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Applied Statistics in Agriculture 

A Review of Analysis of Experimental Data 

Roger Mead 
Department of Applied Statistics, The University of Reading, . UK 

1. Initial Assumptions 
We assume that it is standard practice to base an initial analysis of experimental data 
on a linear model including terms for blocks, treatments and covariates. This produces 
a summary analysis of variance, indicating the major components of variation relative 
to the fitted model, and tables of means (one- or two-way) as indicated from the 
analysis of variances, with appropriate standard errors. Treatment contrasts as 
indicated by the questions motivating the experiment may be calculated, with standard 
errors. Residuals may be calculated and related to the pattern of experimental units. 
Multiple comparisons should be avoided because they are rarely appropriate, are based 
on algebra for situations which hardly ever occur, and they lead to experimenters 
'interpreting differences', ignoring patterns and generally failing to think. For details of 
basic analyses and a discussion of the fundamental concepts of experimental design, 
including further comments on multiple comparisons, see Mead (I988). 

The following sections examine some of the main features of analysing experimental 
data. These may amplify, extend or replace the initial analysis. They may be needed 
before the initial analysis or to combine several analyses. They may be required to 
relate the results of different analyses. 

2. Identification of Structure 
Unfortunately it is all too easy to input data and a brief description of experimental 
design structure into a statistical package and obtain an analysis of variance and tables 
of treatment means with standard errors. Unless the statistician has been closely 
involved in the detailed planning and progress of the experiment it is not easy to be 
certain about the structure of the experiment and the appropriate linear model. 

The biggest problem is the identification of the experimental units and their 
interrelationship, and in particular the different levels of variation present in the 
structure and the levels at which information is available about different treatment 
comparisons. Examples of problems are many. Detection of the correct structure is 
often a time-consuming and even a depressing activity requiring highly developed 
consulting skills. 
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Example 1 
The student said his was a simple problem with 8 treatments and 10 replicates per 
treatment. His F ratio for treatment mean squareJerror mean square was 500. Under 
questioning he explained that his 8 treatments were 2 fungicides x 2 leaf ages x 
top/bottom of leaf for injection; treatments were applied to small discs cut from leaves. 
But how were the discs arranged within the same leaf, in leaves from the same plant or 
from different plants? Eventually it emerged that there had been 8 plants, with one leaf 
taken from each plant, and the analysis was in three sections. 

Levell 

Level 2 

Level 3 

Example 2 

between plants 
Treatments 

between leaves, within plants 
None 

between discs within leaves 
Error 

7 d.f 

o d.f 

72 d.f 

To investigate effects on soil warming of different materials for the pots containing the 
soil and of different materials for covering the frames within which the pots were 
placed, six frames with four pots per frame were used. Three frames had glass covers, 
three had polythene; in each frame pots of four materials were allocated randomly to 
the four comers. After two weeks, with one week of measurement, the experimenter 
decided to swap glass and polythene covers leaving everything else unchanged and 
repeated the whole procedure. The analysis has three sections in a criss-cross form of 
design. 

Times x Frames 

Positions 

{
Time periods 
Frames 
Cover types 
Error (a) 

{
(Frames 
Pot materials 
Error (b) 

T· F P' . {covers x Pots 
Imes x rames x oSltlons Error ( c) 

1 d.f. 
5 d.f. 
1 d.f. 
4 d.f. 

5 d.fJ(again) 
3 d.f. 

15 d.f. 

3 d.f. 
15 d. f. 

Methods for analysing multiple level data structures are discussed in section 4. 
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3. Data Reduction and Variable Definition 
Experimenters have always made many measurements and there has always been a 
need to calculate appropriate derived variables. Averages of values for different 
plants, animals or parts of plants, ratios of variables, differences between initial and 
final measurements or combinations of all four arithmetical operators have been 
needed. Recently, however, the capacity for recording data has increased with 
automated data recording so that measurements are recorded at very many time points, 
at many spatial sites or at an almost infinite number of wavelengths in spectra. 

The first task of analysis is now frequently the reduction of an enormous mass of data 
to a manageable number of relevant variables. Ideally this is mainly achieved by 
consideration of the experimental objectives and subjective decisions about the 
definition of variables. Data reduction techniques, notably principal components can 
also be helpful. Data reduction must precede, and not interact with analysis. There are 
enormous problems about inference if the choice of variables is influenced by 
optimising some aspect of the analysis. 

4. Multiple Levels o(Variation 
There are some simple structures where each treatment effect is identified with a single 
level of variation in which all the information about that effect is contained. Such 
structures are orthogonal and are mostly variants of the split unit design. However 
there are many other structures where information on individual effects is divided 
between levels. Examples are incomplete block designs including multiple blocking, 
and multiple location trials with varying treatment sets, as found in on-farm research. 

The general technique for analysis structures with multiple levels of variation is REML 
(1987) (Residual Maximum Likelihood) for which an iterative system estimates 
alternately (a) the several variance components required to describe the variation 
structure of the experimental units, and (b) the parameters (treatment effects) of the 
expected values for the observations. 

Examples of the use ofREML can be found for various row and column structures for 
field plot experiments, for animal breeding data structures and in spatial models 
(Gleeson & Cullis; 1987). A simple example concerns the repeated use of control 
treatments in a series of experiments, often with just one non-control treatment. 

A common procedure in laboratory trials is to run a sequence of experiments each with 
a common control and with one or more test treatments. The inclusion of the control 
has two purposes: 

(i) for adjusting for changes between experiments, and 
(ii) because comparison with control is necessary for each test treatment. 

If there is little difference between experiments we should pool the information on the 
control from different experiments, ignoring differences between experiments. 
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However if there are differences between experiments we would wish to adjust for 
them. We can envisage three models - adjustment, pooling, or random experiment 
effects fitted by REML. 

For data from four experiments, shown in Table 1, the model specification and results 
are shown in Table 2. The random experiment effects model gives means between the 
values for the other two models and give the smallest SE for comparing control with 
any treatment and an intermediate SE for comparing treatments (note: the 
corresponding SE for comparing two treatments from the pooling analysis is clearly 
too optimistic in view of the clear need for some adjustment). 

4.1 Another aspect of multiple levels of variation is involved in experiments at multiple 
sites and/or in different years. The analysis of variance of the combined data typically 
includes three types of terms: 

Between Treatments (t-l)d.f 

Treatment x Sites (s - l)(t - 1) d.£ 

Pooled within-site error set - 1)(r - 1) d.f 

There is much argument for this (and for equivalent situations) about the 'right' mean 
square against which to assess the variation between treatments. I believe that there is 
no single right answer but that all three mean squares must be interpreted together in 
an "analysis of inconsistency". That is we have to examine and interpret the pattern of 
variation of treatment differences both within experiments (between blocks) and 
between sites, with possible explanatory variables measured at the different sites. 

A related problem is when, and how, a combined analysis of variance for all the data 
for the separate experiments should be calculated. The first question is whether it is 
appropriate to calculate a combined analysis of variance. For this we have to decide 
that the pattern of random variation is sufficiently similar in the separate analysis; the 
prevailing wisdom seems to be that a useful combined analysis is obtained if the 
individual experiment error mean squares vary apparently randomly and by a factor of 
not more than 10. The vague similarity of EMS is a better criterion than CVs 
(Coefficients of Variation) or Treatment Factors each of which is a ratio and can lead 
to omitting experiments for the wrong reason. 

If a combined analysis is performed and we examine and interpret the mean squares for 
effects and their interactions with sites then the overall pattern of sizes of mean squares 
is important. Also important is to allow for the inevitable variation when splitting site 
interaction variation into many components. An example for a set of 11 barley 
experiments in Syria, for which the treatments were a 4 Nitrogen x 4 Phosphorus 
factorial set, is shown in Table 3. In this case the mean squares are remarkably well
behaved with main effects always considerably larger than interactions involving those 
main effects, linear effects similarly larger than the remaining treatment factor 
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variation, and the interaction of sites x residual factor variation being very close to the 
pooled error mean square. Such good behaviour is unusual; if the treatment x site 
interaction is split into more and more components with fewer d.f it is increasingly 
likely that unusually high or low values will occur for some components and give rise 
to F ratios for (Treatment MSlTreatment x Site MS) which are inappropriately low or 
high. 

5. Modelling Variation 
There have been considerable advances recently in attempting to model the error 
variation in experimental data. Particular attention has been given to modelling 
probability distributions for errors and to spatial and temporal models. One area where 
a very simple approach is often needed is for data in which a substantial proportion of 
the observations are zero. A realistic model of this situation can often include two 
distinct kinds of zero; either one less than 1.0, or impossible. I believe we must not 
allow one model to be used for both. Such data require two variables representing a 
qualitative and a quantitative effect. In Table 4 data from a 24 germination experiment 
with four replicate dishes for 50 seeds for each treatment combination are shown. It is 
clear that several treatments lead to virtually zero or total germination with virtually no 
variation to analyse. I believe the data in rows 1, 3, 5, 8 and 9 should be treated as 
qualitatively different and separated from the remaining data before analysis. 

The generalised linear models of McCullagh and Neider (1990), most clearly specified 
in the use of the GUM program, allow for a wide range of distribution modelling for 
the random variable to describe individual observations from experimental units. The 
use of deviance in the form of a -2 log likelihood to describe departures from a 
sequence of fitted models is now becoming widespread, even in some agricultural 
journals. It is also becoming widely recognised that in many situations the relatively 
simple distributional model is not sufficient to describe all the deviations and 
overdispersion is a well discussed concept. 

An analysis of the remaining data in Table 4 using binomial error structure for a logit 
link gives an analysis of deviance table, (the equivalent of an analysis of variance table 
for ordinary linear models) shown in Table 5, which appears to show a simple pattern 
of three main effects and their three two-factor interaction with the residual deviance 
close to its d.f.. Note that all effects involving the chill factor make negligible deviance 
contributions. However, the satisfaction with the model is diminished by the prediction 
for constant temperature, dark and H2 0 for which a germination proportion of 0.2 
(10/50) is predicted when 7 out of 8 replicates produced zeros. Clearly the model 
needs further investigation. 

Spatial models have become important in field crop experiments (Bartlett (1978), 
Wilkinson et al (1983), Besag and Kempton (1986), Cullis and Gleeson (1989, 1991)); 
the methods are also more widely applicable for spatially structured data for example 
in laboratory assays. These models are mainly based on first differences from a 
sequence of plots with an autoregressive model possibly combined with second-
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6 Kansas State University 

differencing to describe the variance structures. Temporal models (Diggle (1988)) 
developed mainly for repeated measures data have utilised semi-variogram infonnation 
and modelling of the semi-variogram. 

The two approaches are very similar in practice, involving the usual iteration between 
fitting a model for the variance structure and for the expected value parameters. An 
example of this form of modelling is taken from data on intercropping sa.fl1ower and 
cowpea in a systematic design (Willey and Rao : 1981). Safflower and cowpea are 
planted in alternate rows, the cowpea density remaining constant from row to row, but 
the safflower density changing gradually through 14 rows to produce an overall density 
change from 4.4 plantslm2 to 16.7 plantslm2 in steps of 10%. 

A variance model 
E· =u +1·L+W.(J') I I' ItJ I 

where U i is the whole plot effect (var( U J = u2 ), llij is the row J in plot 

var( llij) = 1'2 and Wi{j) is a stationary random process 

The mean model for yield per unit area (y j) in terms of plant density (p j) is 

where a and P are parameters depending on other factor levels. 

effect 

Using an iterative scheme to minimise -2 log likelihood (Castro : 1992) we can 
examine the invariance of parameters over four main plot treatments, which are four 
overall chickpea densities. The results are summarised in Table 6 from which the 
model with a single common value for u 2, cr2 , <I> and a, and separate values of 1'2 and 
p appear best. 

One possible heretical use for spatial models is in large-plot validation trials or 
ecological experiments when true replication is very limited or non-existent. If a 
credible spatial model can be fitted to within plot samples or to an adjacent replicated 
trial then extrapolation of the variance model could permit comparison of results from 
unreplicated large plots. 

6. Interaction 
The basic concept of an interaction between two, or more, factors is as important to 
analysis as factorial structure is to design. The idea of representing variation between 
experimental treatments by a linear combination of main effects and interactions, which 
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effects are defined as combination of yields from the treatment combinations, and then 
choosing which interactions to include in the prediction model provides great flexibility 
in the interpretation of results. 

One approach to interpreting the effects of interactions is to treat two factors 
symmetrically and to examine either the interaction effects or the two-way table of 
fitted means. In the table of interaction effects we can pick out large individual effects 
or trends. In table 7(a) we have a typical diagonal trend pattern for two 4-level 
quantitative factors: in 7(b) we have, also for two 4-1evel quantitative factors, a single 
large value. In the table of means the maximum fitted value will be given by the 
combination of levels with the highest main effects unless an interaction effect is 
greater than the smaller of the main effects. 

Alternatively we can approach interactions primarily as modifiers of the response of the 
factor with the largest main effect. Usually this factor will be included in the larger 
two-factor interaction. This leads to analysis of contrasts which can be a very 
powerful interpretive analysis. 

6.1 Genotype - Environment Interaction 
A lot of attention has been paid to the interpretation and modelling of genotype
environment interactions. Some of the previous approaches, such as examining where 
the larger interactions occur are useful but most of the modelling is concerned with 
relating the vector of interaction effects for each genotype to an environment vector. 
The central problem is what environment vector? Ideally we would like a vector which 
summarises those characteristics of the environments which cause genotypes to behave 
differently but we do not usually have physical measurements of the environments. 
Two approaches, each of which is flawed, are: 

(i) Use the environment main effects vector (the joint regression, Finlay-Wilkinson 
method). The flaws are (a) why should it work and (b) it gives regression 
slopes which depend on the sum of squares for the genotype vector and the 
sum of products with each other genotype vector. Hence the regression slopes 
are measuring similarity to the other genotypes in the particular study (perhaps 
this is inevitable). 

(ii) Use the eigenvector of the HH' matrix where H is the matrix of interaction 
effects (the AMMI model). Unfortunately this method tends to explain a large 
percentage of the total interaction variation (Mandel (I 971 », even when 
simulated data generated with zero interaction terms are analysed. This 
method is overoptimistic because of the correlations in the matrix of interaction 
effects, and because the eigenvector is the vector giving the maximum 
regression sums of squares and we are essentially overfitting. Studies for 
methods of correcting the 'optimism' of the AMMI method are being pursued. 
The philosophic approach of Gauch (1988) still produces overfitting. 
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Modelling Relationships between Variables 
In most experiments several variables are recorded. In intercropping experiments with 
two (or more) crops grown simultaneously on the same area there are two crop yields 
recorded. In this latter case it is natural to perform a joint (bivariate) analysis on the 
pairs of yields. In other experiments it may also be reasonable to calculate a bivariate 
or multivariate analysis for different variables. Experimenters often wish to foUow a 
series of univariate analyses by examining the regression of one variable on another. 
For all these situations we should consider an initial bivariate analysis which in its 
simplest form is 

SS(X) SP(X, Y) SS(Y) d.f. 

Blocks Bxx Bxy Byy (b - 1) 

Treatments Txx Txy Tyy (t - 1) 

Error Exx Exy Eyy (b - 1 )(t - 1) 

Total Sxx Sxy Syy bt - 1 

The data structure is, of course that of a covariance analysis, adjusting the variate y 
for its dependence on the covariate x. In a bivariate analysis for two yield variables 
the two variables are treated symmetrically and the bivariate analysis is used to 
transform the two original variables to new variables which are uncorrelated relative to 
the error variance-covariance matrix. This produces a skew axis representation of the 
original variables, with precision of comparisons independent of direction. This skew 
axis representation provides a powerful interpretive tool (Mead (1986». 

To illustrate the use of bivariate analysis and the skew axes interpretation of data, 
Table 8 displays the bivariate analysis of variance for an experiment on maize and 
cowpea with three treatment factors. The residual correlation of -0.46 shows a 
substantial competitive situation. There are clearly big effects of maize variety 
(principally on maize yield) and of nitrogen (even more dominantly on maize yield and 
clear evidence of an interaction of cowpea variety and nitrogen. The skew axes plots 
for maize variable and cowpea variety x nitrogen are shown in Figure 1. We can 
distinguish four directions of effects in a skew axes diagram: (a) parallel to the cowpea 
yield axis (change of cowpea yield); (b) parallel to the maize yield axis; (c) vertical 
(both yields increase); (d) horizontal (changing proportions of crop yields). In l(a) the 
differences between maize varieties are mainly a change of the proportions of maize 
and cowpea yield. In l(b) the interaction is clearly displayed qualitatively. For variety 
A (dots) increasing nitrogen gives increasing maize yield (trend parallel to maize axis); 
for variety B( +) the effect of increasing nitrogen is mainly to change the proportion of 
maize: cowpea (horizontal) with a tendency towards increasing maize as well. 
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One of the reasons for the effectiveness of covariance analysis or of a bivariate analysis 
is that the relationship between x and y is different in the treatment line of the 
analysis from that in the error line. However when regression analysis is used to see 
how far y depends on x, it is common to use the total line to calculate the regression. 
This seems to be incorrect because it ignores the structure of the data. An alternative 
of examining the regression for each treatment and comparing the regression is 
practically sensible, though it may be corrupted by block differences, but often the 
number of replicates per treatment is too low for much power in the comparison of 
regression. Fitting separate regressions for the treatment line and the error line and 
comparing them could give relevant information. 

7.1 Modelling response relationships 
Another form of analysis is modelling the response of the yield variable to one or more 
input factors. Examples have already been considered in section 5. The full range of 
linear regression and non-linear regression models are available but it is important that 
the details of the experimental structure are allowed for in the modelling. In terms of 
the bivariate analysis structure, if x is an input variable, and if a complete block design 
is used then variation of x occurs only in the treatment line and this is the only set of 
information which should be used in fitting a response. For more complex design 
structures the situation may be more subtle but care is still required. 

8. Sequential Information 
Too frequently each experimental design and data analysis is treated in isolation. In 
practice both design and analysis take place within an overall programme of research 
activity. In terms of analysis, particularly, this means that there is usually some 
previous information about the parameters, for which the current experiment is 
intended to provide estimates. The standard statistical approach to such situations is 
to represent prior information in the form of prior distributions and to use a Bayesian 
system to combine prior information and present data. This philosophy has been 
developed formally for sequences of industrial experiments. It also is used, rather 
vaguely and imprecisely, in combining results from stages of a selection procedure in 
breeding programmes. 

At a very simple level, if we have three stages of a variety selection programme and we 
consider those varieties present in all three stages we would expect to get better 
comparisons by using not only the final stage but also the two earlier stages. However 
when we consider how to combine the results, e.g. what weighting procedure to use, 
we have to make assumptions about the extent of stage x variety interaction. Absence 
of interaction would suggest weighting by replicate numbers. Large interaction would 
suggest equal weighting. 

9. Questions and Decisions 
It is important that, like the experimental design, the choice of the method of analysis is 
motivated by the need to answer the questions being posed. Many questions are in the 
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form of decisions. Which varieties to select for the next stages of testing? Which 
optimal combination of factor levels? There are also the questions about size of 
differences or effects or rates of change. Precision of estimates and probabilities of 
decisions being correct are desirable adjuncts to the estimates and decisions. However, 
the concept of significance seems to be almost irrelevant to most answers to questions. 
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Table 1 

Results from four completely randomised experiments with control and test structures 

Experiment 1 Control 51 47 48 50 
Test 1 54 55 49 52 

Experiment 2 Control 44 48 44 46 
Test 2 46 49 43 45 

Experiment 3 Control 48 47 53 54 
Test 3 49 46 50 48 

Experiment 4 Control 51 56 54 51 
Test 4 54 52 53 59 

Table 2 

Model assumptions and results for data from Table 1 

Model Adjust Pool Random effect 

Experiments Fixed Null Random 
Treatments Fixed Fixed Fixed 

Units Random Random Random 

Control Mean 49.5 49.5 49.5 
TI Mean 53.0 52.5 52.9 
T2 Mean 49.75 45.75 49.1 
T3 Mean 47.25 48.25 47.4 
T4 Mean 51.0 54.5 51.6 

Standard Errors 
Control v Test 1.79 1.77 1.73 

Test v Test 2.53 2.24 2.42 
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Table 3 

Mean Squares and d.f. for a detailed combined analysis of variation 
for 11 barley trials 

d.f Mean Squares 

Sites 10 73.8 
Blocks within sites 11 1.11 
N linear 1 95.7 
N remainder 2 3.35 
P linear 1 70.4 
P remainder 2 3.7 
NP lin x lin 1 11.6 
NP remainder 8 0.3 

Site x N lin 10 3.12 
Site x N rem 20 0.38 
Site P lin 10 1.89 
Site x P rem 20 0.41 
Site x NP lin x lin 10 0.78 
Site x NP rem 80 0.31 

Error 165 0.31 
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Table 4 

Germination counts (out of 50 seeds per dish) for 16 experimental conditions 

Chill Temperature Light Chemical I II III 

Unchilled Constant Dark H2 O 0 0 0 

" Dark KN02 2 1 1 

" Light H2O 1 0 1 

" Light KN02 5 2 1 

" Alternating Dark H2O 0 0 0 

" Dark KN02 20 25 20 

" Light H2 O 2 5 6 
It Light KN02 48 50 50 

Prechilled Constant Dark H2O 0 0 0 
It Dark KN02 1 3 0 

" Light H2O 1 1 2 

" Light KN02 1 2 1 

" Alternating Dark H2 O 2 2 4 

" Dark KN02 13 11 14 

" Light H2 O 6 3 4 

" Light KN02 45 48 47 

IV 

2 

0 

0 

1 

4 

25 

3 

50 

0 

2 

1 

1 

1 

12 

4 

47 

...... 

.j:::.. 

~ 
~ 
t; 
V:l 
S 
~ 

~ 
~. 
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~ 
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Table 5 

Changes in deviances for a logit model for part of the data of Table 4 

Change in 
Source Deviance d.f 

Temperature 337 1 

Chemical 335 1 

Light 167 1 

LC 12 1 

TL 20 1 

TC 33 1 

Residual 43 37 
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Table 6 

Summary of invariance fits for four variance parameters and 
two mean parameters, over four main plots with different chickpea densities 

(C = common parameter value; I = four individual parameter values) 

Variance Mean 
e 

V 1 llij Wi(j) a. +J3e -210g L d.f 

\)2 1"2 0 2 <I> a. J3 

I I I I I I -844.1 24 

C I I I I I -842.0 21 
I C I I I I -836.4 21 
I I C I I I -844.0 21 
I I I C I I -843.8 21 

C I C I I I -841.9 18 
C I I C I I -841.1 18 
I C C I I I -835.7 18 
I I C C I I -843.7 18 

C I C C I I -841.1 15 

C C C C I I -826.9 12 

C I C C C I -840.5 12 
C I C C I C -83l.6 12 

C I C C C C -826.1 9 
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Table 7 

Two-way table of in traction effects from a ~ replicate of a 44 industrial experiment; 
(a) Moisture x Temp, showing opposite trends in the first and fourth rows, 

(b) pH x Time, showing a large negative value in (row 4, column 4), 
with associated positive values 

(a) Temperature 

-11 -12 +8 +14 

Moisture +2 -4 +3 -1 

-1 -2 +13 -8 

+10 +18 -24 -4 

(b) pH 

-1 +2 +3 -4 

-2 -7 -10 +20 

+1 -6 -8 +13 

+3 +11 +15 -28 
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Source d.f 

Blocks 2 

Mvariety 2 

C variety 1 

Nitrogen 3 

MxC 2 

MxN 6 

CxN 3 

MxCxN 6 

Error 46 

(MS) 

Total 71 

Table 8 

Bivariate Analysis of Variance for Maize/Cowpea Yield Data 

Maize SS Cowpea Sum of 
(Xl) (X2 ) products 

0.29 0.0730 -0.058 

17.52 0.4094 -2.632 

0.03 0.0060 0.013 

28.50 0.1131 -1.766 

1.11 0.0099 -0.099 

1.25 0.0676 -0.199 

0.24 0.1724 -0.130 

1.28 0.1354 -0.033 

15.90 0.5993 -1.414 

(0.346) (0.0130) (-0.031) 

66.13 1.5861 -6.318 

F 

1.75 

11.90 

0.44 

10.59 

0.82 

0.64 

2.40 

1.40 

Correlation 

-0.40 

-0.98 

1.00 

-0.98 

-0.95 

0.93 

-0.64 

-0.08 

-0.46 
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(a) 

(b) 

Figure 1 

Skew axis representation of maize-cowpea yields as affected by 
(a) maize variety and (b) cowpea variety x nitrogen 
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