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ABSTRACT 

1 

Plant competition models traditionally have used population or stand level 
parameters as a basis for modeling. While such models may be valid with regard to 
average responses, they fail to account for important factors such as within stand 
variability and spatial relationships. This translates to an assumption of uniformity in 
growth characteristics among individual plant,S as well as an equidistant spacing 
arrangement which are unlikely in real populations. One alternative is to model the 
growth characteristics of individual plants separately which, when combined as a 
system, will inherently have popUlation attributes related to competition. Competition 
models of this type allow for various combinations of growth patterns and spatial 
arrangements. An individual-plant based simulation model is introduced and the 
relationships of model parameters with existing concepts in plant competition are 
discussed. Models are calibrated to wild oat (Avenafatua) and spring barley 
(Hordeum vulgare) using data from replicated field experiments in Northern Idaho. 

I. INTRODUCTION 

Plant competition models in agriculture typically use the stand or field as a 
modeling unit (Spitters, 1983; Cousens, et al, 1987; Wilkerson, et aI, 1990). 
Parameters of these models, such as available resources, plant densities, and 
production (i.e. yields, biomass) are estimated on an area basis. This leads to 
assumptions of homogeneous populations, where uniformly spaced plants are assumed 
genetically and phenotypically identical. Additionally, it is assumed that 
environments are homogeneous and resources are spatially constant. Although these 
conditions are not likely to exist in the real world, this type of model is often 
interpreted as reflecting the average response'to specific conditions. In this context, 
the stand level models are useful for predictive purposes and have the added benefit of 
being relatively simple to compute. However, they are limiting as an exploratory 
tool. 

An alternative strategy for modeling plant competition is to reduce the basic 
modeling unit from the field to the individual plant level (Aikman, et al, 1980; 
Huston, et aI, 1987; Leersnijder, 1992). The individual plant has unique 
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characteristics related to its genetic and phenotypic makeup, as well as its spatial 
location. Furthermore, the simulated field may have spatial variability in terms of 
resource availability. This simulation framework is remarkably flexible in that 
virtually any set of conditions could be modeled. Questions relating to population 
variability, mixed species competition, heterogeneous environments, and various 
spatial arrangements may then be explored. Individual- plant models have another 
interesting attribute. Complex population dynamics which need to be explicitly 
specified in stand-level models can evolve implicitly from large scale individual level 
models. In fact, the stand-level models can be regarded as the expected long term 
response of the individual based models. Thus, behavioral characteristics of a given 
stand-level model under variable agronomic and environmental conditions, may be 
investigated with the individual-plant model. 

Although individual-plant models have many positive characteristics, they also 
possess certain limitations. Unlike the stand level models, they are not suited for 
predictive purposes. Detailed information on every plant and the surrounding 
environment is not practically and easily available for real world applications. The 
individual-plant model must be viewed in the proper setting as a research tool for 
hypothesis exploration. Individual-plant models are also computationally intense. 
Typically, every plant must be modeled separately for each time increment, leading to 
hundreds or thousands of computations. Efficient use of modeling languages, 
algorithms, and computing platforms is necessary to make these models practical. 

This paper will introduce a simple individual-plant based competition model 
for wild oat (Avenafatua) and spring barley (Hordeum vulgar) with respect to 
population density responses in mono and mixed cultures. Empirical calibration and 
model validation are demonstrated with reference to replicated field experiments in 
Northern Idaho. 

ll. METHODS 

The basis used for the individual-plant model is a circle which has two 
dimensions. The restriction to a two-dimensional space was determined to be 
sufficient to simulate biomass accumulation and is analogous to similar concepts 
commonly used in forestry (Clutter, J. C. et. al., 1983). Further extrapolation to a 
three-dimensional shape was not considered necessary and would prove costly in 
terms of computational requirements. Models using the circle as a shape are not 
prone to changes due to differences in orientation. The circle also has the added 
attribute that calculations for its characteristics (i.e. area, diameter) are rather simple. 

The important characteristics of the plant are its radius and its spatial location 
determined by the circle center. These attributes are utilized in two governing 
principles which guide the plant's development. The first principle is the resource 
(i.e. light, water, nutrients, etc) demand made by the plant. All resources within the 
area of the circle are potentially available however, the degree of resource requested 
by a plant is a function of the distance from the resource to the plant's center. This is 
given by the following exponential expression: 

(1) 
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where 
Dij = proportion of total resource demanded at position j in plant i, 
(¥i = constant related to the rate of resource demand by plant i, and 
DIST = distance from position j to the plant center (cm). 

The above specification assumes diminishing resource demand as distance from the 
plant center increases (Figure 1). Similar relationships for light flux and depth in 
multiple plant canopy structures have been described by Charles-Edwards, D.A., et. 
al. (1986). 

3 

The second principle regulates plant growth. In this case, growth is defined as 
an increase in the circle radius and is determined after all resources available to the 
plant circle are evaluated. The new radius is determined according to the cumulative 
logistic function: 

(2) 

where 
Ri(t+l) = new radius of plant i (cm) at time t+ 1, 
RMAXi = maximum attainable radius for plant i without competition (cm), 
k = constant related to growth rate, and 
Ui(t) = Cumulative proportion resource actually realized for the ith plant at 

time t, i.e. 
Ui(t) = Pi(t) + Ui(t-l), where 
Pi is the proportion of resources acquired by plant i at time t. 

This results in time being measured relative to the developmental stage of the plant 
(Figure 2). An important feature of this model is the relative growth rate parameter, 
k, which is assumed constant for all plants. Thus, all plants approach their maximum 
radii at the same rate, but because the maximum radius of each plant may differ, the 
actual growth rates (cm/time increment) may vary. This was done as a simplification 
of the model and was considered feasible since the target plants of the simulation 
(Wild oat and spring barley) are similar in growth patterns (Morishita, 1988). 
Variable growth rates among plants may be more applicable for other situations. 

In order to assess model output, a relationship between the circular model 
form and plant biomass was defined as: 

where 
B = Biomass (g), 
C = Biomass (g) of a single plant grown without competition, 
Rpinal = Circle radius at final time period, and 
RMAX = Maximum attainable radius of a given plant. 

(3) 

Equation 3 describes a quantity proportional to the amount of biomass that the plant 
can be expected to achieve in isolation, C. The proportionality is given by the ratio 
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of the final radius and the maximum attainable radius. 

Simulation Algorithm 

The area or field in which plants were simulated was divided into an array of 
1 cm2 cells. Each cell had predefined initial resource levels which were reset at the 
beginning of each time increment. Due to the similarity in resource requirements of 
the species, all resources such as light, water, and nutrients, were considered as one 
entity (resource space). If more disparate species were included in the simulation, 
separate modeling of each resource may be required. The growing season was 
divided into 50 equal length periods and assessment of all plants was done 
independently and in a random order. Resources are extracted from field cells on a 
first come-first serve basis. As more plants are assessed, the resource levels of field 
cells become lower or, if taxed heavily, depleted. Thus, plants assessed later in the 
time period may find the resources for particular cells diminished by preceding plants, 
and therefore, may not acquire all the resources they requested. This created a 
competitive mechanism within the model. Plants which received insufficient 
resources grew less than plants which had all resource demands met (Figure 3). If 
plants received no resources, then growth for that time period was zero. Plants were 
not allowed negative growth, and density dependent mortality was not considered. 
This assessment process was repeated until all time periods were completed (Figure 
4). Relevant plant characteristics (i.e. position, radius, and RMAX) were then 
recorded. 

All simulations were written in the C language and compiled under Borland 
C+ + compiler 4.0 (Borland, 1993). Simulation runs were conducted on an Intel 
486DX2-66 platform under MicroSoft Windows 3.1. Several adjustments were made 
during the course of the simulations to increase the simulation speed and decrease the 
required memory. The final program could accommodate up to 4000 plants with an 
average execution time of 10 minutes per run. The total number of plants simulated 
for the work described below encompassed rriore than 1.3 million plants. Statistical 
computations and graphics were carried out using SASISTAT and SAS/GRAPH (SAS, 
1991). 

ill. EMPIRICAL RESULTS 
Simulations 

Initial monoculture density trials were simulated to observe the sensitivity of 
density-biomass relationships to model parameter ( RMAXi and (XJ changes. Plants 
were placed in 9-cm rows and the density within rows was manipulated to obtain a 
range of 10 plants m-2 to 600 plants m-2• This range represented what might be found 
in actual field conditions for a cereal crop. Model parameters were systematically 
varied from 0.005 to 1.0 for (Xi> and from 10 to 100 cm for RMAXi> respectively. 

Under this scenario, some interesting observations were made. For all (X and 
RMAX combinations, biomass per plant asymptotically decreased as plant density 
increased. Likewise, biomass per area (g m-2) asymptotically increased with 
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increasing plant density (Figure 5). Such behavior accurately reflects real phenomena 
(Cousens, et. al., 1987; Spitters, 1983) and results from limited resources among the 
plants. With finite resource availability, the amount allocated to each plant decreases 
as density increases. Biomass (gm-2) still increases, however, because the rate of 
population increase is faster than the rate of decrease for biomass per plant. 
Eventually biomass per plant approaches zero and biomass (gm-2) becomes constant. 
However, this point is not reached for real data due to density dependent mortality 
which limits population increases. 

A common model for describing the density-biomass relationship is given by 
the hyperbolic function: 

where 

B = a/(1 + /3N) 

B = biomass per plant (g planrl), 
a = biomass of a plant grown without competition (g), 
/3 = coefficient of intraspecific competition, and 
N = plant density (plant m-2). 

(4) 

This model was found to fit the simulated biomass results very well for all Ol and 
RMAX combinations, and hence was used to assess sensitivity to changes in simulation 
parameters. For example, the range of Ol was determined to be restricted to .01 to 
.10, since values outside of this range gave little or no change in the estimated least 
squares fit of (4). RMAX was restricted to be positive. Although changes in both Ol 

and RMAX affected the estimates, RMAX showed the most influence on estimates of /3. 
Since /3 is considered to be a measure of aggresivity (Spitters, 1983) hence, by 
analogy, the combination of Ol and RMAX may also be an indication of relative 
aggresivity. Examination of the association between /3, Ol, and RMAX revealed a strong 
linear relationship between /3 and Ol and RMAX combinations (data not shown). In 
general, larger RMAX values and smaller Ol values lead to larger /3 values, and thus, 
higher levels of aggresivity. 

RMAX and Ol also show a proportional relationship to biomass production. As 
might be expected from (3), increases in radius will result in increased biomass 
(Figure 6a). In addition, large values of Ol in (1) result in a resource use curve with a 
steeper slope (i.e. lower resource demand) than that of smaller values. Therefore, 
under similar conditions, higher Ol values will result in more growth (less resource 
demand implies less competition) and more biomass production (Figure 6b). 

Calibration and Validation 

The data used for the purpose of model calibration and validation were 
collected at the University of Idaho experimental farm, Moscow, Idaho during 1987 
and 1988 (Tapia, 1990). Five densities of spring barley and wild oat were used each 
year in an addition-series design. The plants were in 9-cm rows with the species set 
perpendicular to each other. Above ground biomass was recorded biweekly for five 
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periods. Data for 1987 and 1988 were combined and a supplemental data set from 
1993 was also added to provide an adequate range of actual plant densities for 
calibration of each species. The 1993 data arose from 20 plants of each species 
grown individually without competition. Biomass for these plants was recorded at the 
end of the growing season. 

A schematic representation of the addition series data is given in Figure 7. 
The data set is broken into monoculture spring barley, monoculture wild oat, and 
mixed species. The calibration process utilized the final monoculture biomass data of 
each species and the 1993 individual plant data. 

Simulated densities of each species were chosen to match the observed 
monoculture densities and the plants were arranged to reproduce the 9-cm row 
spacing. The simulated field consisted of four replications of 1.5 m2 from which the 
middle 1 m2 was measured. This was done to avoid border effects which were 
evident in the initial simulations. Several sets of the replicated simulations were then 
run which differed only by incremental changes in the plant parameters RMAX:' ex, and 
C. All plants within a species had the same parameter settings which were chosen to 
cover expected biological ranges. At the final time period, biomass was determined 
for each plant within the middle 1 m2• 

Calibration Assessment 

The ordinary least squares fit to (4) was used as the basis for two calibration 
assessment statistics. The first is a residual sum of squares defined as: 

(5) 

where 
Yj = observed plant biomass values, and 
""' Yj = predicted values generated from. fitted simulation to the 

hyperbolic model. 

Defining the residuals in this manner was necessary because the simulated and 
observed densities rarely coincided exactly. In this case, predicted values generated 
from the fitted simulated data were considered highly correlated with observed values 
(r > .98) and therefore a good proxy for the simulated data. The SSRES was 
minimized over the expected parameter ranges to determine the best fit to the 
observed data. 

An alternative measure was also examined which compared least squares fits 
of the hyperbolic model, (4), to actual and simulated data. This was given by: 

where 

AREA = I J feN) - J g(Nj ) I 

feN) = hyperbolic model fitted to observed data, and 
g(N) = hyperbolic model fitted to simulated data. 

(6) 
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The above expression representing the 'area' 'between the two curves was also 
minimized to locate the appropriate plant parameters. 

Both measures converged on one set of parameter values for each species 
(Table 1). The estimates for single plant biomass, C, and maximum radius, RMAX, 

are relatively similar for both species. The estimated resource demand parameter, a, 
however, is quite different between the two species (0.06 and 0.02 for spring barley 
and wild oat, respectively). This would suggest that wild oat is relatively more 
aggressive (has a higher resource demand) than spring barley. Aggressivity, 
however, must be interpreted as a balance of both a and RMAX• Since no appropriate 
measures of error for the parameter estimates were available, the significance of 
difference in aggressivity of the two species could not be tested. 

The fitted hyperbolic models based on data generated from these parameter 
values showed little difference from their least squares counterparts fitted to the real 
data. In fact the two lines are all but indistinguishable (Figure 8). For both species, 
the resulting models followed the data well and the corresponding residual plots 
indicated no trends or detectable patterns (data not shown). 

Validation Assessment 

Validation assessment was carried out in a similar manner to calibration using 
the remaining mixed species addition series data (Figure 7), and the dual species 
hyperbolic model (Spitters, 1983): 

7 

(7) 

where 
Y ii' = biomass of species i grown in competition with species i', 
a = biomass of species i grown without competition, 
(31 = intraspecific competition coefficient, 
(32 = interspecific competition coefficient. 
Ni = density of species i, and 
Ni' = density of species i'. 

Parameter estimates for both species under observed and simulated data are 
given in Table 2. Estimated parameter values generated from simulated spring barley 
biomass are reasonably close to the corresponding observed data estimates, with the 
widest difference indicated in the interspecific coefficient for wild oat. In the case of 
wild oat biomass, the interspecific coefficient for spring barley is the only consistent 
estimate. Thus, in both cases, the wild oat related parameters show the most 
discrepancy. 

A 

Validation residuals are defined as ( Yj - Yii,) where Yi is the observed data 
A 

value and Yii, is the predicted value from (7). Residual plots for both species are 
given in Figure 9. These indicate that barley biomass was modeled better than wild 
oat biomass. This difference could be due to a lack of resolution in calibrating the 
wild oat model. Wild oat showed a larger variability in plant biomass than did spring 
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barley and thus, it could not be as precisely modeled. The calibration assessment 
techniques were also dependent on the least squares fit of the hyperbolic model to the 
observed data which might have been influenced by variable data. Data augmentation 
for wild oat could improve calibration accuracy. Specifically, since most of the 
biomass variability occurs at low densities, additional data in this range would help 
improve the least squares fit and, thus, the overall calibration process. 

IV. CONCLUDING REMARKS 

The parameters of the model presented are associated with the plant's 
aggressivity and are closely related to traditional coefficients of competition. 
Calibration of the model to monoculture data for spring barley and wild oat provided 
a precise representation of the monoculture system of each species with respect to 
density relationships. Some improvements in the accuracy of mixed culture 
simulations are needed, however, which may be achieved through provision of 
additional data for the calibration process. Application of different functional forms 
for plant growth and resource demand relationships may also be necessary to achieve 
better representations of both species. This is particularly true of the resource 
demand function where direct empirical information is scarce. 

Individual-plant based models could provide more flexibility than stand level 
counterparts for exploring the influence of heterogeneous populations, environments, 
and spatial arrangements on plant competition. They would allow for a broad 
exploration of plant competition issues, the results of which, may be incorporated into 
more traditional stand level prediction models. 
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TABLE 1. Results of monoculture calibration of wild oat and spring barley. 

Spring Wild 
Parameter Barley Oat 

C 38 g 40 g 
RMAX 30 cm 28 cm 
Ci 0.06 0.02 

TABLE 2. Estimated parameter values for the dual species hyperbolic model fitted 
to observed and simulated biomass values for spring barley and wild oat. 

Observed 
A = 0.0127 
{31 = 0.0006 
{32 = 0.0003 

Observed 
A = 0.0251 
{31 = 0.0017 
{32 = 0.0006 

Sprine Barley 

Wild Oat 

Simulated 
A = 0.0214 
{31 = 0.0005 
{32 = 0.0006 

Simulated 
A = 0.0478 
{31 = 0.0005 
{32 = 0.0004 
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Figure 8 Model calibration results for spring barley and wild oat. Curves represent the 
hyperbolic function fits to the observed data (dashed line) and the model generated 
data (solid line). Note the lines are nearly coincidental. 
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~ Figm'e 9 Residual plots for the validation of the spring barley biomass model (a) and wild oat biomass model (b), 
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