d.£. p-value Method 

PL -2.4358 1.6443 0.6422 5.34 1.15 0.0262 PLRTc 
(0.3210) (0.2987) (0.2537) 2.99 4.20 0.5903 PLRTp 

MCML -2.9788 2.0950 0.8450 9.53 1.00 0.0020 MCLRT 
(0.2426) (0.2701) (0.1990) 9.97 1.00 0.0016 MCWT 

13.00 1.00 0.0003 MCLMT 
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Figure 2: Rejection Probability Plots for P LRT, MCLRT, MCWT, and MCLMT Hy­
pothesis Testing Methods 
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