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A PERMUTATION TEST FOR 
A REPEATED MEASURES DESIGN 

By JAMES J. HIGGINS AND WILLIAM NOBLE 

Kansas State University 

Abstract 

Multivariate permutation tests have advantages over conventional methods 
in analyzing repeated measures designs. The tests are exact for all sample sizes 
regardless of the underlying population distribution from which the observations 
are selected. More importantly the tests do not require a priori assumptions 
about the form of the correlation structure, obviating the need to check Huynh­
Feldt conditions. An example is given of how a multivariate permutation test 
may be conducted in a context frequently encountered in agricultural research. 
The SAS program corresponding to this example is also given. 

1 Introduction 

Permutation tests have long been part of the statistician's tool kit. Earliest examples 
date back to Fisher's famous tea-tasting experiment [2]. However, the volume of 
computation one must do in order to carry out such tests even for relatively modest­
size data sets have discouraged their widespread adoption. Now with high speed 
computing power at the researcher's desk top, these tests are receiving new attention. 

In this article we consider the classical repeated measures situation in which 
different treatments are applied to two groups of subjects, and each subject is then 
measured at several times. We first consider the classical split-plot analysis of vari­
ance approach to analyzing such repeated measures data and describe some of the 
correlation structure assumptions which validate the analysis. We then describe a 
permutation test which can be used in place of the split-plot analysis. This per­
mutation test makes no demands upon the correlation structure and also does not 
require asymptotic approximations. 

We also provide an almost entirely automated SAS program for performing per­
mutation tests in situations similar to the one described in this article. This program 
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only requires that the user enter the raw data, the number of subjects corresponding 
to each treatment, and the number of iterations to be used in generating an approx­
imation to the permutation distribution. The program then returns the results of 
the permutation test and also provides a profile plot which is useful in interpreting 
the results. 

2 ANOVA Or Permutation Test? 

A hazard which one always faces when using a traditional analysis of variance pro­
cedure is that the theoretical assumptions which validate the procedures (normality, 
equal variances, independence, etc.) may not be satisified. In practice, the assump­
tions are never exactly satisfied and the results obtained are always approximations. 
The danger inherent in the procedures is that the assumptions may be violated to 
such an extent that the approximations are useless. 

Many tests have been developed to check whether the traditional analysis of 
variance assumptions are satisfied. For example, one can use normal plots to check 
the normality assumption, Hartley's F-max to test for equal variances, and runs tests 
to check on independence. (See Devore [1], Ott [7], and Rawlings [8]' respectively.) 

Permutation tests have three advantages over traditional ANOVA procedures. 
First, permutation tests have no distributional assumptions. They only rely upon 
the random assignment of treatments to experimental units. This randomization is 
not an assumption which mayor may not be satisfied to one degree or another, but 
is instead a physical procedure which one carries out while performing the experi­
ment. Once this procedure has been carried out, the validity of the corresponding 
permutation test is guaranteed. A second advantage of a permutation test is that 
it is exact. Traditional AN OVA methods use approximations which decrease in ac­
curacy as the number of subjects decreases. Stated another way, the p-value (or 
values) which one obtains at the conclusion of a traditional AN OVA is an approxi­
mation to an exact p-value. The accuracy of the approximation is a function of the 
number of replications, with complete accuracy obtained only if one has infinitely 
many replications. On the other hand, the p-value which one obtained at the con­
clusion of a permutation test is exact - its accuracy does not depend on the number 
of replications. A third advantage of permutation tests is their simplicity. Since the 
tests rely only on the randomization procedure, they are conceptually simple and it 
is easy to convince researchers of their validity. 

There are two traditional arguments against the use of permutation tests. The 
first is that it is too hard to obtain the permutation distribution. To some extent this 
argument is still valid, because many of the major computing packages do not yet 
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have permutation tests built in. This is one of the tradeoffs which must be considered 
when one is deciding whether or not to use a permutation test. However, a researcher 
with a little programming skill and with a PC on his or her desktop will find few 
problems in programming permutation tests such as the one described in this article. 
The second traditional argument against permutation tests has been that have less 
statistical power compared to the usual analysis of variance procedures. This will 
certainly be the case - in those cases where the usual ANOVA assumptions are valid. 
However, when the ANOVA traditional assumptions are not valid, permutation tests 
can have considerably more power. Moreover, it is frequently possible to further 
increase the power of a permutation test by tailoring the test statistic to fit the 
conditions under which the experiment was performed. 

3 The Traditional Split-Plot ANOVA 

In this section we give a brief outline of some of the traditonal analysis of variance 
methods of analyzing split-plot/repeated measures experiments. For a much more 
complete description, see Milliken and Johnson [6], especially Chapters 5, 24, 26, 
and 27. 

As an illustration of a typical repeated measure design, consider the following. 

Beef Carcass Example 

The goal of this experiment was to compare two methods of treating beef carcasses 
in terms of their effect on pH measurements taken on the carcasses over time. To 
make the comparisons, twelve beef carcasses were assigned randomly, six to each 
of the two treatments. The pH measurements were made on each of the twelve 
carcasses at each of the six times. The experiment resulted in the following data. 

Treatment 1: Control 

Carcass Time 1 Time 2 Time 3 Time 4 Time 5 Time 6 
1 6.81 6.16 5.92 5.86 5.80 5.39 
2 6.68 6.30 6.12 5.71 6.09 5.28 
3 6.34 6.22 5.90 5.38 5.20 5.46 
4 6.68 6.24 5.83 5.49 5.37 5.43 
5 6.79 6.28 6.23 5.85 5.56 5.38 
6 6.85 6.51 5.95 6.06 6.31 5.39 
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Treatment 2: Electrical Stimulation and Hot Boning 

Carcass Time 1 Time 2 Time 3 Time 4 Time 5 Time 6 
7 6.64 5.91 5.59 5.41 5.24 5.23 
8 6.57 5.89 5.32 5.41 5.32 5.30 
9 6.84 6.01 5.34 5.31 5.38 5.45 
10 6.71 5.60 5.29 5.37 5.26 5.41 
11 6.58 5.63 5.38 5.44 5.17 5.62 
12 6.68 6.04 5.62 5.31 5.41 5.44 

Split-Plot or Repeated Measure? 

This example is typical of the situation one encounters in split-plot and repeated 
measures designs. There is a larger experimental unit (the wholeplot) and a smaller 
experimental unit (the subplot) obtained by splitting the larger experimental unit 
into parts. The wholeplots in this example are the twelve carcasses and the subplots 
are the carcasses at the six different times. There are also two treatments: the 
wholeplot treatment, which in this example is identified as the two ways of treating 
the whole carcass, and the subplot treatment, which in this example is time. 

What distinguishes this experiment as being a repeated measure, rather than 
a split-plot, design is the fact that the subplot treatment (time) cannot be ran­
domly assigned to the subplot experimental units. The consequence of being unable 
carry out the randomization is that measurements on subplot units within a given 
whole plot may be correlated. 

Split-Plot Analysis 

The traditional method of analyzing a repeated measures design has been to treat 
it as if it were a split-plot design and hope that possible correlations between obser­
vations do not greatly affect the results. 

Regarding treatment as the wholeplot and time as the subplot, a split-plot anal­
ysis of the data yields the following ANOVA table. 

Source DF SS MS F Pr > F 
METHOD 1 1.5901 1.5901 20.37 0.0001 
METHOD*CARCASS(METHOD) 10 0.7806 0.0781 
TIME 5 13.9372 2.7874 106.64 0.0001 
METHOD*TIME 5 0.8673 0.1735 6.64 0.0001 
ERROR 50 1.3069 0.0261 
CORRECTED TOTAL 71 18.4821 
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Since there is a significant time x treatment interaction, it is still appropriate to 
make multiple comparisons of the treatments at the different times. The appropriate 
least significant difference (LSD) is 

where 
2-- 2 _ ERROR(TRT) + (b - l)ERROR(TIME) 

at'. + a e - B ' 

and 

* ta / 2,(a_l)(r_l)ERROR(TRT) + ta / 2 ,a(r-l)(b-l)(b - I)ERROR(TIME) 
ta/2 = ERROR(TRT) + (b - l)ERROR(TIME) 

The development of this split-plot analysis can be found, for example, in Section 
24.2 Milliken and Johnson [6]. In particular, see equations (24.2.6) and (24.2.7) 
contained therein. For this example, LSD(0.05) = 0.23 was obtained, which showed 
treatment differences at times 2 through 5, but not times 1 or 6. 

Discussion of Split-Plot Analysis 

Split-plot analyses on repeated measures designs have led to theoretical investiga­
tions of the conditions under which such analyses are valid. Huynh and Feldt [3] 
found that the split-plot analysis procedure remains valid when, in addition to the 
usual assumptions of multivariate normality, the variance-covariance matrices sat­
isfy certain conditions which have come to be known as the Huynh-Feldt conditions. 
A special case of the Huynh-Feldt conditions occurs when one has sphericity, i.e., 
constant correlation within wholeplots. Thus, the usual split-plot analysis will be 
valid under the usual multivariate normality assumptions if, in addition, the mea­
surements within wholeplots have constant correlation. 

What do these theoretical results mean practically? In SAS there is a RE­
PEATED option within PROC GLM which performs a chi-square test for sphericity 
(constant correlation). When this test was applied to the beef carcass data, it re­
sulted in a chi-square value of 14.9 for 14 degrees offreedom and a p-value of 0.0015. 
Although it is still possible that the more general Huynh-Feldt conditions will be 
satisfied, further doubt has been cast upon the traditional split-plot analysis. 

If Not Split-Plot, Then What? 

There are at least two options at this stage. One option is to use Box's adjust­
ment of the split-plot analysis (see Milliken and Johnson [6]). Another option is to 
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move to a multivariate analysis of the data. As it turned out, both the adjusted 
split-plot analysis and the multivariate analysis yielded the same conclusion as the 
previous split-plot analysis. Moreover, the mean separation of treatments at each 
time obtained by CONTRAST statements in SAS gives the same mean separation 
as the previous analysis. (This is nothing more than ordinary t-tests for comparing 
treatments at each time.) 

However, one should keep in mind that both the adjusted split-plot and multi­
variate analyses carry with them their own set of assumptions, violation of which 
will affect the accuracy of the results to an unknown degree. Moreover, when statis­
tical analyses begin to reach this level of complexity, a statistician performing such 
analyses should begin to consider whether the researcher will be able to comprehend 
and explain to his or her colleagues the analysis being performed. This is another 
one of the tradeoffs which should be considered when deciding whether to use the 
traditional analysis or the conceptually simple permutation test described in the 
following section. 

4 Permutation Test Applied to Beef Carcass Data 

Unlike the traditional analysis of variance methods described in the previous section, 
the multivariate permutation test which we will use makes no demands upon either 
the covariance structure or the distribution of the observations. Moreover, the 
logic behind the procedure is conceptually simple, relying only upon the random 
assignment of (wholeplot) treatments to experimental units. 

The Permutation Test Algorithm 

The permutation test algorithm can be applied to the beef carcass data as follows. 

1. Consider all possible ways of assigning the 12 carcasses, 6 to a treatment. The 
number of such possibilities is 

( 12 ) = 12! = 924. 
6 6!6! 

2. For each of the 924 treatment assignments, compute an "appropriate" statistic 
for testing for differences between treatments. 

3. These 924 numbers form the permutation distribution, i.e., the reference 
distribution against which comparisons will be made. If the statistic from the 
actual data is in the extreme 5% of the 924 possible statistics, conclude that 
treatments are different at 5% level of significance. 
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In deciding what to permute, one should use the following rule: 

The permutations should correspond to the randomization. 

In the beef carcass example, the randomization consisted of assigning wholeplot 
treatments to wholeplot experimental units. Thus, the appropriate permutation 
test involves permuting among wholeplot experimental units. Since there was no 
random assignment of subplot treatments to subplot experimental units, then there 
is no corresponding permutation among subplot experimental units. 

Maximum Absolute t Statistic 

For the example under consideration, the statistic used was the maximum abso­
lute t statistic, denoted by Itlmax . This statistic is obtained by first computing 
the univariate t statistic for differences between methods at each of the six times. 
(The reason for using t values, rather than means, is to obtain a standardized scale 
of measurements for plotting values across time.) Denoting these six statistics as 
tl, t2,'" ,t6, Itl max is then defined to be maXi Itil, i.e., the maximum of the absolute 
values of the six t statistics. The SAS program in Appendix A was used to calculate 
the absolute t statistics at the individual times and also the maximum absolute t 
statistic. The following output was produced. 

RESULTS FOR ORIGINAL DATA: 
TIME = 1 ABSOLUTE t 0.2517093 
TIME = 2 ABSOLUTE t = 4.7970662 
TIME = 3 ABSOLUTE t = 6.6607153 
TIME = 4 ABSOLUTE t = 3.3086666 
TIME = 5 ABSOLUTE t = 2.3872679 
TIME = 6 ABSOLUTE t = 0.33064 
MAX ABS t FOR ORIGINAL DATA = 6.6607153 

An Approximation to the Permutation Distribution 

As outlined above, the next step is to obtain the permutation distribution by com­
puting Itl max for each of the 924 rearrangements of the data. If Itlmax for the actual 
data exceeds the upper 5% point of the permutation distribution, then conclude 
that there is a difference between the two treatments. 

Exact calculation of the permutation distribution involves the enumeration of all 
possible permutations. For the beef carcass data there are only 924 permutations 
and this is computationally feasible. However, if there had been, say, 15 animals 
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carcasses allocated to each treatment, then the number of permutations would have 
been 

( 3105 ) = 3,0! , = 155,117,520. 
15.15. 

This is not computationally feasible. Fortunately, there is an alternative to 
enumeration. One can obtain an approximation to the permutation distribution by 
taking random samples of the permutations, using sampling with replacement. This 
is the procedure which is used in the SAS program in the Appendix. The program 
uses the following algorithm to obtain an approximate permutation distribution. 

1. A random number generator is used to randomly assign to assign six carcasses 
to one method and six to the other. 

2. The maximum absolute t statistic is calculated for this random assignment. 

3. Steps 1 and 2 are repeated a total of 1000 times. 

4. The upper 5% point of the 1000 values is used as the critical value. 

It should be noted that although the distribution generated in this way is an 
approximate distribution, the approximation can be made arbitrarily good simply 
by doing more simulations. 

The SAS program found in Appendix A will generate the approximate permu­
tation distribution and calculate the 80th, 85th, 90th, 95th, and 99th percentiles of 
the approximate distribution. For the beef carcass data the following output was 
obtained. 

PERCENTILES OF APPROXIMATE PERMUTATION DISTRIBUTION 
PBO 

2.1B031 
PB5 

2.32313 
P90 

2.52484 
P95 

2.93173 
P99 

3.55844 

The normal approximation to the binomial can be used estimate the accuracy 
of the approximations obtained by the simulations. Recall that 95% confidence 
intervals resulting from this approximation have the form 

± 2JP(1 - p) 
p k' 

where k is the number of simulations. For example, corresponding to the value of 
2.93173 in the output we obtain 

P±2JP(1;P) =0.95± 0.95(1 - 0.95) = 0.95 ± 0.0138. 
1000 
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Thus, the value 2.93173 actually corresponds to a percentile somewhere between 
the 93.72th and 96.38th. 

Multiple Comparisons 

The maximum absolute t statistic also allows one to make comparisons at individual 
times. The procedure for making a comparison at time i is to compare Iti I to the 
upper 5% point of the permutation distribution. If Itil exceeds this upper 5% point, 
then conclude that the treatments differ at time i. 

A useful way to display the results of this permuation test is to make a profile 
plot by plotting the absolute t statistic Itil versus time i. If one plots these values as 
well as the critical value of the Itlmax statistic, then those Iti I values falling above the 
critical value correspond to times at which treatments differ significantly. A profile 
plot for the beef carcass data is given in Figure 1. From the profile plot one can 
see that the permutation test procedure would make the conclusion that differences 
exist at times 2, 3, and 4. 

Error Rate 

One of the advantages of using the maximum absolute t statistic is that it controls 
the experiment-wise error rate at the 5% level under the null hypothesis of no 
differences between treatments. This means that if there are no differences between 
treatments at any of the six times, then the probability of declaring a difference to 
exist is 5%. This is because 

P( declaring a difference to exist Ino differences) 

= P(at least one Itil > 5% critical point) 

= P(ltlmax > 5% critical point) = 0.05. 

In fact, the permutation test procedure does even better than this, because it 
also controls the experiment-wise error rate at the 5% level under a number of 
other partial null hypotheses. For example, suppose that the true situation is that 
differences exist at times 2 and 3, but not at times 1, 4, 5, or 6. Then the probability 
of declaring a difference to exist when it doesn't is 

P(max{ltll, It41, It51, It61} > 5% critical point) 

< P(max{lhl, It21, It31, It41, It51, It61} > 5% critical point) 

= P(ltlmax > 5% critical point) = 0.05. 

Thus, in terms of error rate, the permutation test serves the same purpose as 
the Bonferroni adjustment, but yields an exact error rate. 
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5 Concluding Comments 

In the case in which there are more than two treatments, the corresponding permu­
tation test would involve calculation of an F-statistic, rather than a t-statistic, at 
each time point. Permutation tests similar to the one described above can also be 
applied in simpler standard agricultural designs such as completely randomized and 
randomized complete block designs. Such permutation tests carry with them all of 
the potential advantages described in Section 2, including the lack of distributional 
assumptions and the exactness of the permutation distribution. 

Finally, it should be emphasized that it is not necessary to use the "maximum 
absolute t statistic" when one performs a permutation test. We used this test 
statistic because it seemed appropriate for the beef carcass data. However, in other 
situations, other test statistics may be more appropriate. In other words, the test 
statistic can be "tailored" to fit the special features of the problem at hand. This 
gives permutation tests an added flexibility not found in the traditional analysis 
techniques. 

A SAS Program 

Description of Program 

In order to use the program below, the user must have a version of SAS which 
implements both the SAS/IML programming language (see [5]) and the SAS Macro 
Facility (see [4]). However, knowledge of these two options are not required in order 
to use the program. The program with the beef carcass data took about five minutes 
to run on a 486/33mhz PC. 

The program may be used in the following repeated-measures scenario. 

• There are two w holeplot treatments. 

- The first whole plot treatment is applied to m (wholeplot) experimental 
units. 

- The second wholeplot treatment is applied to n (wholeplot) experimental 
units . 

• Each wholeplot experimental unit is then measured at several times. (The 
program will automatically label these as TIME = 1, TIME = 2, etc.) The 
individual times correspond to the subplot experimental units. The program 
requires that each wholeplot experimental unit be measured the same number 
of times. 
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The program below corresponds to the beef carcass example described in the 
article. Comparison of the example with the program shows that rows of data 
(ending in commas) correspond to wholeplot experimental units, and columns within 
rows correspond to subplot experimental units within wholeplot experimental units. 

The user is required to enter the following items: 

1. The raw data. The first m rows of the data correspond to the m wholeplot 
experimental units assigned to the first wholeplot treatment. The second n 
rows of the data correspond to the n wholeplot experimental units assigned 
to the second wholeplot treatment. Each column in the data corresponds to 
a different time (subplot experimental units). 

2. m and n 

3. The number of iterations to be used to obtain an approximation to the per­
mutation distribution. This quantity is labeled i tmax in the program. (The 
default value, unless changed by the user, is itmax=1000.) 

The program produces three sets of output. 

1. The absolute t statistic corresponding to each measurement time. 

2. The 80th, 85th, 90th, 95th, and 99th percentiles of the approximate permuta­
tion distribution. 

3. A profile plot with a reference line corresponding to the 95th percentile. A 
different reference line may be drawn by changing the 

plot x*time='*' p95*time='-' / overlay; 
statement near the end of the program. For example, to produce an 80th 
percentile reference line, change the statement to 

plot x*time='*' p80*time='-' / overlay; 
To get the appropriate title, change the 

title 'PROFILE PLOT WITH 95th PERCENTILE REFERENCE LINE'; 
statement to 

title 'PROFILE PLOT WITH 80th PERCENTILE REFERENCE LINE'; 

Program 

/* REPEATED MEASURES PERMUTATION TEST */ 
options ps=30 Is=70 nonumber; 
proc iml; 
file print; 
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/* USER MUST INITIALIZE data, m, n, AND itmax */ 
/* data MATRIX: ROWS=WHOLEPLOTS=SUBJECTS, COLUMNS=SUBPLOTS=TIME */ 
/* (TREATMENTS RANDOMLY ASSIGNED TO ROWS) */ 
data={6.81 6.16 5.92 5.86 5.80 5.39, 

6.68 6.30 6.12 5.71 6.09 5.28, 
6.34 6.22 5.90 5.38 5.20 5.46, 
6.68 6.24 5.83 5.49 5.37 5.43, 
6.79 6.28 6.23 5.85 5.56 5.38, 
6.85 6.51 5.95 6.06 6.31 5.39, 
6.64 5.91 5.59 5.41 5.24 5.23, 
6.57 5.89 5.32 5.41 5.32 5.30, 
6.84 6.01 5.34 5.31 5.38 5.45, 
6.71 5.60 5.29 5.37 5.26 5.41, 
6.58 5.63 5.38 5.44 5.17 5.62, 
6.68 6.04 5.62 5.31 5.41 5.44}; 

/* TREATMENT 1 ASSIGNED TO FIRST m ROWS */ 
m=6; 
/* TREATMENT 2 ASSIGNED TO LAST n ROWS */ 
n=6; 
/* itmax=NUMBER OF SIMULATIONS */ 
/* FOR APPROXIMATE PERMUTATION DISTRIBUTION */ 
itmax=1000; 

/* nr=NUMBER OF ROWS OF DATA */ 
nr=nrow(data); 
/* nc=NUMBER OF COLUMNS OF DATA */ 
nc=ncol(data); 
/* INITIALIZE VECTOR OF ABSOLUTE t STATISTICS */ 
abst=j(nc,l,O); 

/* MACRO: TWO-SAMPLE t-TEST */ 
/* FIRST m ROWS OF VECTOR d AGAINST LAST n ROWS OF VECTOR d */ 
%macro ttest(d,m,n); 
dl=&:d[l:8an]; 
d2=&:d[8an+l:8an+&:n]; 
ml=sum(dl)/nrow(dl); 
m2=sum(d2)/nrow(d2); 
sls=(ssq(dl)-sum(dl)**2/nrow(dl))/(nrow(dl)-1); 
s2s=(ssq(d2)-sum(d2)**2/nrow(d2))/(nrow(d2)-1); 
sps=((nrow(dl)-l)*sls + (nrow(d2)-1)*s2s)/(nrow(dl)+nrow(d2)-2); 
sp=sqrt(sps); 
t=(ml-m2)/(sp*sqrt(1/nrow(dl) + 1/nrow(d2))); 
%mend ttest; 
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/* MACRO: MAXIMUM ABSOLUTE t STATISTIC ACROSS COLUMNS OF DATA */ 
%macro maxabs(matrix); 
do time=l to nc; 
vec=&matrix[,time]; 
%ttest(vec,m,n); 
abst[time]=abs(t); 
end; 
maxabst=max(abst); 
%mend maxabs; 

/* MAXIMUM ABSOLUTE t STATISTIC FOR ORIGINAL DATA */ 
%maxabs(data); 
put ~1 'RESULTS FOR ORIGINAL DATA:'; 
create b var{time x}; 
do time=l to nc; 

x=abst[time]; 
put ~1 'TIME ' time +5 'ABSOLUTE t ' x; 
use b; 
append; 

end; 
put ~1 'MAX ABS t FOR ORIGINAL DATA , maxabst; 
close b; 

/* GENERATE APPROXIMATE PERMUTATION DISTRIBUTION */ 
create a var{maxabst}; 
do j=l to itmax; 
/* PERMUTE ROWS OF ORIGINAL DATA */ 
r=rank(uniform(j(nr,l,O))); 
permdata=data; 
do k=l to nr; 
permdata[k,]=data[r[k],]; 

end; 
/* MAXIMUM ABSOLUTE t STATISTIC FOR PERMUTED DATA */ 
%maxabs(permdata); 
append; 
end; 
close a; 

proc univariate data=a noprint; 
var maxabst; 
output out=pctl 

pctlpts=80 85 90 95 99 
pctlpre=p; 
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run; 

title 'PERCENTILES OF APPROXIMATE PERMUTATION DISTRIBUTION'; 
proe print data=petl noobs; 
run; 

title 'PROFILE PLOT WITH 95th PERCENTILE REFERENCE LINE'; 
data petl; 
set petl; 
id=l; 

data b; 
set b; 
id=l; 

data e; 
merge b petl; 
by id; 
label x='ABSOLUTE t'; 

proe plot data=e nolegend; 
plot x*time='*' p95*time='-' / overlay; 

run; 

quit; 
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PROFILE PLOT WITH 95th PERCENTILE REFERENCE LINE 
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Figure 1: Profile Plot for Beef Carcass Data 
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