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MARKOV-RECAPTURE POPULATION ESTIMATES 

Abstract 

E. Paul Wiley to 
U.S.D.A, AR.S. 

U.S. Grain Marketing Research Laboratory 
1515 College Avenue 
Manhattan, KS 66502 

This paper reviews recent development of a method for estimating insect populations. 
It is like mark-recapture methods, except that marking is done passively at bait 
stations by the insects themselves, and capture probabilities are generated using a 
simple Markov process model. Assumptions about rates of marking and capture are 
made from the sampling scheme, and the estimate is based upon the resulting 
multinomial probability distribution and maximum likelihood methods. The paper 
continues to review the sampling distributions for the population estimate, revealed by 
simulation, and explores correction of the bias. Relative likelihood based confidence 
intervals are compared with two standard error intervals, and found to perform better 
over a wide range of parameter values, especially where the number of recaptures is 
small. The method tends to become biased when used in an open or growing 
population. Goodness of fit tests are possible with the added degrees of freedom, but 
are not very powerful. 

Key Words 

Trap; population; estimate; markov process; mark-recapture; likelihood, relative 
likelihood interval, profile likelihood interval. 

1. Introduction 

Trapping is the usual method for monitoring insect populations because it is 
simple to use. It has generally provided only presence/absence information because of 
the unspecifiable relationship between population size and trap catch. Traditional 
methods of population estimation, including mark-recapture and removal, are generally 
too labor intensive to use with insect populations. For mark-recapture, the initial 
episode involves either mass rearing of insects for release, or capture with arduous 
care to maintain subjects in good condition. This intense labor is often followed by 
few or no recaptures. Likewise, removal methods are too labor-intensive for insect 
populations, because they require several sequential visits over to the traps over a 
short period in order to obtain an estimate. 

We have developed an alternative which involves only the placement of traps, 
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yet provides a mark-recapture type of estimate from a single trap observation by 
allowing subjects to mark themselves (Wiley to et al. 1994, Wiley to 1994). Although 
the primary application is the estimation of closed insect populations, the method 
could be useful for many other species. In order to use the technique, some of the 
traps must be converted into passive marking stations where subjects may visit and 
leave marked, while the remaining half continues to capture insects in the usual way. 
We have made such bait stations using commercially available wing or pitfall traps 
baited with food or pheromone lures; they differ in that they are filled with a 
fluorescent dye and modified to allow escape. 

The statistical interpretation of self-marking was accomplished by first making 
explicit assumptions about how the system works. One assumption is that the 
population is closed (apart from trapping). Another is that we know the relative (per
capita) rates of marking and capture. Secondly, we generated capture probabilities by 
modelling self-marking and capture as a markov process. The following describes two 
probability models relating to the events of capture and recapture under the 
assumptions described above. This is followed by Monte-Carlo tests of several 
important characteristics of the population estimate, and a discussion of the confidence 
limits. 

2. Sampling Schemes and Models 

A closed population of N individuals, exposed to marking stations and traps, is 
involved in a Markov process (Wiley to et al. 1994, Wiley to 1994). All (N) individuals 
begin in the free and unmarked state (frequency F), and as the trapping proceeds, 
population members may remain there or be distributed to any of the other states: free 
and marked (frequencies denoted as M with various subscripts), unmarked and 
captured (frequency denoted C), or (variously) marked and captured (denoted R, Q; S) 
(Fig. 1). The per capita trapping rate is defined as A. Per capita marking rates for a 
particular marking category depend upon ex., ~, ... the ratios of marking stations to 
traps, and the rate is the multiple aA. For example, if there are two red marking 
stations per trap, the per capita marking rate for red is 2A. These models are most 
easily analysed as a series of differential equations, describing the input and loss rates 
for each category. The overall rates of gain and loss are simply per capita rates times 
the principal. For example, if category F has a per capita loss rate of 3A, the total 
loss rate is 3'AF. 

I will begin with the most complicated model we use (double marking), 
because it is general, and simpler models follow directly from it. Suppose we have 
two marking station types per trap, at a rate of ex. marking stations per trap of one type 
(eg. color = red), and ~ of another type (eg. color = blue). The result is a series of 
eight differential equations which describe the expected trajectories for all eight 
frequencies (Figure 1): 
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E(F) , = -(1 + a + P) A F E( C)' A F 

E(M 1)' = a A F- (1 + P) A M1 E(R) , = A M1 

E(M 2)'= P A F- (1 + a) A M2 E(Q) , A M2 

E(M 3)' = P AM 1 +aAM 2 -AM 3 E(S) , A M3 

Substituting iJ...(=p yields multinomial probabilities for N trials: 

Pr ( UNOBSERVED) 

UNMARKED 
Pr ( TRAPPED) 

Pr (Ml TRAPPED) 
ego red 

Pr (M2 TRAPPED) 
eg.blue 

DOUBLY 
Pr( MARKED) 

TRAPPED 

(Note that F (free, 
unmarked) and M (free, 
marked) frequencies have 
been lumped to form a 
single unobserved 
frequency.) The resulting 
model has four degrees of 
freedom. 

The model is 
simpler if there is only one 
type of mark, for instance 
red. In this case, p is 0, 
and the capture 
probabilities reduce to: 

P 

1 - pl+CC+~ 

1 + a + ~ 

a _ pl+~ + pl+CC+~) 

(1+~) (1+a+~) 1+~ 1+a+~ 

(1) 

~ _ pl+CC + pl+CC+p) 
(1+a) (1+a+~) 1+a 1+a+~ 

(1+a) (1+~) (1+a+~) 

oAF 

F -@] 
~AF ~ 

AMI 

AM2 [§J TRAP 

0 

Fig. 1. The general double marking scheme. There are (J. red 
marking stations and ~ blue marking stations per trap. 
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Pr ( UNOBSERVED) = p 

UNMARKED 
Pr ( CAPTURE) 

1 - pl+a. 

(1 + IX) 

Pr( MARKED) 
CAPTURE 

IX - P - IXP + pl+a. 
(1 + IX) 

Where traps and marking stations are used at a 1: 1 ratio, the capture probabilities 
reduce to those of the original work (Wiley to et al. 1994): 

Pr (UNOBSERVED) =p 

UNMARKED 1 _ p2 
Pr ( CAPTURE) 2 

MARKED (1 _ p) 2 

Pr ( CAPTURE) 2 

3. Estimation Procedures 

139 

(2 ) 

Point estimation is accomplished by a straightforward application of maximum 
likelihood techniques. The parameters ex and ~ are assumed, referring to the relative 
numbers of marking stations in the specific sampling scheme. The parameters N and p 
are estimated simultaneously. The solution for ill from multinomial capture data is 
determined from the likelihood (L) by setting L(N,p)=L(N-l,p), and is well known as: 

N = Total Caught {C + R + .. .} 
1 - 15 

(See Seber 1982, Burnham et al. 1987). The solution of p comes from setting 

a In L 
= a I ap 

where In L is the log of the likelihood function, either analytically or numerically. 
(See Pollard (1977) for a review of methods.) 

" 

(3 ) 

(4) 

Allowable values for p fall between zero and one, although certain data 
combinations will result in a negative solution for p, and population estimate (3) 
which is smaller than our sample. (When the maximum likelihood estimate of p is 
negative, there will be a local (constrained) maximum of the likelihood function at the 
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boundary p=O. Under such circumstances, the boundary estimate (constrained 
maximum) where p=O, and ~={Total Captured}, should be accepted. 

A 

The solution for p cannot easily be determined explicitly under most sampling 
schemes, and should be found numerically. However, solutions for p arising from (4) 
under specific schemes may often be characterized explicitly, using Descartes' rule and 
related methods (see Pearson 1990). For example, for all specific schemes used in this 
paper, it is possible to determine boundaries between data combinations that yield a 

A 

single solution for p between zero and one, and those which yield only negative 
solutions. This allows the user to anticipate boundary solutions, or other unusual 
results. 

Bias of the Estimate 

Though maximum likelihood estimates are asymptotically unbiased, they are 
often biased for smaller samples. Bias is defined as the difference between the mean 
value of the estimate of a parameter and the true value of the parameter: 

BIAS = E(M - N . 

The mean of II cannot be obtained from the multinomial probability distribution 

unless II has a simple analytical form; the mean can be approximated by simulation. 

Estimation and reduction of bias for an individual sample may be accomplished 
through the jackknife technique (Potvin and Roff 1993, Hinkley 1983, Efron 1982). 
The technique uses a systematic resampling of K observations by sequentially 
dropping one observation at a time, to produce K samples of K-l. The estimate of 
bias is then 

Efron (1982) suggests a corresponding correction in which each of the K observations 
is added (duplicated) in tum, to produce a slightly different estimate of bias: 

BIAS = K;l L (Nx - NX +1 ) 

x 
K+l ~ ~ ~ ~ 

K [c (Nc - NC+1 ) + r (Nr - Nr +1) + ....• J 

This estimate of bias has an advantage when the probability of capture in several 
categories is small. We cannot generate estimates using the Markov-recapture 

(5) 
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technique if too many categories have zero entries, and having an entry of one in 
several categories would then disable the standard jackknife method. The method 
described by (5) is not disabled by such data. 

Confidence intervals 

141 

Two approaches were tested for determining confidence limits around the 
estimate of N. The first approach is through the theoretical approximation of 
variances of the estimators (3) and (4), which are obtained from the inverse of the 
information matrix (Mood et al. 1974, Lehmann 1983), found by taking the second 
derivatives of the log-likelihood functions. For algebraic approximations, Nand pare 

A A 
substituted by estimates N and p respectively. An approximate 95 percent confidence 
interval for N may then be obtained as 

C. I. (95) ~ = N ± 2 ";VAR(N) ( 6) 

The two standard error approach at times produces a confidence interval which 
misses the true parameter value more often than it should. A more recent approach is 
the relative likelihood interval (also called a "profile likelihood" interval- See Amason 
et al. 1991, Lebreton et al. 1992). The approach bases the upper and lower limits on 

the likelihood ratio (LR=L(N,~ )1L(N,p * ), where p * is the maximum likelihood 
estimate of p, given N). Since 2 Ln(LR) is distributed approximately as X2 with one 
degree of freedom, limits occur where 

- 2 Ln (LR) = 3.84 I (7 ) 

the 95 percent significance value for a two sided chi-square test. Relative likelihood 
intervals tend to be as broad as the corresponding two standard error interval, although 
the location differs, and the interval may be asymmetric about the estimate (Lebreton 
et al. 1992). 

4. Specific Models for Testing 

In the preceding, I have outlined the general procedures for estimating 
population size and confidence limits based upon generalizations of the Markov
recapture sampling scheme. I now address the performance of these procedures. First, 
I must specify models by providing values for marking rates ex and ~ in (1) and (2). 
(Generally, the algebra simplifies greatly when integer values are substituted for ex and 
~.) I generated three specific sets of capture probabilities for the following trapping 
schemes: A) single mark, ex=l, with one marking station per trap, B) single mark, 
ex=2, with two similar marking stations per trap, C) double mark, ex=l, ~=1, with two 
dissimilar marking stations per trap, and D) double mark, ex=2, ~=1, with three 
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marking stations per trap, two of one color and one of another. Model A has one 
added virtue in an analytical form for the population estimate: 

and a virtually unbiased variant: 

it= (C + R) 2 

2 R 

it = (C + R) 2 

2 (R + 1) 

(8) 

(9) 

Following Descartes' rule in examining the partial derivatives with respect to p, 
Model A has one real positive solution as long as R<C, and that solution falls between 
zero and one. If R>C, all real solutions for p are negative, and the solution for PI will 
be less than the observed number. (R-::;C represents a boundary for reasonable 
estimates of p and Pl.) When R falls above C, there is a local maximum in the sample 
space (boundary estimate), where 

p = 0, N=C+R 

This estimate should be used whenever R> C. Model B, likewise, has one real positive 
solution between zero and oneas long as R<2C. Model C violates the boundary if 
2S>C+R+Q. All solutions for p are then negative, and the boundary estimate should 
be used: 

N=C+R+Q+S 

Likewise, model D violates the boundary if S?:.(517)(C+R+Q). 

Properties of Population Size Estimates 

In order to examine the properties of the above estimates and confidence limits, 
I simulated trap results. In each simulation, the N population members were 
probabilistically allocated to each of the categories (unobserved, unmarked, and 
various marking categories) according to their respective probabilities (1) and (2). The 
value of N was either 250 or 1000. Values of p were selected between .975 and .2. 
Generally, I did 5000 trials for each parameter combination. Trials with zero 
recaptures (summed for all recapture classes) were repeated. I generated an estimate 
(3) and a jackknifed estimate ((3)-(5» for each set of trap results. Where numerical 
methods were required, I used the Newton-Raphson technique based on numerical 
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derivatives (Pollard 1977). I recorded the average of both estimates for each 
parameter combination. 

143 

The performance of confidence intervals was evaluated using the simulated trap 
data described above. The standard measures of performance are the 1) average length 
of the confidence interval, and 2) the frequency with which the interval included the 
true value of N (coverage) (Amason et al. 1991). I recorded each measure for both 
the two standard error interval (evaluated using (6), and the jackknife corrected 
estimates) and the relative likelihood interval (7). I used the technique developed by 
Venzon and Moolgavcar (1988) to find the two solutions to (7), with starting points at 
the upper two standard error limit (6) on the upper side, and just below the estimate of 
N (3) on the lower side. 

I now present the results of those simulations, beginning with an examination 
of bias. Means from simulations of single marking (Models A and B) for populations 
of 250 and 1000 are shown in Figures 2a and b. They are summarized as follows. 
For extremely large values of p (little progress towards trapping), the mean estimate 
falls below the true value. For slightly lower values of p, the mean rises sharply to 
where it is approximately 30 percent higher than the true value. For lower values of 
p, the mean falls and asymptotically approaches the true value of N. Overall, the 2: I 
scheme is less biased than the 1: I scheme, over a wide range of p values. The peak 
bias is approximately the same, about 30 percent high, but it occurs after much less 
trapping time. This implies that the 2: 1 marking scheme will provide useable 
estimates from smaller samples (less trapping effort) than will the 1: 1 scheme. 

Figure 2c shows results of double marking at a rate of 1: 1: 1 (Model C). The 
pattern observed while varying the value of p is similar to that of the single marking 
scheme, but estimates are generally less biased than their single marking counterparts, 
with a peak bias nearly 20 percent higher than the true value (compared to 30 percent 
high for single marking). Finally, the results of double marking at a rate of 2:1:1 
(Model D) are shown in Figure 2d. The mean of the unadjusted estimate shows the 
usual positive bias at higher values of p. The peak bias seems to be a bit smaller than 
either of the other schemes tested, at 12-15 percent high, and the bias remains below 
that of Model C, all due to the increase in the total marking rate. 

Jackknife corrected estimates (Fig. 2) have a negative bias at the highest values 
of p. The reason for the negative bias at high p is that the mean estimate is a 
conditional mean, not including observations where total recaptures equal zero, and 
zero recaptures is a common event at high p (See Wiley to et al. 1994). We cannot do 
much about the negative bias at high p, and the estimate will remain biased until the 
total number of recaptures is at least five. As p decreases slightly, the adjusted 
estimate climbs steeply to a peak only one to two percent higher than the true value, 
and remains almost unbiased for the remaining values of p. I would recommend that 
anyone using a Markov-recapture sampling scheme, other than the origninal 1:1 
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Mean Estimates from 
Various Sampling Schemes 

1.4 

r"'" - -h \ 
I I \ 

ORIGINAL 1:1, NOT ADJUSTED 
ORIGINAL 1:1, ADJUSTED 
MARKING 2:1, NOT ADJUSTED 

MARKING 2:1 JACKKNIFED 

1.2 r------+-... ---';----------------------------------
i \ \" N=250 

! \ \, 
I \ "'" . \ .. . I " ........ , 

1.0 r-----r-tf;-l-r---- -:o~==~co,,-
.' 
1 

0.8 ' 

1.4 
Double Marking 1:1:1 

N=250, NOT ADJUSTED 
N=250, JACKKNIFED 
N=1000, NOT ADJUSTED 
N=1000, JACKKNIFED 

1.2 ro------------------------------------------------
\ -"'" 

1.0 ~--;~;~~:~;--------
c 

0.8 '-___ .l.-___ .l.-___ .J.-__ ---' 

f\ I, \ 

ORIGINAL 1:1, NOT ADJUSTED 
ORIGINAL 1:1, ADJUSTED 

MARKING 2: 1, NOT ADJUSTED 
MARKING 2:1 JACKKNIFED 

I jl \ 

r--U~L-\-----------------------------------------
I i I \ N = 1000 
I ! I \ I . 
I j I \.. 
I : \ ... 
I \ \ 

I j \ ... 

~1--1'--~~:~;.:~::::::::;········ .. 
Ij " I: : 
J! : 

!i f I' I 

:if 
B 

Double Marking 2:1:1 

\ / .. 
1/' \\. 

N=250, NOT ADJUSTED 
N=250, JACKKNIFED 

N=1000, NOT ADJUSTED 
N=1000, JACKKNIFED 

, , - .~ ........................................................ ,., •• ·.'1 M , ___ ,/-__ .,... .. ,;;,;:05.&.. " .. _on _ • 

1 
1 

: 
! 
1 

! D 
1 

: 

1.0 O.B 0.6 0.4 0.2 1.0 O.B 0.6 0.4 0.2 

VALUE OF P VALUE OF P 

Fig. 2. Mean estimates of population size from simulations: a) single marking, original 1:1 versus 
2:1, N=250, b) same as a, except that N=1000, c) double marking, ex=l, P=l, and d)double 
marking, ex=2, p=1. Note that the jackknife technique of bias removal produces an 
almost unbiased estimate for most values of p. 

scheme, also use the jackknife correction, while being aware of the negative bias for 
small numbers of recaptures. 

Conference on Applied Statistics in Agriculture
Kansas State University

New Prairie Press
https://newprairiepress.org/agstatconference/1994/proceedings/11



Applied Statistics in Agriculture 

Moving on to discuss 
confidence intervals, the performance 
of two standard errors is revealed in 
Figure 3, and is summarized as 
follows. For very high values of p, 
which correspond to the earliest 
jackknife estimates that are not 
negatively biased, the average 
confidence interval length (Fig. 3a) 
is approximately twice the value of 
N. As p decreases, the interval 
width first falls sharply, then 
continues to fall at a decreasing rate. 
The most clear distinctions are 
between the population sizes of 250 
and 1000, the larger producing a 
consistently narrower interval. 
Within each population size 
treatment, the single marking (2: 1 
only shown) model gives the widest 
interval. (It is generally narrower 
than the two standard errors from 
original 1: 1 model. The original is 
not shown, but it reached a similar 
peak at p=0.7 rather than p=0.8.) 
Double marking gives a narrower 
interval yet, with the 2: 1: 1 scheme 
giving a generally narrower interval 
than the 1: 1 : 1 scheme. The pattern 
in coverage of two standard errors 
(Fig. 3b) is as follows. For high 
values of p, (similar to high values 
from Fig. 3a), coverage ranges from 
85 to 92 percent. As p decreases, 
coverage climbs steeply, finally 
approaching 95 percent 

u 
r.-. 

3N I 

I 
\ 
\ 
\ 
\ 
\ 

Performance of 
Two Standard 
Error Confidence 
Interval 

o 2N f---\l-'-r.!,..\--------
::r: 
E-< 
A 
; A 

ON '-----'-----'------''-------' 
1.00 

B 
~ 0.95 l-n~~/~=~~~ 
r.-. 
o 
~ 0.90 1--;.-,>1----------

~ : 
I 

N=260. 2:1 
N=1000, 2:1 ~ I o a 8 I N=260. 1:1:1 

U • 5 1---l------N=~1-00,.:..O-. 1-:1-,1~ 
N-260, 2:1:1 

N=1000. 2:1:1 

0.80 '-----'-----'------'-----' 
1.0 0.8 0.6 0.4 0.2 

VALUE OF P 

145 

Fig. 3. Performance of two standard errors: a) 
average interval length, and b) coverage, the 
frequency with which the interval includes 
the true value of N. 

asymptotically. Populations of 1000 reached 95 percent coverage much more quickly 
than did populations of 250. The distinction among models was less clear for 
coverage than for interval width, due to noise in the simulation. 

Performance tests on the relative likelihood interval reveal a pattern of interval 
width almost identical with that of two standard errors (Fig. 4a), except that two 
standard errors is slightly narrower at the highest values of p. (This may be a small 
effect of the negative bias for high p.) However, the coverage (Fig. 4b) is improved, 
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Performance tests on the relative likelihood interval reveal a pattern of interval 
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standard errors is slightly narrower at the highest values of p. (This may be a small 
effect of the negative bias for high p.) However, the coverage (Fig. 4b) is improved, 
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staying on or around 95 percent, 
even for the highest values of p. I 
would therefore recommend that the 
relative likelihood interval be used as 
a 95 percent confidence interval 
when possible. However, I would 
also recognize that two standard 
errors provides a reasonable interval 
under many circumstances, and may 
be more practical when a computer 
is not available to calculate a relative 
likelihood intervaL 

5. Field Tests 

In order to examine the 
performance of Markov-recapture 
estimates in the field, we tested the 
procedure on known populations of 
the Indianmeal moth, Plodia 
interpunctella. These were 
established in an empty warehouse 
by "release" of unsexed pupae. We 
used home-made traps constructed 
from disposable plastic bowls, with a 
pheromone lure to attract males. 
The bowl was filled either with a 
sticky insert for the trap or 
fluourescent dye for the marking 
stations. Three of each were placed 
in the warehouse along with the 
pupae. After three to five days, the 
traps were collected and counted 
(under a UV light to reveal marks). 
Figure 5 reveals that the estimate 
compares favorably with the true value. 
confidence limits.) 

6. Summary 
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Fig. 4. Performance of the relative likelihood 
interval: a) average interval length, and b) 
coverage. 

(The true value always fell within the 

Markov-recapture methods provide a reduced labor method for population 
estimation by combining aspects of trapping and mark-recapture techniques. This is 
accomplished by modelling capture probabilities as a Markov-process. Several 
schemes and solutions have been presented and tested in this paper. The bias may be 
reduced for all such estimates by using the jackknife procedure, and confidence limits 
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are best evaluated by the relative likelihood method. The Markov-Recapture 
method of population estimation can be greatly improved by placing more than one 
marking station per trap to increase the rate of marking. First, multiple marking 
stations produce an estimate inherently less biased than the original 1: 1 scheme. 
Secondly, the increased marking reduces the confidence interval around the estimate of 
population size. The improvements come from obtaining more recaptures earlier in 
the trapping process. Additional improvements to bias and the confidence interval 
come from using two different kinds of marking stations, to create many more 
possible categories in the trap. 

1400 

1200 

WAREHOUSE TRIALS OF 
MARKOV-RECAPTURE ESTIMATOR 

Fig. 5. Warehouse field trials of the markov-recapture estimator, using traps 
baited with sex attractants. Known populations of unsexed pupae were 
released in a warehouse. Horizontal error bars are 2 SD around the 
numbers of males actually present. Vertical error bars are 95% relative 
likelihood intervals. 
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