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DETERMINING SAMPLE SIZE TO BOUND THE PROBABILITY OF CLASSIFYING A 
SAMPLE INTO THE WRONG ONE OF TWO MULTINOMIALLY DISTRIBUTED POPULATIONS 

C. Philip Cox 
Iowa State University 

Department of Statistics, Ames, IA 50011-1210 

ABSTRACT 

The problem considered is that of choosing between the two 
k 

specifications ~ .. , ~~ .. = 1, i 
~J . 1 ~J 

J= 
probabilities on the basis of sample 

k 

A,B, of known multinomial 

values x., the observed counts in the 
J 

j = 1, ... ,k, classes, with ~ x. = N. rhe particular question examined is 
j=lJ 

'how large should N be to achieve reliable differentiation?'. It is shown 
how to find N such that the probability of misc1assification does not 
exceed a prescribable value. The method is exemplified in a genetic 
context. 

KEY UORDS . d d 2 . d f f' w : categor~ze ata, X, cytogenet~cs, goo ness-o - ~t, 

misclassification probabilities, multinomial distributions, 
sample size, soybean breeding. 

1, Introduction 

The problem to be considered arose in an agricultural context, 
specifically in a genetic study (Hedges, 1989) of the occurrence of those 
soybean mutants (trisomics) which contain an extra chromosome and are 'not 
inherited in a normal Mendelian manner'. Hedges noted that disomic and 
trisomic soybean individuals can be identified only by chromosome counts 
and for both types he calculated the expected segregation ratios, that is, 
the proportions of F2 progency, to be expected in three classes. The 

question which then naturally arises is - how many individuals should be 
examined to obtain a reliable choice between the two types of segregation? 
It is widely appreciated - if less widely implemented - that sample size 
determinations are essential to the planning of efficient experimentation 
and their importance is now increasing with sensitivity to ethical 
considerations in, for example, clinical and other trials using animal 
subjects. 

Instead of the commonly exposited statistical context wherein the test and 
alternative hypotheses are simple and composite respectively, both are now 
simple and such situations are usually treated as classification problems 
in the multi-continuous-variate literature. The hypothesis testing 
approach can, however, be retained by symmetrically regarding the 
erroneous classification of a sample from either one into the other 
population as analogous to the usual Type I error. Accordingly the 
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mu1ti-discrete-variate case considered here entails the choice between 
k 

the two specifications ~ .. , ~ ~ .. = 1, i = A,B, of known multinomial 
1.J • 1 1.J 

J= 
probabilities on the basis of a data set of values X., the observed counts 

. J 
in the j = 1, ... ,k classes. In the genetic context Mather (1938, 1951) 
has given a solution for the k = 2 case; Hanson (1959) has summarized some 
related studies; solutions for k ~ 2 classes are presented here. 

2. Theoretical aspects 

Suppose that a total of N values are distributed into k classes, that x. 
J 

is the number in the jth class and that p. = x./N, j = 1, ... ,k. Because 
J J 

~. = N 
J 

first k 

and equivalently ~p. = 1, it is sufficient to consider only the 
J 

- 1 classes and, on the assumption that N is large enough, the 
mean of the multivariate normal distribution of the vector ~ = 

[P1,P2 ... Pk-1 l ' is ~ = [~1'~2""'~k-1l' where ~j is the population 

probability for the occurrence of a value in the j th class. The 
covariance matrix ~, of the vector has diagonal elements ~.(l-~.)/N and 

J J 
off-diagonal elements -~i~j/N, i ~ i' and it is easily shown that I~I = 

~1'~2"" '~k/N and that ~ = N-1 [Q - ~'l where the j,jth element of the 

diagonal matrix D is ~ It then follows, e.g., from Theorem 3.3.3 in j' 
Anderson (1984) that 

-1 2 
[~ - .!l' ~ [~-.!l - X k-1 

Hence it seems intuitively reasonable that a p~vector can be classified as 

a member of population i, with probability of misc1assification a, if 'the 
test statistic' 

-1 2 
[p_ - ~.l'~. [p - ~.l < X (k-1;a). 

-1. -1. - -1. 
(1) 

When as here ~A ~ ~B' however, difficulties arise because it is 

conceivable that (1) may be either true or false for both of i = A and i 

B. To examine this first note that the inverse of ~ is 
-1 N[Q-1 we ~ 

+ (l/~k)~l where J is the unitform matrix. Hence or otherwise, the test 

statistic in (1) can be expressed in the standard symmetrical form as 

k 2 
N ~ (p. - ~iJ') /~iJ' 
j=l J 

which is easily reduced to the equivalent (and computationally more 
convenient) form: 
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-1 2 
1 + N XiT 

2 p. 
~ .:..L 
• 11' •• 

2 J ~J 
The surfaces XiT = constant are hyper-ellipsoids in ~ and these 

in ellipsoids of k - 1 dimensions with the hyperplane 

~ 11' •• = 1 
~J 

51 

(2) 

intersect 

which contains the points (Pl,P2' .. · ,Pk) and (1I'il,1I'i2'·· . ,1I'ik) , i = A,B. 

It is then easily shown that the locus of points in this plane for which 
22. 

XAT = XBT ~s 

k 
~ p:(_l_ 

. 1 J 1I'A· J= J . ° (3) 

which, necessarily, passes through the origin (0,0, ... ,0) and does not 
depend on N. To this stage therefore, with K equal to the left hand side 
of (3), the decision rule: 

Take A as the parent population if K ~ 0, if not take B and if K > ° take B as the parent, if not take A, 

has the attribute that, if the two parent populations are ' equally 
likely', the probabilities of misclassification are equal. Practical 
implementation of this apparently commonsensical procedure has the 
drawback that, except for the, could-be-inefficient, professional axiom -
the larger N is, the better - there is no control over the actual size of 
the probability of misclassification. A resolution applicable for k = 3, 
is next considered. 

3. The k = 3 case - a geometrical approach 

When k = 3 at least one of the coefficients of pl in (3) must be negative 

so that, multiplying through by -1 and relabelling if necessary, the 
surface (3) can be written as 

0, (4) 

where 

al = 11I':j - 1I'~jl, 
which defines a degenerate surface in R3 , specifically that generated by 

the line of intersection of two planes. With (4) as 
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the two planes are 

alPl - a 2P2 - ~a3P3 = 

1 
alPl + a2Pi - ; a 3P 3 

where, in general, ~ is an arbitrary constant. 

(5) 

The line through the origin defined by (5) will intersect the plane 

in a single point P say and the locus of P as ~ changes will be the 
~ ~ 

intersection of the surface (3) with the plane (6). The coordinates (P~l' 
P~2' P~3)' abbreviated as (PI' P2 ' P3 ), are 

so that 

PI 

where, directly 

i::j-
1 

a l 

a l 

2 
= a2a3(1+~ )/~/1, P2 

or because ~P. = 1, 
1 

1 1 -1 

i: -a2 -~a3 

a 2 -a3/~ 

2 
= ala3(1-~ )/~/1, P3 

2 2 
/1 = a2a3(1+~ )/~ + a1a3(1-~ )/~ + 2a1a 2 

2al a 2//1 

a 1a 2a 3 {(~ + ~)/a1 + (~ - ~)/a2 + 2/a3} 

and, 0 S ~ s 1 because the coordinates must here be positive. 

(7) 

2 
At each point P ~ defined by (7) the values of the XT ' test 

statistics' - for departure from populations A and B - will be equal and, 

for some P~ Pmin 'between' the points ~A1' ~A2' ~A3 and ~B1' ~B2' ~B3' 

the value of the test statistic will achieve its minimum value. The 
probabilities of misclassification may then be controlled by designating 
an N so large that, evaluated at P . , the probabilities do not exceed a 

'b d 1 m1n prescr1 e va ue. 

Finding P . 
m1n 

2 
Noting that on the locus of equa.1 xT-values, 

-1 2 2 2 
1 + N XT ~ Pj/~Aj ~ Pj/~Bj (8) 
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it suffices to minimize, with respect to ~, 

2 
H = ThjPj 

wherein b. = l/~A. and the P. are obtained from (7). 
J J J 

53 

(9) 

Accordingly the equation ~ = 0 gives, after algebraic reductions, 

the stationary points of H as the solutions of the quartic equation: 

4 3 
a1a2(c1+c2)~ +2a3(a1c1+a2c2)~ 

+2a3(a1c1-a2c2)~ - a1a 2(c1+c2) o (10) 

wherein 

(11) 

Since the expression on the left of (10) is negative at ~ = 0 and 
positive at ~ = 1 it does have a root giving positive values for the P . 

m~n 

coordinates in (7). With these and the specifiable value of xi, (8) can 

then be solved for the required value of N. The development to this stage 
is next exemplified. 

Example 1 

'The expected genotypic frequencies in the F2 progeny of an A1A1A2 

individual assuming maximal equational reduction' were given in Hedges 
(1989), Table 2, as 

Trisomics 
Disomics 

10 
4 

25 
4 

1 
1 

so that the population probabilities for the three classes are (10/36, 
25/36, 1/36) and (4/9, 4/9, 1/9) for the trisomics and disomics 
respectively. Since 25/36 > 4/9 and the other two such differences are 
negative, the first two classes are first interchanged to give the 
specification: 

trisomics (A) 
disomics (B) 

so that (4) becomes 

25/36 
16/36 

10/36 
16/36 

~3 

1/36 
4/36 
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with 

and 

and, from (10), 

222 
0. 81P1 - 1. 35P2 - 27P3 

(36/16 - 36/25) 
2 0.81, a 2 

o 

2 
1. 35, a 3 

36 

c1 = 28/9 and c 2 = 12/9. 

27 

Substitutions in (10) then give the following quartic equation for ~: 

4 3 
~ + 9.72509~ + 2.79689~ - 1 = 0 

of which the root 0 ~ ~ = O. 2795 ~ 1 is the one required. The 
corresponding coordinates of P. from (7) are 

m~n 

(P1 ,P2 'P3) = (0.5707, 0.3780, 0.0513). 

-1 2 Finally, using (9) and (8), the minimum value of N XT is calculated as 

0.0781 which exceeds X2(2 ; 0.05) if N > 76.7. 

Example 2 - a degenerate trinomial case 

If one of a; and a~ in (4) is zero the quartic equation (10) does 

not properly reduce to give the required solution. 
the proper solution can be obtained as follows. 

2 Suppose that wA3 = wB3 so that, because a 3 
equal if 

In this case, however, 

2 0, the two X 's are 
T 

Because neither of PI and P2 can be negative the locus of points 

giving equal xi's is therefore the line of intersection of the two planes, 

The coordinates of a point on this line are then 

and, with 
dH 

from d~ 

H 

0 

P1 = ~a2/(al+a2)' P2 = ~a1/(a1+a2)' 

from (9) , the ~-va1ue which minimizes 

or directly because H is quadratic in 

P = 1 3 - ~ (12) 

2 is easily obtained XT 
~. The results are 
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that: 

222 2 
~ b 3(al +a2) /(alb2+a2bl+b3(al+a2) } 

Hmin b3(1-~) 

(13) 

The determination of the value of N required then proceeds, via (8), 
as before. 

Example 2 (Hedges 1992) 

The specifications for the populations A and B were 

1l"1 1l"2 1l"3 

A 1/2 1/4 1/4 

B 13/18 1/36 1/4 

from which are calculated: 

2 
(18/13) = 8/13, 2 

14-361 32, 2 0 a = 2 - a 2 a 3 1 

b l = 2, b 2 = 4, b = 4 3 

H. is then found directly from (13) to be 1.1438 whence (8) gives N > 
m~n 2 2 

41.7 for XT = X (2;0.05). Calculation from (12) incidentally shows that 
2 

the minimum XT - value occurs at the point (0.627, 0.087, 0.286). 

4. A general method for any number of classes 

With the slightly revised notation 

1 

1l"Aj 
j 1, ... ,k (14) 

so that d. is no longer necessarily positive, the general problem is the 
J 

minimization of 

H 
k 2 
2: b.p. 

. 1 J J J= 

subject to the constraints that p. ~ 0 and, 
J 

(15) 
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2:p. 
j J 

2 
1 and 2:d.p. 

. J J 
J 

o. 

Using the Lagrangian procedure we accordingly seek to minimize 

which from ~~ 
Pj 

2 
~ = H - Al 2:d.p. - 2A 2 (2:p.-l) 

J J J 

o gives 

and hence, from (16), the appropriate solution Al of 

2 
f(A l ) = 2:d./(b.-A l d.) = 0 

j J J J 

is required. 

2 2 1 _1_) f(A l ) = 2:d./b. = 2:7rA. (- -
J J J 7rAj 7rBj 

2 
1 - 2:7r Aj /7r Bj 

-1 2 
N XBT 

(16) 

(17) 

(18) 

using 2 
(2), where XBT is the necessarily positive test statistic for 

examining the significance of the deviation of the point (7rAl ,· .. ,7rAk ) 

from the point (7rBl , ... ,7rBk). A similar argument shows that f(A l ) is 

positive at Al = 1. There is therefore at least one real root in 0 ~ Al 

~ 1. Further, in 

2 3 
22:d./(b.-A l d.) 

J J J 

(I-AI) Al 
b. - A d. = + 

J 1 J 7rAj 7rBj 

is positive so that f(A l ) is monotonic and the root in the interval is 

unique. Equation (18) is of degree 2(k-l) in Al and numerical solution is 

indicated for k> 2; the iterations using Newton's method are very simple. 
When applied to the data in Example 1, the following results were obtained 

0.45 0.55 0.56 

-0.5 -0.0026 +0.0030 
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Hence, taking A = 0.555 gave the coordinates of P. as (0.5705, 0.3782, 
m~n 

0.0513), values which are agreeably close to those obtained by the 
geometric method (Example 1), as also is the minimum sample size here 
determined as N > 76.5. 

Although, (18) may be used for k 
taking d 2 to be negative, (16) gives 

2 it is simpler to note that, 

so that 

from which N can be calculated via (15) and (8) as before. In essence, 
although slightly simpler computationally, this is equivalent to the 
methods given in Mather (1951). 

5. Interpretation 

With N chosen so that the equal test statistics X~T and X~T defined 
2 2 

in (2) and evaluated at P. exceed the 'critical value' X = X (k-l;a) 
m~n c 

the procedure is to classify a sample point P with coordinates (Pl"" ,Pk) 
as belonging to population A if 

2 [p: 1 2 [p: X = N ~ ~ - 1 < X = N ~ ~ 
AP 1f Aj BP 1fBj 

(19) 

2 2 
and as belonging to population B if XAP > XBP . 

Then, provided: 

i) N not only satisfies the foregoing requirement but is also large 
enough to support the normality approximation and, 

ii) it is certain that a sample point must belong to one of the two 
populations A and B, 

the probability of misclassification is aj2. This follows because, as 
Mather (1951) noted for the k = 2 case, ' ... deviations in but one of the 
two possible directions are misleading'; Figure 1 illustrates this case. 
For k = 2 classes, the points A, (1fAl ,1fA2 ) and B, (1fBl ,1fB2 ) lie on the 

line 1fil + 1fi2 = 1, illustrated in Figure 1, as does the sample point P, 

(Pl' P2) to be classified. Then, if P belongs to population A, for 

example, and N is large enough, the distance AP will have the Gauss 
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distribution with mean zero and variance ~Al~A2/2N. The points Gl and G2 
22222 such that P[AP > AC l = AC 2 J = P[XI > (Xl; 0)] = 0 can then be located and 

it is seen that although this probability statement holds for points P 
which are either to the left of G2 or to the right of Gl , the former do 

not lead to misclassification because X~A < X~B for such points. 

k 
In the general case, the points A and P lie in the hyper-plane ~ 

p. = 
J 

2 1, distances AP have Gaussian distributions and XTA - values 
1 
are 

equal on hyper-ellipses in the plane. Hence again there are two regions 

for which X~A > i(k-l;o) but X~A 2 
wi 11 exceed XTB , 

misclassification, in only one of the regions. 

thus leading to 

Finally it is to be noted that it is the total probability of 
misclassification which is at most 0/2 because this probability is 

where P[B!AJ is the probability of misclassifying a sample from population 
A into population Band fl and f2 are the relative frequencies - or 

probabilities - with which the two, and only two, populations A and B 
occur so that fl + f2 = 1. 

6. Conclusions 

Although the preceding development importantly depends on the 
multinomial approximation to Gaussian distribution, it is suggested that 
the sample sizes needed to control the probability of misclassification 
will be large enough to sustain the validity of the approximation in many 
practical cases. On this, one specific criterion, Yarnold (1970), is that 
the minimum value of N~., j = 1, ... ,k, can be as small as 

J 

(5/k) (The number of classes for which N~. < 5) 
J 

without vitiating the assumption. Thus, for the situation in Example 1, 
only one class, that for which ~A3 = 1/36 would appear to be 'at risk'; 

here Yarnold's criterion requires N to exceed (5/3)(36) = 60 which, at N 
= 77, it safely does. The value of N does, however, also depend on the 
prescribed probability of misclassification so that ad hoc examinations 
can be recommended in some cases and, more generally, to investigate the 
dependence of N on the positions of, and the divergence between, the 
vectors (~Al"'" ~ Ak) and (~Bl"'" ~Bk) . 

Further useful investigation could examine the 'mechanics' of the 
general solution which involves optimization subject to explicit linear 
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and non-linear constraints and, less tractably, to the inequalities p. ~ 
J 0, j = 1, ... ,k. 

Lastly here it may be noted that by minimizing subject to the more 

general constraint XiA CXiB' where C is a selectable constant, the 

method may be at least approximately extensible to cases for which the 
misclassification probabilities p[BIA] and p[AIB] are unequal. Also 
feasible, mutatis mutandis is extension to the continuous multivariate 
cases when all the parameters of the two putative parent populations are 
known. 

Summary 

A method - for determining the minimum sample size required to control the 
probability of misclassifying a sample from one into the other of two 
multi-discrete-variate populations - is given. 
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Figure 1 
The probability of misclassification 
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