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Applied Statistics in Agriculture 

Confidence Intervals for Variance Components 
in One-way Unbalanced Designs 

Franklin A. Graybill and Rana S. Fayyad 
Colorado State University 

Abstract 

Consider the one way unbalanced components of variance model given by 
Yij = I-l + Ai + Eij, 

(i = l, ... ,a, j = l, ... ,bi) where I-l is an unknown constant parameter, Ai 
and Eij are independent normal random variables with zero means and 
variances O"~ and 0"1 respectively. 
The problem is to obtain a confidence interval for O"~ with confidence 
coefficient greater than or equal to a specified 1 - a. Three new proce­
dures for obtaining confidence intervals for O"~ are examined. These new 
methods are derived using unweighted means. These three methods are 
compared with a "standard" procedure based on confidence coefficients 
and expected "widths". 

1 Introduction 

In a one-way random effects model it is often of interest to find confidence inter­

vals for the variance component O"~. As an example suppose we are interested in 
the nitrogen content of the foliage in a large orchard. The two major sources of 
variation are the variance of nitrogen content for the leaves on a given tree (0"1) 
and the variance among the nitrogen contents of the trees in the orchard ((T~). 
In order to 
measure the nitrogen content, a random sample of trees from the orchard is 

collected and a random sample of leaves is taken from each tree; )Iii is the 

observed nitrogen content for the jth leaf from the ith tree sampled, and the 
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2 Kansas State University 

model is a one-way random effects model Iij = J.l + Ai + Eij . By observing Iij 
we want to find a confidence interval estimate for u~ with confidence coefficient 
1 - o. 

No method of obtaining exact confidence intervals for u~ has been given, but 
five approximate methods will be discussed here. Three of them give confidence 
coefficients very close to 1 - o. One of these methods is the Tukey-Williams pro­
cedure and was developed independently by Tukey (1951) and Williams (1962). 
Another was developed independently by Moriguti (1954) and Bulmer (1957). 
The third was developed by Howe (1974). These three methods have confidence 
coefficients close to 1 - 0 and it has been proved by Wang (1990) that the confi­
dence coefficient for the Tukey-Williams procedure is ~ 1 - o. Two other meth­
ods labeled method 4 and method 5 which are derived using Bonferroni's method 
have confidence coefficients ~ 1 - 20. These five methods use the among sums of 

- - 2 - 2 
squares = L:i L:j (Ii. - Y .. ) and the within sums of square= I:i L:j (Iij - Ii.) 
which are scaled chi-squared and are independent. 

For the unbalanced case however the among sums of squares are no longer 
scaled chi-squared and hence a problem arises. Burdick and Graybill (1984) 
gave an approximate method for obtaining confidence intervals for u~ for the 
unbalanced case but this method does not always have a confidence coefficient 
greater than the specified 1 - o. 

In this article three new methods A, Band C are proposed for finding confi­
dence intervals for u~ for the unbalanced one-way design. At least one method, 
method A, has confidence coefficient ~ 1 - o. 

2 The Balanced One-Way Classification 

Consider the one-way random effects model 

y>-tl+k+g· I) - r 1 I) i = 1, ... ,a; j = 1, ... ,b (1) 

where J.l is a constant parameter, Ai and Eij are independent normal random 
variables with zero means and variances u~ and Uk respectively. An ANOVA 
table is 

Source of Mean Squares Degrees of Expected 
Variation (MS) Freedom Mean Square 
(SV) (DF) (EMS) 
Factor A S2 

A nl bu2 + u 2 
A E 

Error 5k n2 Uk 

where 
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s~ ='2:~=1 '2:i=1 (Yi. - f.)2 /n1, 
S~ ='2:~=1 '2:~~1 (}'ij - Yi.)2/ n2 , 

- b - b a .' 
'where 121 = a-I, n2 = a(b - 1), ri. = '2:j=1 rij/b and Y. = '2: j=1 '2: i =1 Iij/ab. 
The random variables f:., S~ and S~ are complete sufficient statistics for this 
model, and n1S~/ E(S~) and n2S~/ E(S~) are independent chi-squared random 
variables with 1/,1 and 712 degrees of freedom respectively. 
For the balanced model in (1), we will display the five different methods referred 
to above for obtaining confidence intervals for O"~. 

Method 1: Tukey \Villiams (TW) Procedure 

A 1 - (} lower and upper confidence limit for O"~ given by the T\V procedure are 
L TW and UnF, where 

aIld 

Un .. : = lsi - (F:x:rQ,n2S1)]/bFo::nl,CX)' 

Wang (1990) showed that P[Lnv :::; O"~ :::; Un...,] 2: 1 - (} 

Method 2: Howe (H) Procedure 

( 'J -) 

The lower and upper 1 - 0' confidence bound for O"~ given by Howe is LH and 
UH respectively where 

(4) 

(5) 
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4 Kansas State University 

. - ( 2/5'2 - (F2 ) F2 (F-1 )2 d A -where F - SA E), B-1 - 1-e>:nl,n2 - l-e>:7ij,n2 1 - l-o:nl'CXl ,an -
(1 - F2 \ - F2 (1 _ F-1 )2 

o:rq ln2} 0':nl,n2 O:7q ,00 . 

For the Howe procedure it is not knO\vn if P[L H :::; O'~ :::; UH ] is ;:::: 1 - a. 

Method 3: Bulmer-110riguti (BM) Procedure 

The lower and upper 1 - a confidence bound for O'~ using Bulmer- Morigutti 's 
method is LBM and UBM where 

(6) 

UBM = 0 
( 7) 

where F = S.~I S~. 
For the Bulmer-11origuti procedure it is not known if P[LBlY1 :::; O'~ :::; UBM ] is 
>1-0' 

Two Other Methods 

Methods 4 and 5 for obtaining confidence intervals, for O'~ will be based on the 
1 - a confidence intervals for O'~ + O'~ 1 b, O'~ /0'1 and O'~ respectively given 
below in (8), (9), (10). See Graybill (1976). 

(8) 

where 

Ll S~ 1 bFl-o/2:nl ,ex 

U1 S~/bFe>/2:nl'CXl' 

(9) 

where 

L2 [(S~/S~Fl-e>/2:nl,n2) -l]/b 

[h [(S~/S~FQ/2:nj,7'2) -l]lb. 
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(10) 

where 

L3 511 F1- a!2:n2,oo 

U3 511 Fa!2:n2,oo' 

Method 4: 

By the Bonferroni method the intersection of (8) and (10) gives the upper and 
lower confidence bounds L4 and U4 respectively for (j~ with confidence coefficient 
2: 1 - 20:, where L4 and U4 are given by 

Hence substituting for U1 , U3, L1 , L3 we get 

where 

and 

U4 = 5~/bFa:nl'oo - 51IbFl-a:n2,oo 

For this method P[L4 ::; (j~ ::; U4 ] is not always 2: 1 - 0: 

Method 5: 

(11 ) 

(12) 

By the Bonferroni method the intersection of (9) and (10) gives an upper and 
lower confidence limits Ls and Us respectively for (j~ with confidence coefficient 
2: 1 - 20:, where Ls and Us are given by 
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6 Kansas State University 

where 

S~/(bFl-a:nl,=Fl-a:nl,n2) - S'j)(bF1 -o.: n2 ,OO) 

S~/(bFa:nl,o:,Fa:nl,n2) - S1/(bFa:n2 ). 

For this method P[Ls :::; a~ :::; Us] is not always 2: 1 - a. 

3 Unbalanced One-Way Design 

(13 ) 

(14 ) 

The above five methods are appropriate for balanced one-way models. Now 
consider the unbalanced model given by 

i = 1, ... , a j = 1, ... , bi (1,5) 

where /1 is a constant parameter, A, and Eij are independent normal random 
variables with zero means and variances a~ and a1 respectively. 

In this section we will present three new methods for obtaining confidence 
intervals for a~ for the model in (15). The three methods are 

Method A: A modification of TW procedure. 
Method B:A modification of method 4. 
Method C: A modification of method 5. 

Any of the five methods presented in section 2 can be modified for the unbal­
anced case but we chose TW's method rather than Howe's or Bulmer-Moriguti's 
method to modify because it has been shown that of the three methods, although 
Howe's method is the best, T\V's method is "almost" as good as Howe's method 
and in many cases is "as" good. Also it has been proved by Wang (1990) that 
the confidence coefficient using the TW method is 2: 1 - a. In addition the 
T\V formula is the simplest of the three methods to compute. ·We also examine 
methods Band C for the unbalanced case since they have not been previously 
examined. 

First we state three theorms that will be used to derive methods A, B, and 
C. 

Theorem 1 
;- - - T 

In the unbalanced model Yij = f1 + Ai + Eij let Y = [} 1, Y2 , ..• , Ya ] where 
- b ' 

Yi = (l/b;)I:j~l Yij. Then Y '" MVA(f11,~) where ~ = (T~I+(T1K and where 
K is a diagonal matrix with 1 j bi on the ith diagonal. 

Theorem 2 
- - 2 

In the unbalanced model let Y'AY = Y'[I - (lja)J]Y = I:;=1 (Y; - Y) where 
}7 = (l/a)I:i'=l }i; then Y'AY is distributed as I:i'::}"Vi where ,i are the 
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non-zero characteristic roots of Ab and iii are independent chi-squared random 
variables where each has one degree of freedom. For a discussion of this theorem 
see Graybill (1976). 

Theorem 3 

If ~irnm and 'Imax are the minimum and maximum non-zero characteristic roots 
of AL, then 

(16 ) 

where (jmin and (jmax are the minimum and maximum characteristic roots of L. 

We will outline a proof of this theorem. 

AL = O"~ A + 0"1AK where A = I - (1/ a)J is an idempotent matrix of rank 
a-I. Thus there exists an orthogonal matrix Q such that 

Let Y(AL) be the characteristic roots of AL, then we have the following. 
YAL) = Y(ALA) = Y(Q'AQQ'LQQ'AQ) = Y(G) where G is given by 

G = [0 0 1 o L2 

where L2 is a principal (a - 1) X (a - 1) submatrix of Q'LQ. 
By the seperation theorem (Wilkinson 1972) if (jl ::; (j2 ::; ... ::; (ja are the 
characteristic roots of Land '12 ::; ". ::; la are the characteristic roots of L2 
then 

(jl ::; 12 ::; (j2'" ::; 'I" ::; (ja. 

Since the non-zero characteristic roots of AL are the same as the characteristic 
roots of L2 it follows that 

This completes the proof. 

Let rl = a-I and we have 

1 - a = P[~;~l \~ ::; r1F1_c;:Tloo] = P[~;~l Imax Ii ::; 'ImaxrlFl-c;:TJ,oo]' 

(17) 

But ~'iVi :s: ~'maxV;::; ~(}1JW:LV; so we get P[~i~ll'iV; ::; (jmax 7'lF1-c;,Tl,OO] ~ 
1 - a. 
Substituting Y' AY for ~ li'l; we get 

(18) 
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8 Kansas State University 

Similarly 
1- a = p[Lr~l Vi ~ 1'1 F1- o :T1 ,00] = p[Lr~l tminVi ~ tmin1'lF1- o :q ,00]' 

But LtiVi ~ LtminVi ~ LOminVi, so we get p[Lr~l tiV£ ~ Omin 7'lF1 - o ,T},oo] ~ 
1 - a. 
Substituting Y'AY for LtiVi we get 

( 19) 

But"E = 0"~I+0"1K where K =diag(1/b1 , 1/b2 , ... , l/ba ) • Hence the charcteristic 
roots of "E are 

for i = 1, ... , a 

Thus 

(20) 

and 

(21) 

where m and M are the minimum and maximum of biS respectively for i = 1, ... , a. 
Hence 

(22) 

and 

(23) 

We use (22) and (23) to derive the three methods A, Band C for obtaining 
confidence intervals for O"~. 

Method A - Modification of TW procedure 

Replacing S~ with Y' AY in equations (2), (3) and using the minimum of 
E(Y' AY) instead of E(S~) we get a modified version of the lower bound of 
the TW formula. Using the maximum of E(Y'AY) instead of E(S~) we get a 
modified form of the upper bound of the TW formula. The lower and upper 
bounds are given by LA and UA where 

(24) 

and 

(25) 
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b. - 0, b. 

Method B - TVloclification of :Method 4 

In order to modify method 4 we will take the intersection of (22) and (23) 
with equation (10), the points of intersection will give us the lower and upper 
bounds for a~ as LB and UB respectively where, 

(26) 

(27) 

where 1'2 = b. - Q. 

Method C - Modification of Method 5 

In the unbalanced one-way model \\lald (1940) gave a procedure for finding 
exact lower and upper confidence bounds for T = a~/ a1. This method requires 
the solution of two nonlinear equations. The 1 - Q lower and upper confidence 
bounds given by Wald are denoted by Lw and Uw respectively where 

P[Lw :; T :; Uw 1 = 1 - a 

where L11' is the root of the equation 

f( T) = Fa:T] .T2 

and Uw is the root of the equation 

where 

;=1 

and where Wi = bd(l + biT). 

(28) 

(29) 

(30) 

(31) 

By the Bonferroni method the intersection of (28) with equation (10) gives the 
lower and upper bounds for a~ as Lc and Uc where 

(32) 

(33) 

9 

Conference on Applied Statistics in Agriculture
Kansas State University

New Prairie Press
https://newprairiepress.org/agstatconference/1993/proceedings/2



10 Kansas State University 

4 Evaluation of the Procedures 

The only known method for obtaining confidence intervals with confidence coef­
ficients ~ 1 - 0: for the unbalanced model in (15) is to discard data at random 
in each cell so that all cells contain m=min(bi ) observations and use the TW 
method for the resulting balanced model. We will denote this method as the 
discarded TW method, DTW. 

Simulation was used to evaluate methods A, B, and C, by computing con­
fidence coefficients and expected widths. These were compared with the DTW 
procedure as the standard. It can be shown that the confidence coefficients for 
methods A, B, C and DTW depend on the unknown parameters a~ and a1 only 
through p where p = a~/(a~ + a1). Thus the confidence coefficients depend on 
bi, a, 1 - 0:, which are known and p which is unknown. For details see Fayyad 
(1993). 

Simulations were used to evaluate and compare the methods. The values of 
p were taken to be 0.01(0.01)0.1,0.1(0.1)0.9,0.99. The values of a used were 
3,4,8 and 10; various values of bi were used for each value of a; 1 - 0: was taken 
as 0.90, 0.95, 0.99. Tables (1), (2), (3) and (4) show results for 1 - 0: = 0.95. 
For details of simulation and results for 1 - 0: = 0.90 and 1 - 0: = 0.99 you can 
consult Fayyad (1993). 

The 'expected widths' ElL - a~I/(a~ + a1) were used for the lower bounds, 
and EIU - a~I/(a~ + a1) for the upper bounds. The average widths were com­
puted for methods A, B, C and DTW. The ratio of the average width for methods 
A, B, and C to the average width using the DTW procedure was computed. Thus 
to evaluate procedures A, Band C for lower bounds we computed 

and 

ElLA - a~I/EILDTw - a~l, 
EILB - a~I/EILDTw - a~1 

EILe - a~I/EILDTw - a~l· 

The same was done for upper bounds. 
Tables (1), (2), (3) and (4) summarize the results obtained. Tables (1) and 

(2) show the ranges of confidence coefficients where the confidence coefficients 
are calculated for each value of p and the minimum and maximum confidence 
coefficients are given. Tables (3) and (4) give the minimum and maximum values 
of ratios of expected widths where the ratios are calculated for each value of p. 

From Tables (1) and (2) the confidence coefficients for upper and lower confidence 
bounds are ~ 1 - 0: except for one case where method C does not attain the 
stated confidence coefficient for the upper bound. From Table (3) for moderately 
unbalanced data method A gives the lowest expected width. 

Once the data becomes very unbalanced, method A gives larger expected 
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widths than the DTW method; however method C has lower expected widths 
than method A in some of the cases but it still has slightly larger expected width 
than the DTW procedure. These unbalanced cases are extreme and would very 
rarely occur in practical situations; hence for practical situations method A seems 
to be the 'best' for upper bounds. For the lower bounds (Table 4) method A 
has the smallest expected widths for balanced, moderately unbalanced and very 
unbalanced designs, hence method A seems to be the best of the four procedures 
for lower bounds. So overall \ve recommend that method A be used to compute 
upper, lower and two sided confidence intervals for ()~ in the unbalanced one-way 
variance components model. 

5 An Example 

Swallow and Searle (1978) presented the data shown in the Table below in which 
five groups of vegetahle oil were randomly selected from a moving production line 
and weighted. We will compute lower, and upper confidence bounds for ()~, the 
variance of a single weighing. using method A and method B. The data are used 
to calculate Y' AY = 0.0142.5 and 81 = 0.00214, and these were substituted into 
formulas (24), (25), (26) and (27). The values of LA, LB , UA and UB respectively 
were obtained for 1 - 0:' = 0.95. The values are: LA = 0.00089, UA = 0.019, 
LB = 0.00047 and UB = 0.019. 

1Veights of Bottles (in ounces) 

Group 
1 2 3 4 5 
1.5.70 15.69 15.75 15.68 15.65 
15.68 15.72 15.82 15.66 15.60 
15.64 15.75 15.59 
1.5.60 15.71 

15.84 

y; 15.655 1.5.7 15.774 15.643 15.62.5 

II 
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Table 1 
Ranges Of Confidence Coefficients For Upper Bounds as p varies from 0 to 1. 

1 - 0: = 0.95 

a bi Range for Range for Range for Range for 
Method C Method B DT\V Method A 

3 234 0.951-0.985 0.951-0.982 0.949-0.952 0.950-0.955 
3 2 10 20 0.952-0.970 0.951-0.988 0.951-0.953 0.951-0.961 
3 2 2 1000 0.948-0.955 0.951-0.999 0.951-0.951 0.950-0.971 
3 10 10 10 0.953-0.971 0.951-0.966 0.951-0.953 0.951-0.952 
3 10 20 30 0.952-0.965 0.951-0.973 0.951-0.952 0.951-0.956 
4 2 2 2 2 0.952-0.996 0.954-0.983 0.951-0.953 0.951-0.955 
4 2 2 2 3 0.952-0.994 0.953-0.987 0.951-0.953 0.952-0.957 
4 2244 0.951-0.990 0.954-0.988 0.952-0.954 0.951-0.958 
4 2 2 100 100 0.952-0.962 0.954-0.998 0.953-0.953 0.954-0.976 
4 10101011 0.956-0.973 0.953-0.971 0.952-0.953 0.953-0.954 
4 10 10 10 100 0.952-0.964 0.953-0.994 0.953-0.953 0.953-0.971 
8 2 3 4 5 

6 789 0.950-0.983 0.954-0.994 0.946-0.957 0.954-0.964 
8 2222 

2 2 2 1000 0.938-0.960 0.954-1.000 0.953-0.954 0.946-0.988 
8 10101010 

10101010 0.956-0.975 0.954-0.973 0.952-0.954 0.954-0.956 
8 10 20 30 40 

50 60 70 80 0.955-0.963 0.954-0.987 0.949-0.954 0.954-0.968 
8 50 50 50 50 

50 50 50 100 0.957-0.963 0.954-0.980 0.953-0.954 0.954-0.966 
8 50 50 50 50 

50 50 100 100 0.957-0.963 0.954-0.973 0.952-0.954 0.954-0.960 
10 2 3 4 5 6 

7 8 9 10 11 0.954-0.979 0.945-0.997 0.944-0.948 0.945-0.969 
10 22222 

2 2 22 1000 0.944-0.958 0.945-1.00 0.945-0.947 0.945-0.993 
10 10 10 10 10 10 

10 10 10 10 10 0.951-0.977 0.945-0.967 0.945-0.950 0.945-0.950 
10 10 20 30 40 50 

60 70 80 90 100 0.954-0.960 0.945-0.995 0.944-0.946 0.945-0.974 
10 20 20 20 20 20 

20 20 20 20 1000 0.947-0.957 0.945-1.00 0.945-0.946 0.945-0.991 
10 50 50 50 50 50 

50 50 50 50 60 0.952-0.960 0.945-0.967 0.943-0.945 0.945-0.952 
10 50 50 50 50 50 

50 50 50 50 100 0.953-0.960 0.945-0.982 0.945-0.947 0.945-0.963 
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Table 2 
Ranges Of Confidellce Coefficients For Lower Bounds as p varies from 0 to 1. 

1 - () = 0.9.5 

a b , Range for Range for Range for Range for 
~Tethod C l"lethod B DTW Method A 

3 234 0.96:3-l.000 0.952-0.996 0.951-0.970 0.9.51-0.97:3 

3 2 10 20 0.960-0.992 0.951-0.999 0.950-0.953 0.951-0.978 

3 2 2 1000 0.951-0.961 0.951-0.986 0.950-0.952 0.951-0.966 

3 10 10 10 0.959-0.992 0.951-0.984 0.951-0.956 0.9S0-0.9S5 

3 10 20 30 0.960-0.984 0.951-0.997 0.951-0.952 0.9.51-0.970 

4 2 222 0.963-l.000 0.951-0.993 0.947-0.971 0.949-0.974 

4 2 2 2 3 0.963-1.000 0.951-0.993 0.947-0.971 0.950-0.971 

4 2 244 0.961-1.000 0.950-0.996 0.949-0.965 0.949-0.973 

4 2 2 100 100 0.953-0.971 0.949-0.995 0.948-0.950 0.949-0.976 
4 10101011 0.956-0.992 0.948-0.984 0.947-0.9S2 0.947-0.951 

4 10 10 10 100 0.954-0.977 0.948-0.987 0.947-0.949 0.948-0.9.59 

8 2 345 
6 789 0.957-0.998 0.952-1.000 0.949-0.956 0.951-0.987 

8 2 2 2 2 
2 2 2 1000 0.951-0.966 0.950-0.978 0.948-0.950 0.950-0.959 

8 10101010 
10101010 0.961-0.992 0.950-0.984 0.950-0.953 0.950-0.9.54 

8 SO SO 50 50 
50 50 50 100 0.960-0.975 0.950-0.973 0.949-0.950 0.9.50-0.956 

8 50 50 50 50 
100 100 100 100 0.961-0.971 0.9.50-0.98.5 0.949-0.950 0.950-0.965 

8 10 20 30 40 
50 60 70 80 0.959-0.976 0.950-l.000 0.949-0.950 0.950-0.992 

10 2 3 456 
7891011 0.955-0.996 0.951-1.000 0.946-0.955 0.950-0.991 

10 2 2 2 2 2 
2 2 2 2 1000 0.950-0.968 0.950-0.979 0.949-0.950 0.950-0.957 

10 10 10 10 10 10 
10 10 10 10 10 0.958-0.992 0.950-0.982 0.950-0.953 0.950-0.953 

10 10 20 30 40 50 
60 70 80 90 100 0.959-0.973 0.950-1.000 0.948-0.951 0.950-0.994 

10 20 20 20 20 20 
20 20 20 20 1000 0.953-0.966 0.949-0.976 0.949-0.951 0.951-0.956 

10 50 50 .50 50 .50 
.50 50 SO 50 60 0.959-0.974 0.950-0.967 0.950-0.951 0.950-0.9.52 

10 50 50 SO 50 50 
.50 SO SO 50 100 0.960-0.973 0.9.50-0.972 0.950-0.951 0.950-0.9.5.5 
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Table 3 
Ranges Of Ratios Of Average Widths Of Each Of The Three Methods To The 

Expected Width Using DTW Method For Upper Bounds for 1 - Q = 0.95 

a b· , Range for Ratio Range for Ratio Range for Ratio 
Method C to DTW Method B to DTW Method A to DTW 

3 234 2.652-3.766 0.754-0.999 0.739-0.999 

3 2 1020 0.730-1.662 0.469-0.997 0.466-0.997 

3 2 2 1000 0.728-1.080 0.713-0.999 0.713-0.999 

3 10 10 10 1.670-1. 702 1.000-1.015 0.999-1.000 

3 10 2030 0.911-1.420 0.667-1.000 0.662-1.000 
4 2222 6.003-6.642 1.000-1.058 0.996-1.000 
4 2223 4.212-5.061 0.981-1.000 0.934-1.000 
4 2244 2.276-3.284 0.808-0.999 0.775-0.999 
4 2 2 100 100 0.590-1.210 0.580-0.998 0.577-0.998 

4 10 10 10 11 1.520-1.617 1.000-1.014 0.983-1.000 
4 10 10 10 100 0.981-1.280 0.870-1.000 0.863-1.000 

8 2345 
6 789 0.717-1.849 0.578-0.998 0.528-0.964 

8 2222 
2 2 2 1000 0.913-1.110 1.001-1.244 1.001-1.228 

8 10 10 10 10 
10 10 10 10 1.385-1.524 1.000-1.078 0.999-1.000 

8 10 2030 40 
50 60 70 80 0.432-1.198 0.482-0.999 0.462-0.999 

8 50 50 50 50 
50 50 50 100 1.092-1.174 1.000-1.092 1.000-1.061 

8 50 50 50 50 
100 100 100 100 0.927-1.148 0.910-1.000 0.888-1.000 

10 23456 
7 8 9 10 11 0.564-1.693 0.575-0.998 0.508-0.997 

10 22222 
2 222 1000 0.939-1.119 1.002-1.400 1.002-1.379 

10 10 10 10 10 10 
10 10 10 10 10 1.344-1.500 1.000-1.092 1.000-1.003 

10 10 20 30 40 50 
60 70 80 90 100 0.369-1.169 0.491-0.999 0.463-0.999 

10 2020202020 
20 20 20 20 1000 0.967-1.111 1.000-1.324 1. 000-1.312 

10 50 50 50 50 50 
505050 5060 1.125-1.178 1.000-1.068 1.000-1.028 

10 5050505050 
50 50 50 50 100 1.091-1.170 1.000-1.141 1.000-1.100 
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Table 4 
Ranges Of Ratios Of Average Widths Of Each Of The Three Methods To The 

Expected Width Using DTW MetiJOd For Lower Bounds for 1 - 0' = 0.95 

bi Range for Ratio Range for Ratio Range for Ratio 
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Method C to DTW Method B to DTW Method A to DTW 

3 234 0.616-1.280 0.600-1.066 0.808-0.996 
3 2 1020 0.623-1.135 0.561-1.086 0.637-1.000 

3 2 2 1000 0.797-1.020 0.673-1.033 0.766-1.000 
3 10 10 10 0.932-1.144 0.931-1.058 1.000-1.010 
3 10 2030 0.899-1.097 0.895-1.065 0.907-1.000 

2222 0.612-1.433 0.696-1.110 0.996-1.003 
4 2223 0.627-1.402 0.651-1.091 0.932-0.999 
4 2244 0.651-1.342 0.622-1.096 0.819-0.998 
4 2 2 100 100 0.666-1.065 0.615-1.078 0.671-1.002 
4 10 10 10 11 0.934-1.168 0.932-1.068 0.992-1.000 
4 10 10 10 100 0.928-1.087 0.927-1.059 0.943-1.001 

8 234.5 
6 789 0.722-1.319 0.679-1.189 0.718-1.008 

8 2222 
222 1000 0.892-1.055 0.807-1.055 0.899-1.003 

8 10 10 10 10 
10 10 10 10 0.966-1.227 0.971-1.092 0.998-1.000 

8 50 5050 50 
50 50 50 100 0.990-1.086 1.000-1.055 0.991-1.001 

8 50 505050 
100 100 100 100 0.955-1.074 1.000-1.093 0.975-1.007 

8 10 20 30 40 
50 60 70 80 0.824-1.097 0.961-1.176 0.916-1.020 

10 23456 
7 8 9 10 11 0.705-1.304 0.677-1.231 0.687-1.016 

10 22222 
2 222 1000 0.897 -1.065 0.822-1.063 0.907-1.003 

10 10 10 10 10 10 
10 10 10 10 10 0.973-1.239 0.977-1.098 0.999-1.003 

10 10 20 30 40 50 
60 70 80 90 100 0.770-1.091 0.968-1.215 0.916-1.034 

10 2020202020 
20 20 20 20 1000 0.953-1.061 1.000-1.061 0.967-1.003 

10 50 5050 50 50 
50 50 50 50 60 1.000-1.096 1.000-1.054 0.999-1.001 

10 50 50 50 50 50 
50 50 50 50 100 0.993-1.092 1.000-1.061 0.992-1.002 

Conference on Applied Statistics in Agriculture
Kansas State University

New Prairie Press
https://newprairiepress.org/agstatconference/1993/proceedings/2



16 Kansas State University 

References 

Bulmer, M. G. (19.57). Approximate confidence limits for components of vari­
ance. Biometrika 44, 1.59-167. 
Burdick, R. K. and Graybill, F. A. (1984). Confidence intervals on linear combi­
nations of variance components in the unbalanced one-way classification. Tech­
nometrics 26, 131-136. 
Fayyad, R. S. (1993). Confidence Intervals for Variance Components in Un­
balanced Designs. Unpublished Dissertation, Colorado State University, Ft. 
Collins, Colorado. 
Graybill, F. A. (1976). Theory and Application of The Linear Model. Duxbury, 
North Scituate, Massachusetts. 
Howe, W. G. (1974). Approximate confidence limits on the mean of X + Y where 
X and Yare two tabled independent random variables. J. Amer. Stat. Assoc. 
69, 789-794 
Moriguti, S. (1954). Confidence limits for a variance component. REP. STAT. 
APPL. RES., JUSE 3,7-19. 
Swallow, W. H. and Searle, S. R. (1978). Minimum variance quadratic unbiased 
estimation (MIVQUE) of variance components. Technometrics 20, 265-272. 
Tukey, J. W. (19.51). Components in regression. Biometrics 7, 33-69 
Wald, A. (1940). A note on the analysis of variance with unequal class frequen­
cies. Ann. Math. Stat. 11, 96-100. 
Wang, C. M. (1990). On ranges of confidence coefficients for confidence intervals 
on variance components. Comm. Stat.-simula. 19, 1165-1178. 
Wilkinson, J. H. (1972) The Algebraic Eigenvalue Problem Clarendon Press, 
Oxford. 
Williams, J. S. (1962). A confidence interval for variance components. Biometrika 
49, 278-281. 

Conference on Applied Statistics in Agriculture
Kansas State University

New Prairie Press
https://newprairiepress.org/agstatconference/1993/proceedings/2


	CONFIDENCE INTERVALS FOR VARIANCE COMPONENTS IN ONE-WAY UNBALANCED DESIGNS
	Recommended Citation

	tmp.1449162726.pdf.2QGry

