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ABSTRACT 

CO-EFFECT ANALYSIS OF VARIANCE: A 
NEW METHOD FOR UNBALANCED DATA 

Andre PLANTE 

Departement de mathematiques et d'informa­
tigue, UniversiJ:.e du Quebec a Montreal 

15 

For fixed-effect models one can always, according to the Gauss­
Markov Theorem, uniquely determine independent variables called source 
identifiers, each corresponding to a source of variation. When linear:ly 
combined, source .identi.fiers can generate all possilile expected values for 
the response variable. The co-effect method uses regression of the 
response variable on source .identi.fiers. Corresponding regression coef­
ficients are, by definiJ:ion, unbiased estimates of co-effects, and satisfy the 
same restrictions as those imposed on main effects and interaction effects 
in standard analysis of variance. with balanced data, co-effect analysis 
gives resuJt.s .identical to those of the standard method; with unbalanced 
data, however, results can be significantly different. 

An example is given where predicted genetic interaction can be easily 
observed using the co-effect method (~10-14) while Yates' weighted­
squares-of-means method does not detect any interaction effects (P>O.l). 

Key words and phrases: Unbalanced data, analysis of variance, interaction, 
co-effects, genetic experiment. 

1. INTRODUCTION 

The co-effect method suggested can be used to supplement yates' 
weighted-squares-of-means analysis of variance for fixed-effect models 
since with balanced data it gives results identical to those of standard 
methods, whereas with unbalanced data this technique can be significantly 
more sensitive because the cell-size-dependent extended parameters used, 
the co-effects, differ from the usual effects. This new method will be 
illustrated using complete two-way layouts Le. without missing treatment 
combinations. 

The Gautschi-Scheffe proof for the Gauss-Markov Theorem (Scheffe 
1959, Section 1.4) associates each estimable parameter 0 with a unique and 
distinct independent variable V lying in the subspace of possilile values for 
the expected response p.. (V, by definiJ:ion, sati.sfiBs the equation p.'V=o. ) 
In a fixed effect model, a source ident.i.f:iEr variable vj is a scaled 
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Gautschi-Scheffe independent variable Vj associated with a given effect OJ. 
An algorithm to obtain the Vi's is given in Section 3. The corresponding 
co-effect oj is the coefficient of vj when J.L is expressed as a linear 
combination 

of the source identifier variables for all the parameters of the model. It is 
assumed that the usual sum-to-zero ANOVA restrict:ions are imposed on the 
o/s, which implies that the same restrict:ions hold for the oj's and that 
both effects and co-effects are uniquely defined and are estimable. The 
source identifier variable vj corresponding to a Gautschi-Scheffe indepen­
dent variable Vj and to an effect OJ is, by definition, vj=IIVjll-2V j , 

where Ilvjll is the length of Vj . This scaling process ensures that the 
projection of J.L on vj is 0 jvj and that effects and corresponding co­
effects are ident:k::al in an orthogonal design. Orthogona1±ty between source 
identifier variables, as used here, implies non-corre1at:i.on between asso­
ciated BL U estimators. 

In the foster-nursing genetic experiment example discussed in Section 
2, which uses Bailey's data listed in Scheffe (1959, p.140), one might 
expect strong positive interaction effects due to genotype correspondence 
between foster-mothers and litters, but yates' weighted-squares-of-means 
method (SAS GLM Type ill analysis) does not detect any such interaction 
effect (P>0.1). However, the co-effect method shows that extremely strong 
interaction co-effects are present (~10-14). Through resampling, 95% 
confidence intervals are estabJished for all the co-effects, and, as might be 
expected, interaction co-effects are seen to be higher when foster-mother 
and litter share the same genotype. Moreover, j£ an almost-outJier found in 
Bailey's data is pulled back, interaction effects then become sig:rrificant 
when Yates' method is used. It is even possible to modify the almost­
outlier and to inflate intra-cell variances in such a way that the models 
themselves are no longer significant and Yates' method will detect no 
effect, while interaction co-effects remain highly sig:rrificant (P<10-8). This 
genetic example is foJlowed, in Section 3, by an elementary formal example 
for illustrative purposes. 

Yates' weighted-squares-of-means method (yates 1934, Federer and 
Zelen 1966) can be deduced from the general likelihood ratio test (Mann 
1949, Chapter X, Scheffe 1959, Section 1.5 and Section 4.4, Graybill 1976, 
Section 14.8) for testing cell-size-independent null hypotheses concerning 
main effects and interaction effects. This method is recommended by 
Francis (1972), Kutner (1974), Nelder (1974), and by Milliken and Johnson 
(1984, p.158), is reviewed by Steel., Hocking, and Hackney (1978), and is 
already implemented in SAS, in SPSS, and in BMDP. The co-effect method 
can provide a new and efficient stepwise regression algorithm (not given 
in this paper) for applying yates' method to various unbalanced designs. 
Also, since the co-effect method is as general as yates' weighted-squares­
of-means method, both methods are theoretically applicable to all fixed 
effect non-orthogonal designs using blocks of unequal sizes, for example, 
the designs advocated by Mead (1990). 
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2. A GENETIC EXAMPLE 

Scheffe (1959, p. 140) reports data displayed in a complete two-way 
layout from an unbalanced foster-nursing genetic experiment (Bailey 1953) 
with four hybrid female rat genotypes. The factors are foster-mother 
genotype and litter genotype. Each of the 61 responses indicates an 
average litter weight i.e. the average weight of female baby rats in each 
foster-mother's litter at 28 days. Cell sizes, whk:h vary from 2 to 5, are 
given in Table 1. 

Yates' weighted-squares-of-means analysis of variance resul±s for 
Bailey's data, given in Table 2, are based on the SAS GLM procedure with 
Type ill sums-of-squares (SAS Institute Inc. 1988, Chapter 9 and Chapter 
20). Connections between SAS Type III analysis and Yates' weighted­
squares-of-means analysis of variance are given in Speed, Hocking, and 
Hackney (1978) and in Milliken and Johnson (1984, Chapter 10). No genetic 
interaction effects are detected (~0.120), and foster-mother genotype main 
effects seem to exist (~0.011). 

Table 3 gives the resul±s of a formal co-effect analysis of variance for 
Bailey's data supplementing the resul±s of yates' weighted-squares-of-means 
analysis. The sums of squares reported for the various groups of co-effects 
are calculated using backward stepwise regression over the source iden­
iliier variables for each group in turn. The computation method is 
described in Plante (1992). Both the co-effect method and yates' weighted­
squares-of-means method yield the same error-sum-of-squares. However, 
every co-effect group is seen to contain non-zero members. The very 
strong interaction co-effects detected (~1.01X10-14) were further exam­
ined. P-values were checked by resampJing. The null distribution for the 
interaction co-effects F-statistic is approximately the same when the 
distribution of residuals is used as error distribution. When the error 
distribution in any given cell is assumed to be normally distributed with a 
standard deviation equal to the observed standard deviation for that cell in 
Bailey's experiment, we find that the expected value for the interaction 
co-effect F-stat:i.stic, under the associated null hypothesis, is increased by 
about 20%. Therefore, the extreme co-effects detected are not an artiEax 
resulting from breaking model assumptions. 

Table 4 is made up of four subtables giving the estimated main co­
effects for litter genotype, the main co-effects for foster-mother genotype, 
the genotype interaction co-effects, and the general mean co-effect. 
Conservative approximate 95% confidence intervals are given. These 
intervals are mutually consistent estimates (Plante 1991) for each co­
effect. They are based on two small resampling experiments. The first 
experiment used the distribution of adjusted residuals as error distribution 
with resampling size 200; the second used resampling size 1000, and 
normally distributed error random variables with the standard deviation 
varying from cell to cell according to the observed standard deviations in 
Bailey's experiment. Interaction co-effects are positive and important when 
the foster-mother and the litter genotype are the same - just as one 
might expect in Bailey's experiment. 
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The data point y=68.0 in the cell "Litter Genotype=I and Foster­
Mother Genotype=A" is significant at the 1% level according to the 
Studentized Residual Test for a single outlier from a normal distribution 
(Lund 1975). Since both the normalIT.y assumption and the equality of 
variance assumption used in that test are unwarranted here, we can 
conclude only that y=68.0 is an almost-outlier. If this abnost-outlier .is 
pulled back to the value y=48.0 near the mean 47.10 of the three original 
values in that cell, one obtains, using SAS GLM Type III sums-of-squares, 
the results summarized in Table 5 which show that genet.k: interaction 
effects are now apparent (~0.005). Co-effect analysis of variance resul±s 
for the same data are given in Table 6 where we can see that F-st:.ati.stics 
for co-effects, as expected, now have quite extreme values. One interpret­
ation of these results is that the presence of easily observable co-effects 
.is indirect evidence of the existence of real effects. 

Tables 7, 8, and 9 report results from a confirmatory analysis - per­
formed with modified Bailey data - aimed at completely concealing effects 
while leaving co-effects visible. The almost-outlier is pulled back as 
before, while intra-cell variances are inflated. As a result, every effect.is 
now masked from a SAS GLM Type III ANOVA. Residuals do not give the 
impression that effects could be masked by outliers. Co-effect analysis, 
however, still indicates signilicant interaction co-effects (~3.90X10-9). 
(This signilicance of co-effects might be found surprising, since neither 
model is signilicant - ~0.391). Co-effect ANOVA .is probably the only 
technique that would lead one to suspect, from the data shown in Table 7, 
that there might be some hidden effect. This confirmatory analysis leads 
me to believe that co-effect analysis .is useful to supplement yates' weigh­
ted-squares-of-means test for real effects. 

3. AN ELEMENTARY FORMAL EXAMPLE 

The 2X2 layout used in SAS/STAT™ User's Guide (1988, p.556) to 
illustrate the SAS GLM procedure.is used here to explain how to construct 
source identifier variables on which the co-effect method is based. 

Consider the two-way layout 

1 
A 

2 

1 

12 
14 

20 
18 

B 

2 

11 
9 

17 

which, when displayed in serial form, .is 
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Y111 12 
Y112 14 
Y121 11 

Y Y122 9 
Y211 20 
Y212 18 
Y221 l17 

Cell expected responses and their estimates are 

1111 Y11· 13 
1111 Y11· 13 
1112 Y12· 10 

11 1112 and y. Y12· 10 
1121 Y21· 19 
1121 Y21· 19 
1122 Y22· 17J 

The variables 

1 1 1 1 
1 1 1 1 
1 1 -1 -1 

J* .. =0.8 1 1 U*1.=0.8 1 1 u* .1=0.8 -1 1 U*11=0.8 -1 1 

1 -1 1 -1 

1 -1 1 -1 
2 -2 -2 2 

are source identifier variables. J*.. identifies the general mean co­
effect; U*1' and U*2' identi£y factor A maID co-effects; U*'1 and U*'2 
ideniliy factor B maID co-effects. U*11 , U*12 , U*21 , U*~e interac­
tion co-effect identifiers. Co-effects are defined by the equation 

11=11* •• J* •• + a*1U*1' + a*2U*2. + B*1U*'1 + B*2U*'2 
+ T*11U*11 + r*12U*12 + r*21U*21 + r*22U*22 

with the restrictions 

Source identifier variables, according to a corollary of the Gauss-Markov 
Theorem (Scheffe 1959, Chapter 1), are the only variables remaining 
constant within each experimental group such that the regression of y on 
each source identifier variable separately is y ... J* .. , (Yi"-y,,,)U*i" (y.j.-

* d * . . . el y ... )U 'j ,an (Yij'-Yi"-Y'j'+Y"')U ij (.l, ] = 1, 2) respectiv y. 
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To obtain these identifier variables, we can proceed in stages. First, 
we define experimental group averaging variables 

~ 0 0 0 
~ 0 0 0 
0 ~ 0 0 

J11 0 , J12 ~ , J21 0 , J22 0 
0 0 ~ 0 
0 0 ~ 0 
0 0 0 1 

such that Y11.=y'J11=13, Y12.=y'J1;F10, Y21.=y'J21=19, and Y22.=y'J22 =17. 
Then, we define line, column, and general averaging variables J1'= 
~(J11+J12)' J2'= ~(J21+J22)' J.,= ~(J11+J21)' J.;F ~(J12+J22)' J •• = ~(J1.+J2.)= 
~(J.1+J.2)' with Y1 •• = y'J1.=1l.5, Y2 •• =y'J2.=18, Y.1.=y'J.1 =16, Y·2·=y'J.;F13.5, 
and y ... =y'J •• = 14.75. Next, we define variables for calculating main effects 
and interaction effects: U 1. =J1.-J •• ; U 2-=J2.-J •• ; U .1=J.1-J •• ; U .;FJ.2-J •• ; 
U11=J11-U1·-U·1-J •• ; U1;F J12-U1·-U.2-J •• ; U21=J21-U2.-U·1-J •• ; U2rJ22-
U 2.-U .2-J ••• This yields a1=Y'U 1.=-3.25, a~'U 2.=3.25, ~=y'U .1=1.25, 
~= y'U.2=-1.25, T11=y'U11= 0.25, etc. Source identifier variables are 
J* •• =IIJ •• 11-2J •• , U*1.=11 U1·11-2u1. , etc, where 11.11 2 designates a sum of 
squares of components. The resulting estimated co-effects are coefficients 
in the equation 

y. z -0.586U*11 + 0.586U*12 - 0.703U*1. 
+0.586U*21 - 0.586U*22 + 0.703U*2. 
+2.109U*.1 - 2.109U*.2 + 15.781J* .• 

SUMMARY 

Source-identifier variables in a General Linear Model are defined 
using the Gautschi-Scheffe proof for the Gauss-Markov Theorem, and co­
effects are defined as coefficients of corresponding source-identifier 
variables when the expected observation vector is expressed as a unique 
linear combination of source-identifier variables subject to certain restr:i.c­
tions. The resulting co-effect analysis of variance can supplement yates' 
weighted-squares-of-means analysis of variance for fixed effect models; 
since, wfr.h balanced data, it. gives resuJ±s identical to those of standard 
methods, whereas with unbalanced, data this technique can be signi:fu::antly 
more sensitive - because the cell-size-dependent extended parameters 
used, the co-effects, differ from the usual effects. 
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TABLES 

Table 1. Cell Sizes in Bailey's Foster-Nursing Expe­
riment 

Litter Foster-Mother Genotype 
Genotype A F I J 

A 5 3 4 5 

F 4 5 4 2 

I 3 3 5 3 

J 4 3 3 5 

Table 2. yates' Weighted-Squares-of-Means Analysis of Variance 
for Bailey's Foster-Nursing Data (based on SAS GLM Procedure) 

Source of Degrees of Sum of Mean F- p-

variation Freedom Squares Square Ratio Value 

Litter 
Genotype 3 27.65592 9.21864 0.17 0.9161 

Foster-Mother 
Genotype 3 671.73765 223.91255 4.13 0.0114 

Genotype 
Interaction 9 824.07251 91. 56361 1.69 0.1201 

Error 45 2440.81650 54.24040 
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Table 3. Co-effect Analysis of Variance for Bailey's Foster-Nursing 
Data (based on an ad hoc GAUSS program) 

Source of Degrees of Sum of Mean F- P-

Variation Freedom Squares Square Ratio Value 

Litter 
Genotype 3 1295.1696 431. 7232 7.96 0.00023 

Foster-Mother 
Genotype 3 884.1750 294.725 5.43 0.00283 

Genotype 
Interaction 9 12258.9025 1362.100 25.11 1.008X10- 14 

Error 45 2440.8165 54.240 

Table 4. Estimation of Co-effects in Bailey's Foster-Nursing Expe­
riment, with Approximate Conservative 95% Resampling Confidence 
Intervals 

Interaction Co-effect Litter 
Genotype 

Litter Foster-Mother Genotype Main 
Genotype Co-Effect 

A F I J 

A 9.5±3.3 -12.3±3.6 -3.3±3.3 6 .1±3. 7 5.7±2.5 

F -0.4±3.3 15.3±3.5 1.5±3.5 -16.3±3.7 0.0±2.6 

I -9.8±6.0 1. 8±3. 7 9.0±4.0 -0.9±3.5 -4.4±3.5 

J 0.8±3.2 -4.8±3.3 -7.1±3.3 11.1±3.2 -1.3±2.5 

Foster- General Mean 
Mother 3.3±2.9 0.1±2.5 1.7±2.6 -5.1±2.7 Co-Effect 
Main Co-
Effect 57.9±2.1 
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Table 5. yates' Wei.ghted-Squares-of-Means Analysis for Bailey's 
Data Modified by Pulling Back an Almost-Outlier. 

Source of Degrees of Sum of Mean F- p-

variation Freedom Squares Square Ratio Value 

Litter 
Genotype 3 82.1520 27.3840 0.66 0.5819 

Foster-Mother 
Genotype 3 669.4835 223.1612 5.37 0.0030 

Genotype 
Interaction 9 1193.7732 132.6415 3.19 0.0046 

Error 45 1871. 4832 41.5885 

Table 6. Co-Effect Analysis of Variance with Modified Bailey's 
Data Obtained By Pulling Back an Almost-Outlier 

Source of Degrees of Sum of Mean F- p-

variation Freedom Squares Square Ratio Value 

Litter 
Genotype 3 1537.3545 512.45 12.32 2.76X10- 6 

Foster-Mother 
Genotype 3 741. 0788 247.03 5.94 0.0017 

Genotype 
Interaction 9 13082.659 1453.63 34.95 6.86X10- 19 

Error 45 1871. 4832 41.59 
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Table 7. Moclifi.ed Bailey's Data Obtailled by Pulling Back an 
Almost-Out.liBr and by Inflating Intra-Cell Variances 

Litter Foster-Mother Genotype 
Genotype A F I J 

60.0 65.9 56.8 65.7 51.4 37.1 47.1 47.7 
A 71.4 56.9 34.7 67.2 51. 7 57.5 33.0 

64.2 69.4 

65.9 47.2 43.9 66.4 58.3 42.5 55.1 36.7 
F 51.3 45.0 67.5 63.0 62.5 52.3 

62.4 

27.0 58.0 50.7 68.8 31.4 57.9 50.4 58.0 
I 36.3 73.6 42.1 58.6 39.9 

68.1 

62.3 53.8 61.9 55.9 38.7 66.2 41.8 37.1 
J 59.5 41.9 50.5 58.7 53.2 57.5 

55.8 

Table 8. Analysis of Variance for the Data in Table 7 Us:ing 
yates' Wei.ghted-Squares-of-Means Method. 

Source of Degrees of Sum of Mean F- p-

variation Freedom Squares Square Ratio Value 

Litter 
Genotype 3 82.0243 27.3414 0.22 0.8839 

Foster-Mother 
Genotype 3 669.3106 223.1035 1. 77 0.1659 

Genotype 
Interaction 9 1193.6570 132.6286 1.05 0.4142 

Error 45 5662.5622 125.8347 
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Table 9. Co-Effect Analysis of Variance for the Data in Table 7. 

Source of Degrees of Sum of Mean F- p-

variation Freedom Squares Square Ratio Value 

Litter 
Genotype 3 1535.5571 511. 85 4.07 0.0122 

Foster-Mother 
Genotype 3 742.7836 247.59 1. 97 0.1320 

Genotype 
Interaction 9 13086.1458 1454.02 11. 56 3.90X10- 9 

Error 45 5662.5622 125.83 
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