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When using optimization techniques to optimize a sampling with 
partial replacement design, it is often assumed that the 
following parameters are known exactly: 1) desired level of 
sampling error or total sampling cost for the surveYi 2) variable 
costsi and 3) population variance and correlation coefficients. 
In practice, however, these parameters needed for finding the 
optimal design are only educated guesses. The parameters can be 
considered to be fuzzy. In this paper, brief consideration is 
given to the optimization of a sampling with partial replacement 
design using nonlinear programming techniques with fuzzy 
parameters. The basis of this method is to obtain the optimal 
solution by minimizing the objective function, subject to some 
restrictions, when the parameters that appear in both the 
objective function and restriction functions are fuzzy. The 
method is applied to a two-occasion continuous forest inventory. 
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Introduction 

Continuous forest inventory (CFI) has been used for 
monitoring forests for centuries. CFI is used to monitor the 
status of a forest, as well as change over time of a forest. The 
first approach used for CFI was compete enumeration. Based on 
compete enumeration, every tree in the population is remeasured 
periodically. Because of the expense and time, complete 
enumeration is no longer used. Instead, sampling methods are now 
widely employed. With sampling techniques, some small area plots 
are drawn and measured from the population. The traditional 
sampling method used for CFI is completely repeated sampling. 
With completely repeated sampling, all sample plots are marked 
and remeasured periodically through time. 

Recently, a more efficient sampling technique, repeated 
sampling with partial replacement of sample plots (SPR) , has been 
presented by Ware and Cunia (1962) for forest monitoring. In SPR, 
only part of the sample plots from the previous occasion is 
remeasured in the next sampling occasion, and some new plots are 
added. The plots measured on both occasions are refereed to as 
matched plots, and the plots measured only on one of the 
occasions are refereed to as unmatched plots. 

The high efficiency of the SPR for CFI has been shown 
analytically and in application by many forest researchers (for 
example, Ware and Cunia 1962; Bickford, Mayer and Ware 1963; 
Hazard and Promnitz 1974; deVires 1986). Compared to completely 
repeated sampling, for a desired level of precision, total survey 
costs are generally lower with SPR (deVires 1986). In 
application, Bickford et el. (1963) have shown that the 
completely repeated sampling method needs more than twice the 
sample plots needed with SPR when the objective is to attain the 
same degree of sampling precision and the correlation between the 
two occasions is high. Based on these results, it can be 
concluded that SPR can be very efficient. 

Two basic methods are used in finding the optimal sampling 
design when SPR has been employed. They are the Lagrange 
multipliers (Ware and Cunia 1962) and the convex mathematical 
programming (Hazard and Promnitz 1974). Although in theory the 
optimal solution can be obtained with these methods, the optimal 
solution, as Cunia (1965) describes, is based on three 
assumptions: (1) variable costs (or cost units) are known 
exactly; (2) level of the sampling error or total sampling cost 
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is fixed; and (3) population variance and correlation coefficient 
are known. 

Unfortunately, these assumptions are usually not true in 
actual practice. Variable costs are generally vague since they 
are based on uncertain economic situations and forest conditions. 
Population variance and correlation coefficients are unknown 
population characteristics that are often only educated guesses 
prior to the survey and are only estimates after the survey is 
conducted. Likewise, precision requirements for the survey 
estimates are also frequently only educated guesses. For 
instance, Cochran (1977) gives a hypothetical example of a 
researcher who specifies that he desired the precision of his 
estimates to be within 5% of true mean, but the researcher would 
not be bitterly opposed to letting the error be 4% or 6%. 

The optimal solution is highly dependent on the assumption 
that these parameters needed for finding the optimal design are 
known or so called "crisp". If the parameters are not crisp, the 
solution of the optimal sample design is not truly optimal. A 
small change of the parameters can cause a great change in the 
optimal sample numbers. For example, deVires (1986, page 152) 
gives the following equations for calculating the optimal sample 
number of plots to minimize sampling costs when estimating mean 
volume at some desired level of precision: 

Nl_~ ~u _~ m = 2·\j1-r2 . ( - -\j1-r2 ) r Cm 
(Eq.1) 

Nl ~Cu U = 2' (1- -. (1-r2 ) ) 
V r Cm 

(Eq.2) 

where m is the matched sample number, u is the unmatched sample 

number, Nl is the total sample number at occasion one, p2 is the 
correlation coefficient between the two occasions, 8 2 is the 
population variance for the second occasion, V is the desired 
sampling precision, Cm and Cu are respectively the cost units of 
a matched plot and an unmatched plot in the linear cost function, 
C = Co + Cm ·m + Cu ·u. When the cost of a matched plot equals the 
cost of an unmatched plot, the optimal matched sample numbers as 
shown in (Eq.1) can change 50% if the correlation coefficient 
changes from 0.90 to 0.96. In practice, in order to be sure that 
the sampling requirements are met, sampling designers usually 
relax some restrictions when parameters are uncertain adding 
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"extra sample plots". In such a situation, the "optimal" design 
based on uncertain parameters is not truly optimal. 

Presented in this paper is a brief overview of some aspects 
of an on going research project where fuzzy methods are being 
used to account for uncertainties in parameters when optimizing 
the design of a continuous forest inventory. Since most 
continuous forest design problems are nonlinear in nature, 
emphasis in this project has been on the use of nonlinear 
programming methods with fuzzy parameters. 

Nonlinear Programming with Fuzzy Parameters 

A continuous forest sampling design problem can generally be 
written as a nonlinear programming problem, 

minimize (or maximize) 

subject to 

Z = f (x, C), 

g(x, A) ~ B, 

x ;:::0, 

where f(x, C) is the nonlinear or linear objective functioni g(x, 
A) is a constraint function(s) i x is the decision variablei and 
A, Band C are parameters that are usually assumed to be known 
constants (crisp). If this is so, then traditional programming 
methods usually can be used to solve the optimization problem. 
However, if A, Band C are uncertain due to vagueness, then 
traditional programming techniques should not be employed. 

Techniques in the area of fuzzy mathematics have been 
developed to solve such programs when parameters (A,B,C) are 
vague. Fuzzy mathematics provides a framework to account for 
vagueness in knowledge. Some terms related to vagueness are 
haziness, cloudiness, unclearness, and indistintiveness. The 
prime motivation for the development of fuzzy mathematics was the 
inadequacy of probability theory. Until the development of fuzzy 
mathematics, the only formal mathematical method for dealing with 
uncertainty was probability theory. 

The theory of fuzzy mathematics is concerned with 
uncertainties that are not statistical in nature. The 
relationship of measure theory to probability theory is analogous 
as fuzzy sets is to possibility theory (Kandel 1986i Kaufmann 
1975). Analogous to random variables in the probability domain, 
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fuzzy numbers (also referred to as fuzzy parameters) are used in 
the domain of fuzzy sets. There are essential differences 
between random variables and fuzzy numbers. The uncertainty of a 
fuzzy number is due to subjectivity and imprecision of human 
knowledge while the uncertainty of a random variable is because 
of the occurrence of a random event. Also, a fuzzy number is 
characterized by a membership degree (or possibility) that is 
usually subjectively given. The membership degree is the degree 
of evidence supporting the claim that a specific element of the 
universe of disclosure belongs to the fuzzy set. A membership 
degree is analogous to a probability for a random variable. All 
applications and operations of fuzzy numbers are based on their 
membership functions that determine membership degrees. 
Membership functions are analogous to probability functions. 

Bellman and Zadeh (1970) were among the first to propose the 
concept of decision making in a fuzzy environment. The fuzzy 
optimization has been developed in theory and has been used in 
practice. Zimmerman (1975, 1977), Hannan (1981), Luhandjula 
(1983), and Tanaka and Asai (1984) have used the theory of fuzzy 
sets to formulate and solve fuzzy linear programming problems. 
Some extensions of the fuzzy linear programming are given by 
Nakamura (1982). In his work, fuzzy goals and fuzzy constraints 
are treated as fuzzy sets, and the optimal membership functions 
of the fuzzy goals and constraints are given by using standard 
linear programming techniques. In terms of nonlinear 
programming, Sakawa and Yano (1989) have developed the 
methodology for converting nonlinear programming with fuzzy 
parameters to a traditional nonlinear programming problem. The 
fuzzy solution is then found using mUlti-objective nonlinear 
programming techniques. 

Determination of Membership Functions 

Determination of membership functions is vital in all 
applications of fuzzy set theory. Although there is no general 
technique for the solution of this problem, different techniques 
appear in the literature. These techniques can be classified 
into two types: use of prior heuristic knowledge, and use of 
statistical information. In this ongoing study, both techniques 
are being used. 

The most basic method to define membership functions is the 
use of prior knowledge. This method is also called the heuristic 
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method and is usually used for approximate numbers. An 
approximate number is defined as a fuzzy subset of real numbers. 
For example, approximately 8, is very close to 5, etc. By this 
method, membership function is subjectively given. Although the 
assignment of membership function is based on sUbjective judgment 
and prior knowledge, it is not arbitrary. The basis of the 
heuristic method is to choose an appropriate empirical function 
as the fuzzy distribution function based on experiences and the 
properties of the fuzzy number. Shown in Table 1 are six types 
of the most commonly used fuzzy distribution functions: 

Although the heuristic method described above is most often 
used, a more rigorous method for defining the membership function 
can be used if there is some statistical information. If a 
random number can be defined with a known probability 
distribution, it is possible to convert the random number to a 
fuzzy random number using a method developed by Civanlar and 
Trussell (1986). A random fuzzy number is defined as a fuzzy 
number whose possible values can be obtained from random 
experiments that are inexact. The basis of this method is to 
build the membership function by using statistical information 
provided by the probability distribution function. 

Application 

An example in which the optimal sample number of plots for 
the second occasion is given when using SPR for a two occasion 
continuous inventory. In this application, it is desired to 
minimizing the total sampling cost subject to a specified 
sampling error for mean volume per unit area. The example is 
specific to Allerton Park, a conservation area owned by the 
University of Illinois. Several continuous forest inventories 
have been made of the park over the last three decades. 

The cost function to be minimized is based on Jessen's 
(1942) travel cost function and the sampling error formula was 
taken from Cunia (1965). The optimization problem what written 
as: 
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subject to 
2 8 . [N . (1-r2) +m· r2] 

g(m, u) = N1.m-N1 :u. (1-r2) +m.u.r2 - K ::::; 0 (Eq.3) 

m-N1 ::::; 0 

m, u ~ 0 

where ~(m+u) ·A is the minimum average travel distance among 
(m+u) random points with area A; Co is fixed cost, Cw is the cost 
of walking a unit distance; Cm is the cost of establishing and 
maintaining a matched sample plot; Cu is the cost of establishing 
an unmatched sample plot; and Cmu is the cost of measuring a 

sample plot. The parameters m, u, 8 2 , p2 and N1 are the same as 
defined for Eqs. 1 and 2. K is the desired level of precision 
for the survey. 

The following are rough estimates of the parameters for 
Allerton Park: Co = 100 man hours (hrs); Cw = 1 hrs; em = 2 hrs; 

2 
Cu = 0.5 hrs; Cmu = 2 hrs; p2 = 0.9; 8 = 6; K= 0.1. The area of 
the forest, A, was set at 1000 hectares and total number of plots 
for the first occasion, N1' was set at 50. Assuming all the 
parameters are crisp, the traditional nonlinear programming 
solution would be m=8, u=26, (m+u)=34 and the total cost=215.44 
hrs. 

The membership functions need to be determined for the 
parameters. For the variable costs, approximate numbers can be 
used because their guessed values are usually roughly estimated 
from the information from the first occasion and current economic 
situation. The specified error goal, K, is also considered to be 
an approximate number because it is often obtained in a heuristic 
manner. Heuristic methods were used to define the membership 
functions. The form of the membership functions used for both 
variable costs and specific error goal were logistic membership 
functions. The correlation coefficient and variance of the 
population were considered to be fuzzy random numbers. This is 
because both parameter values were based on previous statistical 
information from past surveys and on intuition. Civanlar and 
Trussel's method was used to defined the membership functions. A 
logarithmic normal membership distribution was used for the 
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correlation coefficient and normal distribution for the variance 
of the population. Specifics of how the membership functions 
were defined for Allerton Park will be described in a paper that 
is in preparation. 

Given the membership functions for the parameter, the 
approach developed by Sakawa and Yano was used to calculate the 
optimal sample numbers for different degrees of fuzziness. When 
the membership degree is 1, the parameter is crisp, and as the 
membership degree approaches 0, the parameter becomes more fuzzy. 
Figure 1 shows the optimal designs in terms of the number of 

plots and total hours when individually K, S2, p2, Cm, Cu and Cw 
are fuzzy, while the remaining parameters are crisp. From the 
figure, it can be seen that optimal design is not very sensitive 

to uncertainties p2, but is extremely sensitive to uncertainties 
in S2. When K becomes more uncertain, the total number of hours 
to conduct the survey decreases slightly. With increased 
uncertainty in K, the number of matched plots decreases while the 
number of unmatched plots increases. When Cm and Cu become more 
uncertain, the total number of hours to conduct the survey 
increases slightly. With increased uncertainty in Cm, the number 
of matched plots is decreased while the number of unmatched plots 
is increased. In terms of Cu , uncertainty leads to more matched 
plots and few unmatched plots. For Cw, the optimal design is not 
very sensitive to uncertainty in this parameter. 

Conclusion/Summary 

The optimal replacement policy of the SPR presented by Cunia 
(1965) and deVires (1986) shows that the SPR is an efficient 
sampling technique for CFI. As they point out, the numerical 
solution of the optimal replacement policy is based on the 
assumptions of fixed variable costs, known correlation 
coefficients, known population variance, and exact sampling 
requirements. However, these assumptions are not always true. 
In fact, they can be considered to be fuzzy. Thus, the fuzziness 
of parameters in the sampling design leads to the following 
questions: (1) what is the optimal replacement policy? and (2) 
how does it change with the fuzziness of the fuzzy parameters? 

In the ongoing project, an attempt is being made to answer 
these questions. It is the ultimate goal of the project to 
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consider all type of uncertainties{ both statistical and 
nonstatistical{ in the design of a survey. 
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Table 1. Commonly used fuzzy membership functions. 

Membership Function Curve 
i) Step function 
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