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Abstract 

Agronomic experiments often summarize work carried out in trials run in 
several locations over several years, referred to generically as environments. The 
appropriate statistical analyses for thes~ experiments depend on definitions 
used for experimental error. The results of one such experiment, in which 
identical designs were used in each environment, illustrate the commonalities 
and differences in analyses that can result from using different definitions of 
experimental error. 

1 INTRODUCTION 

149 

Performing useful statistical analyses often requires a compromise. In order to clearly 
describe the trends contained within a set of data, an analysis must be both accu­
rate and precise. To attain higher levels of accuracy and precision leads to greater 
complexity in the statistical analysis. Unfortunately, the more technically complete 
analyses sometimes provide results that are not easily interpreted. On the other hand, 
oversimplification can render an analysis ineffective by disguising real and important 
trends in the data. 

Agronomic field trials often result in analyses of at least moderate complexity. 
Trials are often replicated in several locations (usually representing a region in which 
the treatments could be considered for use) and over several years. Typically, the same 
set of treatments in the same experimental design is used in each year at each location. 
These year-by-Iocation combinations are generically referred to as "environments." 

The data from these experiments are combined into a single analysis to assess 
overall treatment effects and how much these effects vary across environments. As a 
result there are usually at least two sources of experimental variability which must 
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150 Kansas State University 

be used in the analysis. These correspond to the different levels of replication under 
which the trials were carried out and can be classified as "within-environment" sources 
and "across-environment" sources. The manner in which these various sources are 
used in definitions of experimental error depends greatly upon the degree to which 
simplicity is favored over completeness. 

In the past, the lack of readily available computational methods for the more 
complicated analyses made the statistical simplification of complex experiments an 
important step. Even for a simplified analysis, however, some standard statistical 
packages may base their computations on assumptions about the inference space 
(McLean, Sanders, and Stroup, 1991) or the estimability of contrasts (Milliken, 1992) 
that may not be appropriate. Now, with the increasing availability of mixed model 
software, such as PROC MIXED (SAS Institute, 1992), there are more options for po­
tential analysis methods for designed experiments. 

Even so, care must be taken to accurately reflect the nature of the effects which are 
used in the analysis. The distinction between considering an effect fixed or random is 
not always very clear, but as McLean, et at. (1991) suggest, the decision for a given 
effect can have a tremendous impact on the resulting analysis and its interpretation. 

In this paper, the effects of the three choices outlined above - complexity of the 
model, identification of fixed and random effects, and selection of statistical software 
- are investigated as they relate to definitions of experimental error in a particular 
agronomic field trial. 

2 EXAMPLE: DETERMINATE/INDETERMI­
NATE SOYBEAN TRIALS 

The example studied in this paper is a trial designed to evaluate the effects of of two 
genetically-controlled growth l1abits, determinate and indeterminate stem termina­
tion, on yield of soybean. Additionally, since 1991 was a drought year in Kansas, 
there was interest in comparing the impact of two growth habits on yield response 
under drought stress. 

The trial was performed over three years (1990, 1991, and 1992) at three exper­
imental fields in Kansas (Ashland, Hesston, and Ottawa) in such a way that five 
combinations of year and location were available (Ashland was used only in 1990 and 
was the only location in use at that time). Twenty near-isogenic lines (or "entries") 
of soybean were selected for the study and bred so that both stem terminations were 
present in each entry. In each environment, the experiment had a split-plot design 
with each of the 20 entries planted in a whole plot consisting of four rows. Each plot 
was split in half across these rows and the two growth habits were randomly assigned 
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to halves of the plot. The center two rows were harvested for seed yield. There were 
three full blocks of this design in each environment. 

3 METHODS OF ANALYSIS 

The data from this experiment are analyzed in a variety of ways to emphasize the 
impact that the choice of analysis method can have on the results. The labels HABIT, 
ENV, ENTRY, and BLOCK(ENV) correspond to growth habits, environments, entries and 
blocks within environments, respectively. 

3.1 Random and Fixed Effects 

The distinction between fixed and random effects often requires careful thought. In 
the present study, few would argue against taking BLOCK (ENV) as random and HABIT 
as fixed. Also, the reasoning behind using the 20 lines of soybean chosen for this 
experiment had more to do with their representation of genotypic variability than 
with any distinctive features of the lines themselves, so that ENTRY is best treated as 
a random effect. 

The designation ofthe effect of the environment classification is less clear, although 
it is crucial in defining the inference space for which the results are intended. One 
possibility is that the three locations might be intended to represent some population 
of possible locations in which the study treatments could be applied. In that case the 
inference space is broad, since inferences are to be extended to all locations in the 
population. Because no control can be affected over circumstances from year to year, 
ENV would certainly be considered a random effect. 

Another possibility is that each location might have been chosen to represent 
conditions (e.g., rainfall, soil, or crop rotation) peculiar to that region. In addition, 
1991 was a drought year, and some interest lay in examining the relative effects of 
HABIT under such stressful conditions. These circumstances would lead to treating 
ENV as a fixed effect. Inferences are then to be applied only to those particular 
conditions represented by the environments in the study, and so the inference space is 
narrow. For the purposes of this exposition, both interpretations for the environment 
effect are considered and compared. 

A third possible interpretation could have considered treating environments as a 
random effect while wishing to compare the habit effects in drought VS. non-drought 
conditions. This requires writing contrasts on levels of the HABIT*ENV interaction, 
despite the fact that this is customarily assumed to be random if ENV is random. 
Treating as fixed an interaction of a random main effect is an example of an interme­
diate inference space as defined by McLean, Sanders, and Stroup (1991). 
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152 Kansas State University 

3.2 Selection of Models 

A variety of analysis of variance models could be reasonably proposed for this study, 
with varying complexities and goals. The most direct of these is perhaps the "full 
model" (FM) approach, which combines the five identical split-plot designs into one 
analysis. One possible model for this is given, for example, by McIntosh (1983). 
A slightly different FM approach is applied here in that the HABIT*BLOGK (ENV) is 
isolated from the subplot error term (see Table 2). 

The designation of ENV as a fixed or random effect has a profound effect on the 
analysis through the FM model. With ENV random, much of the experimental error 
is derived from the variability of the other effects across environments. When it is 
fixed, however, the variability of effects across blocks within environments provides 
the primary measure of error. 

One common simplification of the FM model is to eliminate the effect of within­
environment variability and consider the across-environment variability as the ex­
perimental error. This is achieved by reducing the data from the different blocks 
to a single set of values for each environment, the entry-habit means, for each en­
vironment. This is referred to here as the "means over blocks" (MOB) approach. 
Although this assumes that the environments are indeed random effects, the results 
of this simplification with fixed ENV will also be noted. 

The third approach to be considered is perhaps the most obvious: analyze the 
split-plot designs separately within each environment. This "by-environment" (BE) 
approach might arise naturally as a follow-up to either of the other two models, but 
technically this use is appropriate primarily when environments are considered fixed. 
The across-environment variability is completely ignored in this approach, so that 
experimental error is defined through the blocks within each environment. Note that 
in the FM approach the variability of blocks is assumed to be the same within each 
environment. In the BE approach, however, error due to blocks may differ among 
environments. 

While numerous other models could be (and in fact were) considered, only the 
results of the FM, MOB, and BE approaches are compared here. 

3.3 Computational Methods 

Combining the two ENV classifications as in Section 3.1 with the possible models de­
scribed in Section 3.2 yields five analysis settings to be consider. Each of these is 
analyzed using the two different SAS procedures, PROG GLM and PROG MIXED. These 
procedures differ in numerous ways, as detailed in the extensive documentation for 
PROG MIXED (SAS Institute, 1992). The important differences between them as re­
gards the present work are briefly outlined in Table 1. 
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F-tests corresponding to both fixed and random effects are automatically provided 
for each effect using PROG GLM with the TEST option. Denominator degrees of free­
dom are approximated using Satterthwaite's method (Milliken and Johnson, 1992). 
The PROG MIXED analyses also use F-tests, but only for all fixed effects in the model, 
and the F -statistics are not necessarily the same as in PROG GLM . The denominator 
degrees of freedom are found using the following "containment method" (SAS Insti­
tute, 1992): for each fixed effect, if there is a single random effect which can serve as 
an error term, then the denominator degrees of freedom are those from this random 
effect. Otherwise, PROG MIXED uses n - r - 1, where n is the sample size and r is 
the number of model degrees of freedom allotted to fixed effects. Wald tests based 
on asymptotic normal theory are automatically provided for all random effects. Un­
fortunately, these are notoriously unreliable in small samples (SAS Institute, 1992). 
As an alternative, it is possible to obtain likelihood ratio tests by repeatedly running 
PROG MIXED on the same model, but with selected random effects omitted. For large 
models this can result in considerable extra computation. 

4 RESULTS 

The results of the ten analyses are given below. They are first discussed separately 
for each modeling approach. An a = .05 level of significance is used for assessing the 
importance of all effects. 

4.1 Full Model 

Variance component estimates using the default methods (Table 1) from PROG GLM 
and PROG MIXED are given in Table 2. For all random effects the two methods produce 
identical estimates in this balanced data set. 

When ENV is considered random, it has by orders of magnitude the largest variance 
component. Two of the three tests of significance (Table 3) indicate the importance 
of the effects of environments on yield; the Wald test for this effect fails to find it 
significant (p=.16). Considering the means in Table 10, it is difficult to accept that 
the environments - in particular the two drought-year environments - imparted 
insignificant variability into the soybean yields. In view of the Wald test's documented 
poor performance in problems of this kind,. no further comments will be offered on 
results from this testing method, despite the fact that it is the default option in 
PROG MIXED. 

The three-way interaction, HABIT*ENTRY*ENV, is strongly significant (p < .01), 
indicating that the relationships among the environments, among the entries, and 
between the two growth habits may be somewhat complex. In practice, investigation 
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of this interaction, for example through profile plots or contrasts, should precede 
interpretation of the significance tests for main effects and smaller-order interactions. 
Briefly, the significance of this three-factor interaction implies that the pattern of 
growth habit differences in the five environments (see Table 10) is not the same for 
all entries. A more detailed analysis of these differences is omitted from the present 
discussion. 

In the random environment case, tests for the remaining effects are the same or 
quite similar for both the PROC GLM and the likelihood ratio analysis from PROC MIXED. 
The lone fixed effect, HABIT, is nonsignificant, although in light of the significant in­
teraction noted above this does not imply that growth habits have no impact on 
soybean yields. When ENV is considered fixed, two important changes occur in the 
significance tests. First, the HABIT effect is now found to be significant by both 
testing procedures due to the changing structure of variance components which go 
into making up its error term, the most important of which is the substitution of 
HABIT*BLOCK(ENV) (MS=7) for HABIT*ENV (MS=102). Second, the PROC GLM tests 
for HABIT and ENV main effects are dependent upon the assumption that there is 
no HABIT*ENV interaction. Since the corresponding test of this interaction strongly 
suggests that this assumption is not satisfied, the interpretations of these main-effect 
tests are unclear. However, proper investigation of the HABIT*ENV interaction, as in 
Table 10, may supersede a need for consideration of these two tests. 

4.2 Means over Blocks 

Estimated variance components and p-values for tests from the MOB approach are 
given in Tables 4 and 5, respectively. Variance components from both estimation 
procedures are again quite similar to each other and change little from those obtained 
in the FM approach. An important difference between the FM and MOB approaches 
is that HABIT*ENTRY*ENV serves as a residual error term in the latter, and so no 
reliable test of significance can be performed for it. Otherwise, test results from 
this model are essentially the same as those from the previous model. When ENV is 
random, PROC GLM tests for ENTRY and HABIT are identical to those from the FM 
approach, since both models use the same error terms. The fixed-environment test 
for HABIT does use a simpler error term in the MOB analysis, but for these data there 
is little change in the result. 

Another form of MOB model that is sometimes used treats the means as having 
originated from a split-plot design with environments as a blocking variable, entries 
as a whole-plot effects, and growth habits as a subplot effect. This differs from 
the present MOB approach only in that the HABIT*ENV effect joins the three-way 
interaction in the residual error. Since a separate assessment was desired of the 
possibly differing growth habit effects in the different environments, this split-plot 
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MOB model is not of particular interest to this study. Nonetheless its application 
reveals an interesting departure from the original MOB approach in that it finds HABIT 
to be a significant effect even when environments are random. Thus it is evident that 
even seemingly minor differences in the identification of experimental errors may play 
a large role in the conclusions that are ultimately drawn. 

4.3 By Environment 

Table 6 provides REML variance component estimates for each of the five split-plot 
experiments in the study. The environment labels correspond to the three locations 
(ASHland, HESston, and OTTawa) and to the three years (1990, 1991, and 1992) 
in which the study was run. Method of moments estimates are identical in all but 
the footnoted cases, where they differed by no more than 0.2 from their REML coun­
terparts. Differences between estimates from the two methods stem from the fact 
that MOM sometimesprovides an actual negative value as the estimate for a variance 
component while REML sets the corresponding estimate to zero. 

Results of tests based on these effects are presented in Tables 7-9. As before the 
F-tests from PROC GLM and the likelihood ratio tests from PROC MIXED are largely in 
agreement. In each environment there appears to be a significant (or near-significant) 
variance component for HABIT*ENTRY, indicating that growth habit effects are not the 
same for all entries. Despite this variability, a significant HABIT effect is still found 
in two of the five environments. Both the PROC GLM F-tests and the likelihood ratio 
tests find significant ENTRY in only one environment. 

5 DISCUSSION 

The primary goal in this experiment - the comparison of the two growth habits 
across the different environments and entries - can be carried out effectively using 
any of the three approaches from Section 3. Each approach has its strengths and 
weaknesses. 

Among the approaches studied here, the FM approach uses the most detailed 
definitions of experimental error, providing the most complete foundation for investi­
gating the various growth habit interactions. However, it is also the most difficult to 
work with for breaking apart and examining these interactions. This is due in part 
to the complexity of the definition of experimental error for these interactions which 
follows from this approach. PROC MIXED has been designed to make this kind of 
work easier by providing less restrictive estimability requirements and more accurate 
standard errors for least-squares means and contrasts than are available in PROC GLM 
(Milliken, 1992). However, PROC MIXED can be rather cumbersome to work with if 
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tests of random effects are desired, and it will not provide means and standard errors 
for random effects. 

The MOB approach simplifies the analysis of some of the HABIT interactions at 
the cost of being unable to test the three-way interaction. This simplification is 
particularly useful in the fixed-environment setting, where the experimental error 
terms for HABIT, HABIT*ENTRY, and HABIT*ENV are all single mean squares, rather 
than the linear combinations of mean squares as in the FM approach. 

In this example, both the MOB and the FM approaches indicate a need for ex­
amining the changes of growth habit effects across environments. Thus, in both cases 
the BE approach is a reasonable next step. 

Table 10 represents one summary from the BE approach, and it provides interest­
ing and potentially useful information about the growth habits' tendencies in different 
environments. Specifically, this table points out that the largest differences between 
the two growth habits were observed in the two drought-year environments (1991). 
In particular, the indeterminate stem termination growth habit provides, on average 
over the different lines of soybeans, higher yields than the determinate stem termi­
nation in these environments. A more detailed analysis of this interaction might 
include contrasts comparing the habit effects in the two drought-year environments 
with those in the other three, using either the FM or MOB approach. 

Also, although the MOB approach provides no test for the three-way interac­
tion, the BE results suggest the possibility of such an effect with the detection of 
HABIT*ENTRY interactions in each environment. Further investigation of these inter­
actions might be done in each environment using profile plots or by examining the 
differences in yield between the two growth habits over the 20 entries. Results of 
these detailed analyses are not presented here. 

As detailed in Section 3.1, the drawback to applying the BE approach is that, 
since all experimental errors are based on within-environment variability, inferences 
are made in the "narrow inference space" as defined by McLean, Sanders, and Stroup 
(1991). Thus conclusions drawn within an environment apply only to that environ­
ment. Patterns may be noted across the environments, but they are not explicitly 
tested using an across-environment experimental error unless the BE analyses are 
used in conjunction with another approach. 
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Table 1: Comparison of PROC GLM and PROC M1XED 

• PROC GLM with RANDOM statement and TEST option 

"Usual" estimation of ANOVA mean squares through least squares 

Automatic computation of table of Expected Mean Squares 

Estimation of variance components for random effects by Method of Mo­
ments 

Fixed and random effects tested using F-test 

* Use approximated DF 

* Appropriate linear combinations of variance components form error 
terms 

• PROC MIXED 

- Estimation of variance components for random effects by REML (Wolfin­
ger, et al, 1992) 

Obtain estimate of full covariance matrix for model 

Estimation of fixed effects using weighted least squares 

Tests for effects 

* Random-Asymptotic likelihood theory (Normality) 

* Fixed-F-test with approximate DF from appropriate error term 
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Table 2: Mean squares and variance components for FM approach 
GLM MIXED 

Mean Variance Variance Standard 
Source DF Square Component 
ENya 4 20596 169.5 
BLOCK(ENY) 10 140 3.2 
ENTRY 19 89 0.54 
ENTRY*ENY 76 35 2.8 
ENTRY*BLOCK(ENY) 190 10 2.1 
HABITb 1 245 -

HABIT*ENya 4 102 1.5 
HABIT*BLOCK(ENY) 10 7 0.044 
HABIT*ENTRY 19 51 2.5 
HABIT*ENTRY*ENY 76 14 2.5 
RESIDUAL/ERROR 190 6 6.3 

aYariance component estimated only when considered random 
bFixed effect-no variance component estimated 

Component 
169.5 

3.2 
0.54 
2.8 
2.1 
-

1.5 
0.044 
2.5 
2.5 
6.3 

Table 3: P-values for tests of effects from FM approach 

Error 
121.4 

1.6 
1.1 
1.0 
0.6 
-

1.2 
0.2 
1.1 
0.8 
0.6 

ENY Random ENY Fixeda 

MIXED 
Likelihood 

Source GLM Ratio Wald 
ENY < .01 < .01 .16 
BLOCK(ENY) < .01 < .01 .04 
ENTRY .30 .62 .63 
ENTRY*ENY < .01 < .01 .01 
ENTRY*BLOCK(ENY) < .01 < .01 < .01 
HABIT .23 .19c 

HABIT*ENya < .01 < .01 .23 
HABIT*BLOCK(ENY) .33 .77 .79 
HABIT*ENTRY < .01 < .01 .02 
HABIT*ENTRY*ENY < .01 < .01 < .01 

aP-values are presented only for effects for which test statistics change 
bRequires that ENY*HABIT effect is zero 

GLM MIXED 
< .01 b < .01 

.04b .03 
< .01 < .01 

cPROC MIXED test for fixed effects does not depend on method chosen for testing random 
effects 
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Table 4: Mean squares and variance components for MOB approach 
GLM MIXED 

Mean Variance 
Source DF Square Component 
ENya 4 6865.0 170.6 
ENTRY 19 29.6 0.5 
ENTRY*ENY 76 11.5 3.5 
HABITb 1 81.7 -

HABIT*ENya 4 33.9 1.5 
HABIT*ENTRY 19 17.3 2.5 
HABIT*ENTRY*ENY 76 4.6 4.6 

aYariance component estimated only when considered random 
bFixed effect-no variance component estimated 
CIn MOB approach, this effect is the error/residual term 

Variance 
Component 

170.6 
0.5 
3.5 
-

1.5 
2.5 
4.6 

Table 5: P-values for tests of effects from MOB approach 

Standard 
Error 
121.4 

1.1 
1.0 
-

1.2 
1.1 
0.7 

ENY Random ENY Fixeda 

MIXED 
Likelihood 

Source GLM Ratio Wald 
ENY < .01 < .01 .16 
ENTRY .30 .62 .64 
ENTRY*ENY < .01 < .01 < .01 
HABIT .23 .26c 

HABIT*ENya < .01 < .01 .22 
HABIT*ENTRY < .01 < .01 .02 

a P-values are presented only for effects for which test statistics change 
bRequires that ENY*HABIT effect is zero 

GLM MIXED 
< .01 b < .01 

.04b .04 
< .01 < .01 

cPROC MIXED test for fixed effects does not depend on method chosen for testing random 
effects 
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Table 6: REML variance component estimates for BE approach 
Environment 

Source ASH90 HES91 HES92 OTT91 
BLOCK <0 1.0 <0 10.7 
ENTRY 2.4a 2.8 2.5a 6.0 
ENTRY*BLOCK 2.7a 4.5 0.8a 2.4 
HABITb 
HABIT*ENTRY 8.5 7.3 3.4 1.8 
ERROR/RESIDU A 6.4 4.2 4.4 5.0 

a Method of Moments estimate of this variance component differs slightly 
bFixed effect-no variance component estimated 

Table 7: GLM p-values for tests of effects from BE approach 
Environment 

Source ASH90 HES91 HES92 OTT91 
BLOCK .61 .03 .65 < .01 
ENTRY .22 .16 .07 < .01 
ENTRY*BLOC .02 < .01 .16 .01 
HABIT .60 < .01 .51 .01 
HABIT*ENTRY < .01 < .01 < .01 .02 

161 

OTT92 
4.8a 
2.8a 
<0 

4.0a 
11.3a 

OTT92 
< .01 

.14 

.54 

.59 

.03 

Table 8: Likelihood Ratio p-values f01' tests of effects from BE approach 
Environment 

Source ASH90 HES91 HES92 OTT91 OTT92 
BLOCK 1.00 .09 1.00 < .01 < .01 
ENTRY .44 .33 .14 < .01 .25 
ENTRY*BLOC .05 < .01 .35 .04 1.00 
HABITa .60 < .01 .51 .01 .59 
HABIT*ENTRY < .01 < .01 < .01 .05 .03 

aFixed effects are tested with an F-test 
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Table 9: Wald p-values for tests of effects from BE approach 
Environment 

Source ASH90 HES91 HES92 OTT91 OTT92 
BLOCK a .45 a .33 .35 
ENTRY .46 .38 .18 .04 .27 
ENTRY*BLOC .07 < .01 .36 .06 a 

HABITb .60 < .01 .51 .01 .59 
HABIT*ENTRY .01 .01 .04 .12 .12 

aTest not performed since variance component < 0 
bFixed effects are tested with an F -test; these are identical to the results from Table 9 

Table 10: Means for the two HABIT groups for each environment 
Environment 

HABIT ASH90 HES91 HES92 OTT91 OTT92 
Indeterminate 44.6 23.6 29.5 14.6 41.7 
Determinate 45.1 19.4 29.1 12.9 41.1 

Standard Errora 0.7 0.7 0.5 0.4 0.6 

aStandard error IS computed by hand using the appropriate denominator error term 
(HABIT*ENTRY) from PROC GLM 
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