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BEYOND LINEARITY AND INDEPENDENCE 

J. stuart Hunter 
503 Lake Drive 

Princeton, NJ 08540 
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This brief lecture discusses statistical problems associated 
with postulating and fitting models in engineering and the 
sciences. Particular emphasis is placed on the two-model 
problem: the employment of both deterministic and stochastic 
components within a model. Further, the use of empirical versus 
theoretical models on the part of both statisticians and 
experimenters is examined. 

Key words: linear models, non-linear models, non-independence, 
empiricism. 

1: Introduction. The "Two-Model" Problem 

consider a single recorded observation y measured on a 
continuous scale. The observation y is commonly viewed as two 
separate functions added together, y = ~ + €, one deterministic 
identified as ~ and the second stochastic identified as € . 
Parametric models are now postulated for both ~ and € creating 
the statistician's "two-model" problem. In its simplest form ~ 
is taken to be a constant and € a random independent event with 
zero mean, E(€) = 0, and constant variance, V(€) = a2 • 

More sophisticated models are then postulated for both the 
deterministic and stochastic components. For example write y = ~ 
+ ~ + € where ~ is a constant and ~ is an additional independent 
stochastic event with E(~) = 0 and variance a~. Extensions of 
this "random effects" model lead to the statistician's components 
of variance analyses. Or equally simple, let ~ = 00 + 01~1 be a 
known theoretical function relating a forcing factor ~1 to the 
response ~, then y = 00 + Ol~l + €. Extensions of this "straight 
line" model lead to regression analyses. In general, 
deterministic functions ~ = f(i,!) of some complexity may be 
selected containing many factors i and parameters!, and the 
stochastic event € may be taken to be an occurence arising from 
a distribution function h(~) composed of many parameters ~ • 

2: The Linear Model 

When the theoretical response ~ is reasonably 'smooth' over 
the ranges of the i employed by an experimenter the deterministic 
function f(i,!) is usually assumed to be well approximated 
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locally by: 

11 = f (~,!) ~ 00 + 0lX1 + 02X2 + •.. + Op~ = jEpOjxj , 

the consequence of a Taylor's series expansion of f(!,!) about 
some set of values !o. This surrogate function is linear in the 
parameters!. Further, the "regressor" variables ~ are functions 
of the forcing factors! only. Usually the Xj are simple 
surrogates for different versions of ! , for example, for the 
levels of controlled factors such as rpm or concentration, for 
the recorded levels of uncontrolled factors such as ambient 
temperature or soil moisture, or used as dummy indicators to 
identify qualitative versions of factors such as types of 
machines or plant varieties. 

Let X be the nxp matrix whose rows identify the n individual 
settings of the p regressor variables and at each setting let a 
single observation y be recorded. We now have: 

x = X(J + ~ 

where X is an n element column vector of observations, ! a p 
element column vector of unknown coefficients and ~ an n element 
vector of independent events drawn from h(~). If we chose h(~ 
to be a multivariate Normal distribution with E = Ia2 then the 
ordinary least squares estimates of ! are given by-l = [X'Xr1X'y 
Any deleterious effect of colinearity amongst the column vectors 
of X should be reduced by careful experimental design. The 
fitted model becomes X = XO, the variance of the estimated 
coefficients vel) = [X'X]~a2 and the estimate of the stochastic 
parameter a2 given by S2 = [XIX - l'x'Y]/(n-p). When experiments 
are repeated, the replicate values of the observations may also 
be used to obtain a separate estimate of a2 , and this estimate 
used in a 'lack-of-fit' test to check the adequancy of the 
postulated linear model. 

The adequacy of the fitted empirical model may also be 
checked using other lack of fit procedures, many graphical. The 
influence of particular observations upon the estimated 
coefficients or predictions may be determined. The 
appropriateness of the stochastic model assumed for the ~ is more 
difficult to appraise, but plots of the residuals X - X on 
probability paper, against predicted values, in time sequence, 
and against the regressor variables are usually informative. 
Once tests of adequacy of the empirical model to represent the 
actual functional relationship f(!,!) are passed, a vast panoply 
of standard hypothesis testing, interval estimation and graphical 
exposition procedures follow. (Draper & Smith). 

Should any of these tests for adequacy fail, the analyst 
proceeds to change the deterministic and/or stochastic models 
postulated. Holding to the constraints of independence and a 
linear model, regressor variables may be omitted, transformed, or 
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new ones added. Keeping in mind that the average variance of a 
forecast over the region defined by the factors is given by V(y) 
= pa2/n where p is the number of parameters employed (Box, 
Hunter & Hunter, pg 524), parsimony should reign. Transformation 
of the observed response is often employed. Of course, 
transforming the y's alters the assumptions about the errors ~ 
but usually, and fortunately, when a simplifying response 
transformation is employed both normality and the assumptions 
about ~ become more reasonable. 

Experience testifies that many multifactor theoretical 
functions f(!,l) have been successfully approximated by empirical 
linear models over the chosen space of the factors!. For these 
situations standard experimental designs are available for 
everyday use: the factorials, the 2~ small fractional factorials 
coupled to first order models, and response surface designs 
employing second order models, all available in blocks of varying 
size. 

3: A Linear Model Example 

An an example consider the following 32 factorial design 
used to explore the simultaneous role of two factors, ~l 
(air/fuel ratio) and ~2 (ethanol concentration) upon the response 
~ (CO concentration) in the exhaust of a standard automobile 
engine, (Hunter). The ranges of ~l and ~2 were chosen after 
considerable consultation with the engineers. The resulting 
design, the proposed second order empirical model and associated 
data are given in Figure (1). 

o 
+ 

o 
+ 

o 
+ 

3 2 FACTORIAL DESIGN 

Investigate ~ = 
of ~l = 

~2 

CO concentration as 
ethanol concentration 
= air/fuel ratio. 

a function 
and 

x 2 

o 
o 
o 
+ 
+ 
+ 

Averages 
o 

66.83 75.83 
78.50 75.50 

+ 
75.83 
64.50 

Obs. 
66 62 
78 81 
90 94 
72 67 
80 81 
75 78 
68 66 
66 69 
60 58 

S2 = 5 • 17 , ,,= 9 

Proposed second order model: 

~ = {3o + {31X1 + {32X2 + {3llX12 + {322Xl + (312X IX2 , and 

with € ~ Normal iid(0,a2) • 
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empirical description of events. Of course, additional 
responses, NOx or other air toxics, could also be fitted and 
their contour systems superimposed on those of CO to give 
mUltivariate impressions of the joint effects ~1 and ~2. A great 
deal of information has resulted from the application of this 
simple experimental design and linear model. 

4: Coupling 

The key element in a multi-factor empirical model is ~ijXi~' 
the cross product, coupled, or two factor interaction term (to 
use its several names). If in this example the coefficient ~12 is 
zero, the two forcing factors could be separetely investigated 
and their individually fitted models merely later added together. 
But the knowledgable engineer knows in advance that ethanol and 
air-fuel ratio will very likely have a coupled influence upon the 
CO response even though the true functional relationship is 
unknown. What is known is that the function is not likely to be 
the simple addition of two separate linear functions. The 
commonplace graphical display of a two-factor interaction as two 
non-parallel straight lines superimposed should always be 
accompanied by descriptions of the concept of coupled effects. 

If engineers and scientists are to value the use of the 
standard statistical models and experimental designs it will be 
because they are recognized as the tools of an enlightened 
empiricism. 

5: Empiricism carried too far 

Experiment design is often taught as though the 
experimenter's mind were a tabula rasa. Designs are chosen with 
almost no concern over the true functional model. Fortunately 
many standard experimental designs provide an associated linear 
model so over-parameterized that a parsimonious linear model can 
almost always be found amply to exposit the experimenter's 
response function. And if perchance an important factor be 
omitted and left uncontrolled, its biasing influence upon the 
estimated model coefficients will of course be reduced through 
randomization. 

However, in selling experimental design strategies to 
engineers and scientists heavy emphasis is often placed on the 
ability to investigate many factors simultaneously in very few 
experimental trials. The approach leads to the common practice 
of employing many factors ! in an experimental design in the hope 
of finding the 'vital few'. This practice is both insidous and 
dangerous when the design employed is a low resolution fractional 
factorial. To illustrate, consider the example displayed in 
Figure 3 which employs a 34-2 fractional factorial design, the L9 
hyper-Graeco-Latin square used as a fractional factorial and 
popularized by the Taguchi school. 
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0 
+ 

0 
0 0 
+ 0 

The 3~2 Fractional Factorial Design 
The 4x4 Hyper-GraeCo-Latin Square 

The L9 Design 

X3 X4 Obs. Averages 

66 62 0 
0 0 78 81 Xl 66.83 75.83 
+ + 90 94 x2 78.50 75.50 
+ 0 72 67 X3 67.83 74.33 

+ 80 81 x4 69.33 69.33 
0 75 78 

5 

+ 
75.83 
64.50 
76.33 
79.83 

+ 0 + 68 66 S2 5.17, JI = 9 
0 + + 66 69 
+ + 0 60 58 

Alternative 1 2 3 4 
view of the I Aa B{3 C')' DeS 
4x4 Hyper- II BeS A')' D{3 Ca 
Graeco-Latin III c{3 Da AeS B')' 
Square IV D')' ces Ba A{3 

Figure 3 

Plots of the average response at each of the three levels of the 
four factors is displayed in Figure 4 and the 95% confidence 
interval is indicated about each plotted average. 
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Figure 4: Plots of average response 
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It is clear that statistically significant effects are present 
for each factor, and that curvilinearity exists throughout. The 
trouble with this example is that factors X3 and x4 are dummy 
factors added to the 32 design described earlier. The observed 
influences of X3 and x4 are mirages. 

crucial here is the role of the crossproduct (interaction) 
term X1X2 • The linear model associated with the analysis of the 
34-2 does not contain this important contributing factor and thus 
the X3 and x4 coefficients, instead of approximating zero as they 
should, are biassed. They are mirages provided by the 
unestimated contribution of the X 1X 2 term. The 34-2 is a 
resolution III design and first order estimates are alaised, 
biassed, (corrupted!) by coupled influences (the two-factor 
interactions). When a linear model is used as a surrogate for a 
model likely to be non-linear, special care must be taken to 
insure that the design-model combination has the ability to 
estimate at least the coupled influences of the factors. 
Simplistic empiricism is easily oversold. 

6: A Non-linear Model 

A recent article in the American statistician (Kopas & 
McAllister) describes a series of hands-on exercises for 
reinforcing concepts taught in introductory statistics and design 
of experiments courses. One exercise requires the dropping of a 
pellet into a glass cylinder containing a viscous fluid and 
measuring the time it takes the pellet to fall to the bottom. 
The students are asked to plan a sequence of experiments to study 
the effects of four or five factors in order to design a fluid to 
meet a specified target drop time with minimun variance. They 
are told that other customers were interested in their process 
and that "it is vital to be able to design new fluids", and 
needed was a "an understanding of the cause and effect mechanisms 
operative in your process." Team dynamics, brainstorming, and 
statistical tools such as fishbone diagrams, Pareto charts, 
control charts, fractional factorial, factorial, mixture designs, 
components of variance and response surface methods are all 
encouraged along with heavy emphasis on graphical exposition. 

Now it is true that useful approximations of response 
functions are possible using linear models, and recent work in 
the applications of splines and non-parametric estimation methods 
have only added further to the value of empirical approaches. 
But empiricism, no matter how enlightened, can not replace good 
theory. It is interesting to contemplate how an engineering 
student might contemplate this pellet drop problem. 

Most engineering students know that force equals mass 
acceleration, F = ma, that acceleration a = dvjdt is the 
rate of change of velocity v , and that velocity v =dtjdt 
t is the distance travelled in time t. Manipulating these 
dynamic expressions, it is easy to show that the distance 

times 
time 
where 
simple 
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traveled by a freely falling body equals t = vot + at2 j2 where Vo 
is the initial velocity at time t = O. But suppose the falling 
body meets resistance proportional to the square of its velocity. 
A point in the fall will be reached wherein the acceleration will 
equal zero and the limiting velocity equal V. This produces the 
equation 

where w is the weight of the pellet, g the gravitational constant 
(w = gm), and A a constant characterizing the density of the 
fluid, (Reddick & Miller). Solving this second order 
differential equation gives: 

The engineering student might then conclude that given a set of 
values of t and t , with wand g known, one might now obtain an 
estimate of A. statisticians recognize this as an example of 
non-linear estimation. 

Models non-linear in their parameters are ubiquitous in all 
the sciences. One popular class is the ratio of polynomials, 
that is models of the form 

or equations with mixtures of polynomial and exponential terms 

or in the natural sciences the popular logistics function 

Tl = 1 
1 + e (Il + ~x) 

The estimation of the parameters in non-linear models 
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can be quite difficult, most particularly if the data are 
gathered haphazardly. At the beginning of the estimation 
procedure, and for construction of a non-linear experimental 
design, initial guessed values of the unknown parameters 1 are 
required to determine the derivatives <1'1]/<10100 the "sensitivity" 
elements entering the matrix of derivatives ~. In the absence 
of experimental design considerations the matrix ~ is often 
poorly conditioned. The Gaussian iterant may be used to find the 
least squares estimates, speeded perhaps through the use of the 
Levenberg or Marquardt algorithms (Levenberg, K.), (Marquardt, D. 
W.). It is not uncommon to obtain different estimates resulting 
from different starting points, a reflection in part to the 
influences of numerical rounding errors. Non-linear estimation 
and non-linear experimental design is a task for the modern high­
speed computer. Nor are non-linear models necessarily always 
best. In the 32 factorial example discussed earlier there was 
good reason to believe that the non-linear model 

would be far superior to the second order polynomial. The fitted 
proved a great disappointment. 

y = 28.47 eO. 15 + 43. 8le-O. 15 

7: Employing Prior Knowledge 

Of course the purpose of the pellet dropping exercise was to 
teach students something about the beginning arts of statistics, 
about enlightened empiricism. It was not meant to be a serious 
effort to determine the characteristics of a viscous fluid. 
However, in teaching engineers and scientists the statistician 
must be prepared to draw down on all the information available. 
A great deal of prior knowledge may exist both with respect to 
the form of the model and to the magnitudes of important 
parameters. Knowledge concerning A is useful in reducing the 
iterations required in non-linear estimation procedures. Prior 
knowledge can often be formally employed via Bayesian approaches 
to lessen both the experimental effort and to increase the 
precision of the estimate, (Racine, Grieve & Fluhler). Employing 
the prior knowledge of the subject matter expert can only enhance 
the role of the statistician. 

As further statistical concerns in this pellet-drop example, 
since the quantities i = ~ + t~ and t = T + tr are both measured 
with error shouldn't an interval estimate of the parameter A be 
obtained? Would anyone want to hazard a guess as to the number 
of replicate trails needed to get a standard error for A equal to 
I say, O.lA? Could fewer trials be managed if different levels 
of t, or i, or combinations of t and ~ were chosen? Might other 
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factors influence A: the ambient temperature, the diameter of the 
cylinder and size of pellet? The answers to these obviously 
non-trivial questions are within the realm of the modern 
statistician. The ability to answer such questions resourcefully 
will condition the statistician's unfolding future role in the 
sciences. 

8: Dynamic Models and Box-Jenkins 

Of course, one doesn't have to go far in the sciences before 
dynamical considerations become preeminent. Many laws of physics 
are initially quite simple in their structure, as for example 
Ohm's Law 

E = IR 

where E measures voltage, I measures the current flow in amperes 
and R measures the resistance to flow in ohms. However, 
anyamperesinductance in a circuit L resists a change in current 
and thus also influences voltage. The voltage drop induced by 
the inductance is thus EL = L(dIjdt). Ohm's Law becomes: 

solving gives: 

E = IR + L dI 
dt 

E = IR [ 1 1 
1 - e-Rt/ L ' 

an equation clearly no longer linear in its parameters. 

But amperes I measures the rate of change of the number of 
electrons Q = 6.25xl018 electrons, that is, I = dQjdt and Q = 
CE where C is the capacitance of the circuit. Putting this 
altogether gives the following ordinary second order differential 
equation: 

E = 0 + R dO + L d 20 
C dt dt 2 

The solution of this second order equation will take either the 
form of a sum of two exponentials or a function containing 
sinusoidal terms, both models non-linear in their parameters and, 
as indicated earlier, not easily fitted. Similar dynamical 
equations can be found in the natural sciences showing the growth 
of populations under varying stresses. 

But just as the Taylor's series approximation provides a 
useful empirical linear model approach to the fitting of non­
linear functions, a similar array of easily applied models exists 
for the dynamic case. The Box-Jenkins ARIMA modeling methods for 
fitting dynamical models directly to time series data sets has 
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proved of great practical value, (Box, Jenkins). 

Suppose that ~ is a continuous function and that its rate 
of change is proportional to the amount of ~ remaining as it 
approaches some final asymptotic value ~~. The model is then 

~i oc (11 ... - l1t) 

T dl1 + 11 = gx 
dt t 

where T is the time constant, and ~~ = gx where here g is the 
"gain" (units adjuster) and x the excitation. The particular 
solution to this dynamical equation is: 
at equally spaced time intervals dt. Then the discrete first 

Now let ~tf (t = 1, 2, ... , n), denote descrete events occuring 
at equally spaced time intervals dt. Then the discrete first 
order difference equation equivalent of the continuous first 
order differential equation given above is: 

11 t - 4>11 t - 1 = g (1 - <1» x t - 1 

where 

Using the "backward" operator where 

B~t = ~t-lf B2 = ~t-2 and (l-B)~t = ~t - ~t-l = d~t 

the difference equation may be written as: 

(1 - <l>B)l1 t = g(l - 4»xt - 1 = at 

where at has now replaced g (1 -p) xt_1 • Note well that with ~t 
thus defined the statistician's two-model problem can now be re­
written with a time subscript t assigned to each component: 

Yt = + 

where ~ is the error or 'noise' due to measurement and/or 
observation. In the Box-Jenkins series of models the at are 
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taken to be independent, normally distributed model excitations 
with mean zero and fixed variance a~ , and the ~ as 
observational errors similarly independent, normal, mean zero 
with fixed variance a 2b with the at and bt mutually independent. 

The difference equation (1 - <pB) fJt = at is classified as an 
AR(l) model, an auto-regressive model of order 1. The AR(2) 
model 

is the discrete equivalent of a second order differential 
equation where, once again, the excitation is a stochastic shock 
at. Higher order models, AR(p), are also possible. Factoring 
the quadratic (1 - <pIB - <p2B2) in B gives (1 - <PI') (1 - <P2')fJt = at' 
Suppose <PI' ~ zero. The model now becomes a first order AR(l) 
working upon the (1 - B) T}t' the 1st differences of the fJt' Such 
models are non-stationary, that is, they produce data traces with 
continually increasing variance, or viewed another way, data 
traces without a mean, there is no expected value. And if both 
the <p's are close to zero the model considers 2nd differences 
in the T}t. Models considering differences of order dare 
possible. 

Henceforth, to comply with Box-Jenkins notation let 
Zt = (T}t - '[), the deviation from some desired constant target 
value '[, thus forcing Zt to be hopefully zero. 

When the successive shocks to a system are independent 
then Zt =~. But the stochastic shocks to a system can also be 
structured as for example: 

producing the MA(l) model, the moving average model of order one. 
Higher order moving average models MA(q) are possible. Thus the 
MA(2) model is 

= 

Mixed ARMA models are possible, as for example the AR(2) combined 
with the MA(2) model to give: 

(1 -<PIB -<P2B2)Zt = (1 - OlB - 02B2) at. 

and mixed ARMA models involving differences are also possible, 
the Box-Jenkins ARIMA models of order p,d,q. One favorite is the 
0,1,1 model: 

(1 - B) Zt (1 - OB) at 

which identifies the Zt as an exponentially weighted moving 
average. 

The identification of ARIMA models begins with an 
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investigation of their associated time series autocorrelation 
functions: plots of the lagged autocorrelation coefficients Pk = 
E(Ztzt_k/a2 plotted against the time lag k. For AR(p) models, the 
theoretical autocorrelation structure takes on an appearance 
analogous to the transient time trace of the corresponding order 
p continuous ordinary differential equation. Thus given a time 
series Ytt the plot of the estimated autocorrelation coefficients 
r k can be employed to identify the appropriate AR(p) model. 

Choosing an appropriate ARIMA model can be quite difficult, 
and alternative models easily postulated based on the information 
provided by the estimates r k. Observational errors bt serve to 
make variance of the observations ~ larger and thus serve to 
obscure the pattern presented by the sample autocorrelation 
function. Also, when the sampling interval ~t is large relative 
to the dynamics of the system under study, identification of the 
autocorrelation structure can become almost impossible. 

If a simple autoregressive model has been identified, its 
coefficients can be obtained through ordinary least squares. In 
general however time series models usually involve both AR and MA 
components and non-linear estimation procedures must be evoked to 
obtain estimates of the model parameters. Many software programs 
exist to aid in both the identification and estimation of ARIMA 
models, (Pankratz, A). 

An interesting variation on the two-model problem occurs 
when ~t is not dynamic. For example, consider the case where ~ = 
f3 0 + f3 tX t but where the stochastic elements €t are no longer 
independent but structured. Let the model for €t be the ARIMA 
(1,0,1) model, that is, (1 - ¢B) €t = (1 - OB)at. The two-model 
"problem" for the observations now yields the expression: 

tl t = Po + P 1 Xl + (~ = :!)a t 
The need for such a model occurs when, after having fitted the 
model 9 = bo + btxt using ordinary least squares the residuals 
~ - ~ are found to be time auto-correlated, (Durban & watson). 
An ARIMA model should then be fit to the residuals, and using the 
estimates for ¢ and 0 as starting points the entire model 
refitted by non-linear least squares. 

9: A Two-model Example 

An early example of the successful use of a combined 
deterministic-stochastic approach to modelling concerned the 
forecasting of temperature and water flow in the Ohio River, 
(McMichael & Hunter). six years of daily data where employed. 
Initially, to reflect the influence of the seasons, a simple 
deterministic cyclic model Yt = f3 0 + f31cos (wt - a) + €t was fitted 
by ordinary least squares. The residuals Yt - 9t were found to be 
highly autocorrelated. Attempts to fit higher order Fourier 
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series proved futile, many too many coefficients required to get 
an acceptably adequate fit. A fully stochastic modelling 
approach was then attempted that recognized both the daily and 
annual variability. The result was the well fitting five 
parameter autoregressive-moving average model: 

However, this fully stochastic model failed as a forecasting 
instrument since one day's thunderstorm would lead to forecasts 
of unusual river temperature and flow on the same day in 
successive years. Finally, and in retrospect one might say 
obviously, a combined deterministic-stochastic model was 
postulated: 

+ (1 - 8B)a 
1 - <j>B t 

to reflect the cyclic contributions of the seasons and the daily 
stochastic dependence of weather. The residuals Yt - Yt 
remaining after fitting this non-linear five parameter model 
passed all tests and the model proved a useful forecast 
instrument. 

10: Conclusion 

If statisticians are to be succesful in attracting the 
attention of scientists and engineers they must be prepared to go 
beyond the commonplace linear model with independent errors, to 
go beyond enlightened empiricism. Most models in the sciences 
are non-linear in their parameters, often dynamic and frequently 
subject to noise regimes that can not be assumed to be 
independent. Fortunately, most computational obstacles have been 
essentially resolved. Remaining are the important challenges of 
creating experimental designs for different classes of non-linear 
models and under various non-independent error structures. 
Needed are methods for checking and comparing alternatives for 
the deteriministic and stochastic components of the two-model 
problem. Clearly, with so much yet to be accomplished the 
interface between statistics and the sciences promises to remain 
vibrant and rewarding to all. 
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