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A MARKOV CHAIN MODEL TO ASSESS RESISTANCE 
OF CATTLE TO HORN FLIES 

Edward Gbur and C. Dayton Steelman 
University of Arkansas 

Abstract 

The horn fly is an economically important external permanent 
parasite of cattle. As part of a research project focused on 
alternatives to chemical control of the horn fly, a study was 
conducted to determine the degree of innate resistance of 
individual cattle to the horn fly. A fly resistant cow was 
defined as one whose horn fly counts were in the lower quartile of 
the weekly fly count distributions for a herd more often than 
would be expected by chance. A Markov chain model was formulated 
and a small sample test for fly resistance was developed. The 
model and procedure are illustrated using data collected on a herd 
of Charolais cows. Tests of the Markov chain and stationarity 
assumptions are discussed and applied to the data. 

Keywords: Bernoulli process, Independence, stationarity. 

1. Introduction 

The horn fly, Haematobia irritans (L.), is an economically 
important external permanent parasite of cattle. Drummond (1987) 
estimated losses to producers attributable to the horn fly in the 
U.s. at $150 million annually. In the past, control of the horn 
fly has been through the use of insecticides in the form of ear 
tags or dusts and sprays. Ear tags and sprays are commonly used 
on all animals for the entire fly season. As a result, the horn 
fly has developed resistance to the insecticides, thereby 
requiring higher and higher dosages or increasingly potent 
chemicals to attain control. This paper arose from collaborative 
work on an ongoing entomology research project at the University 
of Arkansas which is focused on alternatives to chemical control 
measures. 

The entomological literature contains numerous studies of the 
behavior of horn fly populations over time, e.g., Morgan and 
Thomas (1974) and Palmer and Bay(1981). Several papers have 
explicitly noted variation among cows in a herd at fixed points in 
time (e.g., Campbell, 1976), but none have tracked individual 
animals over time. One of the purposes of the University of 
Arkansas project was to determine if there were consistent 
patterns in the horn fly counts over time among cows in a herd 
relative to other cows in the same herd. The existence of cows 
with consistently high or low fly counts relative to other cows in 
the herd would have implications for non-insecticide based 
management strategies to deal with the horn fly problem. If a 
producer could recognize cows in his herd with fly counts below 
any injury or economic threshold, then these animals would not 
need to be treated for horn fly control. On the other hand, 
animals with fly counts which, if untreated, would rise above the 
threshold can be treated selectively and eventually culled from 
the herd. 
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The objective of this paper is to develop a statistical 
procedure which, under the assumption of differences among animals 
in the herd, would enable the entomologist to identify animals 
with consistently low horn fly counts relative to other animals in 
the same herd. 

2. Development of a Model 

Weekly horn fly counts on individually identified cows in 
herds of several different breeds collected during a preliminary 
study showed that some animals had horn fly counts which were 
consistently smaller than most of the other animals in their herd. 
This led to the notion that a fly resistant animal is one which 
has consistently (for "many" weeks of the fly season) "small" horn 
fly counts relative to other animals in the herd. Since the horn 
fly population density naturally changes over the course of the 
season, comparison of the magnitude of fly counts must be for each 
fixed time point rather than over time. Moreover, the shape of 
the weekly distributions change over time, making parametric 
distributional assumptions unrealistic. Thus, we defined a fly 
resistant cow to be one whose horn fly counts are in the lower 
quartile of the weekly fly distributions more often than would be 
expected by chance. Using this definition, the changing shape of 
the weekly fly count distributions does not affect the 
determination of the animal's status. It does, however, require 
that the same set of animals be sampled each week of the season. 

To develop a statistical model based on the above notion of a 
fly resistant cow, for t = 1, ... , T , define the random variable 
Xl by, 

Xl = 1 if the cow's fly count fell in the lower quartile of 
the fly distribution for the t ili week of the fly season 

Xl = 0 otherwise . 

Let p = P [Xl = 1) . Note that p is assumed to independent of 
time. Then intuitively, 

Ho: P :s 0.25 

HI: p > 0.25 
(1 ) 

can be tested using the statistic X = ~~ , with "large" values 
of the statistic leading to rejection of Ho. If Ho is rejected for 
a particular cow, then the cow will be said to be fly resistant. 

Under the above model, the data for a particular cow in a 
particular fly season has been reduced to a sequence of Bernoulli 
random variables XI' ... , XT , each with the same p. Since the 
Xl's are determined from the horn fly counts on the same cow on 
consecutive weeks relative to the same set of animals in the herd, 
we need to account for potential week to week dependence. 
Initially we shall assume a simple first order autocorrelation 
structure for this dependence. Let p = p (X" Xl+d be the 
correlation between consecutive Xl's, independent of time. 

The above dependent Bernoulli trial model can be recast as a 
two state stationary Markov chain. Let the first state correspond 
to the cow's horn fly count falling in the lower quartile of the 
fly distribution for the week. Let 

Conference on Applied Statistics in Agriculture
Kansas State University

New Prairie Press
https://newprairiepress.org/agstatconference/1992/proceedings/8



[ 
Pll 

Ii> = 
I-p22 

represent the transition probability matrix of the chain, where 

Pll P[ X, 1 1 

P22 P[ X, o o 

Under this formulation, the statistic X = ~~, represents the 
occupation time for the first state of the chain. 

Using the definition of correlation and the fact that X, has a 
Bernoulli distribution, a straightforward calculation yields 

p = ( Pll - p) I (1 - p) , (2 ) 

and hence, 

Pll = P + gp , ( 3 ) 

where q = 1 - p. In addition, it can be shown that 

P22 = q + pp • ( 4 ) 

Thus, the distribution of X can be expressed in terms of the 
parameters T, p, and p. 

The correlation p must satisfy the restriction 

max{ -p/q, -q/p } $ p $ 1 • 

For p = 0.25, this reduces to -0.33 $ P $ 1. In addition, p = 0 
corresponds to independent trials (simple binomial model). 

An implicit expresssion for the pdf of X is given in Pedler 
(1971; 1980, equation 2.1). Although the expression is not 
directly useful for calculating individual probabilities, the 
probabilities can be obtained from a recursion formula for the 
cdf. Following Pedler (1980), let 

FT(x) = P[ X $ x ; T, p, P 

denote the cdf. Then 

(5 ) 

subject to the boundary conditions 

T 1, 2, 

1 , T 1, 2, 

and where we define Fo(O) = 1 The distributions for T = 21, P 
= 0.25, and several values of p are shown in Figure 1. A listing 
of the SAS IML code used to calculate the distribution is given in 
Appendix 1. The effect of p on the upper tail probabilities, and 
hence, on the test of (1), is evident from the figure. 
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3. Inference in the Model 

Under the Markov chain formulation of the problem, the 
critical region for the hypothesis of fly resistance (1) is an 
upper tailed region based on the test statistic X. If the 
correlation p were known, then the p-value 

Pobs = p [ X > xobs J = 1 - F T ( xobs ) 

can be calculated using the recursion formula (5) with p = 0.25 
and a known T (number of weeks in the fly season). 

To obtain an estimate of p, let no be the number of one step 
transitions from state i to state j; i.e., the number of times in 
the Bernoulli sequence that X, = j follows X,_I = 1. Let ni+ = ~Pij' 
Then, assuming XI is non-stochastic and that all ni+ > 0, the 
maximum likelihood estimators of the Po are given by 

(6 ) 

substituting into (2) for PII from (6) and the sample proportion of 
ones in the sequence for p, we obtain an estimator 

(7 ) 

for p. 
The estimator (7) was used in the recursion formula (5) for 

the cdf to calculate p-values. The effect of using the estimated 
p in place of the true value on the calculation of the p-value has 
not been investigated. 

The estimation procedure described above was based on the 
assumption that all ni+ > 0; that is, the Bernoulli sequence 
contains at least one 0 and at least one 1. Lehoczky (1990) 
discusses two alternative approaches when some ni+ are zero. 
Rather than use one of these more complicated approaches, we chose 
a simple non-statistical solution for cows for which an ni+ was 
zero. If p = 1 (the cow's fly count was in the lower quartile 
every week), we declared the cow to be fly resistant without a 
formal test of (1). In the much more common case when p = 0 (the 
cow's fly count was never in the lower quartile), we automatically 
declared the cow not to be fly resistant. 

4. Numerical Example of Cow Classification 

As an example, we consider data collected in 1989 on a herd of 
17 Charolais cows located at the University of Arkansas Beef 
Cattle Research Station. Horn fly counts were recorded on each 
animal for 21 consecutive weeks. Further details of the 
experiment can be found in Steelman et al. (1991). A plot of the 
weekly fly counts for a cow with relatively low fly counts and one 
with relatively high fly counts is shown in Figure 2. The mean 
weekly fly count for the entire herd is also shown in the figure. 
The relative difference between resistant and susceptible animals 
is clear from the graph. 

To illustrate the classification of an individual cow, 
consider the data for cow #375 in 1989. The actual horn fly 
counts were plotted in Figure 2. The Bernoulli sequence obtained 
from these counts was 
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1 1 0 0 1 1 1 1 0 1 0 1 0 1 1 0 1 1 1 1 O. 

Thus, we 
and P22 = 
close to 
0.25. 

have T = 21, 
1/6 0.1667. 
the lower bound 

X = 14, P = 0.6667, Pll = 8/14 0.5714, 
From (7), we obtain p -0.2859 which is 
of -0.33 for p under the hypothesis p 

The pdf and cdf of X = E~, using the recursion formula (5) 
with the estimated parameters from cow #375 are given in Table 1. 
The binomial distribution (p = 0) is included for comparison. 
From Table 1, 

Pobs = P [ X > 14 ] 

1 - F2d 14) 

< 0.00001 

and we conclude that cow #375 can be classified as fly resistant 
for 1989. 

5. Tests of Model Assumptions 

In a seminal paper, Anderson and Goodman (1957) developed 
easily applied inference procedures for several fundamental 
questions related to Markov chain models. In this section we 
describe tests for (i) the hypothesis that the X, are independent 
against the alternative of a first order Markov chain and (ii) the 
stationarity of a first order Markov chain. 

Independence: If the X, are independent, then the conditional 
probabilities Pu = p[ X, = j I X'_I = i ] are the same as the 
corresponding unconditional probabilities~. In the special case 
of a two state Markov chain this reduces to 

p 
p 

P12 
P22 

1 - P 
1 - P 

HI: the Pu depend on i 

(8 ) 

Anderson and Goodman (1957) formally treat the transition 
probability matrix of the chain as the following 2 X 2 contingency 
table whose row sums are 1. 

X, 

1 0 

1 Pll P12 
X'_I 

0 P2I P22 

Then the independence hypothesis (8) is formally equivalent to the 
hypothesis of row homogeneity in the above contingency table. 
Asymptotically, the usual X2 test for row homogeneity is 
equivalent to the likelihood ratio test for independence in the 
context of a first order Markov chain. The asymptotics are valid 
if either 
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or 

(1) the length T of a single sample from the chain 
approaches infinity 

(2) the number of samples from chain approaches infinity 
where each sample is of fixed length T. 

In the latter case, there are additional conditions on the 
behavior of the distribution of the number of individuals in each 
state at the initial time. 

Wang and Scott (1989) provide a small sample alternative to 
the asymptotic X2 test using a bootstrap procedure. Their 
approach is based on the largest non-unit eigenvalue of the 
transition probability matrix. For a two state Markov chain, this 
eigenvalue is given by A = Pll - P21 so that the independence 
hypothesis (8) can be restated as Ho: A = o. 

stationarity: A Markov chain is said to be stationary if the 
transition probabilities Pij are independent of time. Let Pij(t) 
denote time dependent transition probabilities. Then, for a two 
state first order Markov chain, the hypothesis of stationarity can 
be stated as 

Ho: Pll (t) 
P22(t) 

Pll 
P22 for t 1, ••• , T (9) 

Anderson and Goodman (1957) reformulate the stationarity 
hypothesis (9) as a hypothesis of row homogeneity in each of a 
pair of (T - 1) x 2 contingency tables def ined by XI_1 = i as shown 
below. 

Xl 

1 o 
2 Pil (2) Pi2(2 ) 

Time 3 Pil(3) Pi2( 3) 

... . .. 
T PidT) Pi2(T) 

The X2 test for homogeneity is applied to each table separately 
and the sum of the two statistics is used to test (9). In 
contrast to the test for independence, the asymptotics for the 
validity of the X2 test for stationarity can only be based on 
increasing the number of samples from the chain and not on 
increasing the length of a single sample. 

6. Numerical Example of the Tests of Model Assumptions 

Intuitively, consistency in the modeling process dictates that 
the Markov dependence and stationarity assumptions should apply to 
the entire population of animals in the herd rather than 
separately to individual animals. Thus, it appears that the data 
should be combined over cows and the validity of the X2 tests 
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should be based on a large number of samples (cows) of fixed 
length from the same chain. The difficulty is that, although each 
cow's data may fit a first order stationary Markov chain, the 
transition probabilities Pij and hence, the unconditional 
probability p, clearly vary across animals. By definition, not 
all cows can be fly resistant (p < 0.25). Thus, the results 
obtained from testing (8) and (9) using the combined data must be 
interpreted cautiously in an exploratory rather than confirmatory 
mode. We will interpret the results as providing information 
about an underlying common process which generates the data for 
all animals but will not attempt to extract information about the 
values of the parameters, which are cow specific. 

The work of Gardner (1990) may provide some insight into the 
problem. He takes a latent variable approach to modeling the 
variability in the transition probabilities among samples under 
the assumption that each sample follows a first order stationary 
Markov chain. The problem here is analogous to the problem of a 
common form for a regression model for all items in a population 
but with item specific regression coefficients. 

With the above caveat firmly in mind, we proceed to apply the 
Anderson-Goodman tests to the 1989 data on the Charolais herd. A 
Bernoulli sequence based on 21 weeks of fly counts was constructed 
for each of the 17 cows in the herd and the necessary contingency 
tables were tabulated. 

Independence: The 2 X 2 contingency table needed to test the 
independence hypothesis (8) is given below. 

x, 

1 0 

1 38 47 85 

o 47 208 255 

From the data in the table, X2 = 23.472, which, when compared to a 
X2 distribution with 1 df, yielded a p-value of approximately 
0.000001. Thus, it appears that the independence assumption can 
be rejected in favor of the assumption of a first order Markov 
chain. 

From the table, Pll = 38/85 = 0.4471, P = 85/340 = 0.25, and 
from (7), p = 0.2628. Contrasting these estimates with those 
calculated previously for cow #375 provides additional evidence 
that parameter estimates based on the combined data probably have 
little meaning. 

stationarity: The pair of 20 X 2 tables required to test the 
stationarity hypothesis (9) are given Table 2. From the table 
based on X'_l = 1 we obtain X2 = 12.116 and from the table based on 
X'_l = 0, X2 = 9.694. Combining the results gives X2 = 21.810, 
which, when compared to a X2 distribution with 38 df, yielded a p­
value of 0.9837. Hence, it appears that the underlying first 
order Markov chain is stationary. 

7. Conclusion 

We have developed a procedure which can be used to identify 
cows in a herd which exhibit some degree of innate resistance to 
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horn flies relative to their herdmates. The Markov chain 
formulation accounts for the dependence structure in the data 
arising from repeatedly sampling the same set of animals. At the 
same time, it overcomes the problem of a changing shape for the 
fly count distribution. The procedure has been applied to data 
collected on six breeds of beef cattle in a three year study. The 
cows identified as fly resistant within each herd remained 
consistent over years provided the herd composition did not change 
greatly (steelman et al., 1993). 
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Appendix 1 

The following SAS program calculates the cdf of the occupation 
time for the first state of the Markov chain, X = ~tX" using the 
recursion formula (5) from Pedler (1980). The program was written 
by Kevin Thompson. 

%Macro Markov( /*COF of 
/* Parameter Default 

Occup. time of state 1 of Markov chain */ 
Description */ 

data = last , /*Input SAS Data Set */ 
id 
t 

/*Input Var(s): ID-type variables */ 
, /*Input Var: No. of trials */ 

P 
rho 
out 

=t 
=p 
=rho 
= data 

, /*Input Var: P(X = 1) */ 
, /*Input Var: Corr(Xt, Xt-1) */ 
, /*Output SAS Data Set */ 

x 
cdf 
) ; 

= x 
= cdf 

, /*Output Var: Occupat. time of state 1 */ 
/*Output Var: CDF of X */ 

proc iml; start; /* Begin IML step */ 
reset nocenter nolog name; /* Setup listing */ 
use &OATA var{ &IO &T &P &RHO } ; /* Input SAS DS and vars */ 
&X=. ; &COF=. ; /* Initialize output vars*/ 
create &OUT var{ &IO &T &P &RHO /* Output SAS DS and vars*/ 

&X &COF } ; 
setin &OATA point 1; read current; /* Read first paramo set */ 
do data; /* Do until end of data */ 

* Create temporary vars and 
_p11 = &P + (l-&P)*&RHO; 

p22 = (l-&P) + &P*&RHO; 

initialize recursion conditions; 
/* P[ Xt=l I Xt-1=1] */ 

-matrix j( &T+1, &T+1, 
/* P[ xt=o I Xt-1=O] */ 

1 ); 
=matrix[2,l) = (l-&P); 

* Recursion formula (5); 
do it = 3 to (&T+1); 

_matrix [_it, 1) = _matrix[_it-1, l)*_p22; 
do ix = 2 to &T+1; 

_matrix [ it, _ix) _p22*_matrix[ it-I, ix + 
p11* matrix[ it-I, -ix-1 ) -

&RHO*=matrix[ _it-2, ix-I) 
end; 

end; 

* Print to LISTING ; 
cdf = _matrix[ &T+1, ); 
print &IO &T[format=best5.) 

&RHO[format=best5.) 
reset noname; 

&P[format=best5.) 
cdf[format=best5.) 

* Write to output SAS Data Set; 
do &X = 0 to &T; 

&COF _matrix [ &T+1, &X+1 ); 
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append; 
end; 

read next; 
end; 

/* Read next param set 
/* End DO DATA loop 

finish; run; reset log; quit; 
%MEND Markov; 

data corr; 
length figure $9; 
input year figureS t p 

/* End IML step 
/* End Macro 

numerat denomin; 
rho=numerat/denomin; /* Calcuate rho to best 
cards; 

1989 Histogram 
1989 Histogram 
1989 Histogram 
1989 Histogram 
1989 Histogram 
1989 Histogram 

1989 Charolais 
1989 Charolais 
1989 Charolais 
run; 

21 0.25 
21 0.25 
21 0.25 
21 0.25 
21 0.25 
21 0.25 

21 0.25 
21 0.25 
21 0.25 

-1 3 
-1 4 

0 1 
1 4 
1 2 

19 20 

-0.2859 
0.0000 
0.2628 

1 
1 
1 

%Markov(data=corr, id=year figure, t=t, p=p, rho=rho, 
out=cdf, x=x, cdf=cdf); 

proc print data=cdf; 
quit; 

precision 

*/ 
*/ 
*/ 
*/ 

*/ 
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Table 1. Pdf and edf of X for Charolais eow #375 in 1989 (p 
-0.2859) and for the binomial model (p = 0) 

edf FT(x) pdf fT(x) 
p p 

X -0.2859 0 X -0.2859 0 

0 0.00032 0.00238 0 0.00032 0.00238 
1 0.00473 0.01903 1 0.00441 0.01665 
2 0.03097 0.07452 2 0.02624 0.05550 
3 0.11965 0.19168 3 0.08868 0.11716 
4 0.30722 0.36742 4 0.18756 0.17574 
5 0.56552 0.56659 5 0.25830 0.19917 
6 0.79926 0.74363 6 0.23374 0.17704 
7 0.93657 0.87009 7 0.13731 0.12646 
8 0.98732 0.94385 8 0.05074 0.07377 
9 0.99853 0.97937 9 0.01121 0.03552 

10 0.99991 0.99358 10 0.00138 0.01421 
11 1.00000 0.99831 11 0.00009 0.00474 
12 1.00000 0.99963 12 0.00000 0.00132 
13 1.00000 0.99993 13 0.00000 0.00030 
14 1.00000 0.99999 14 0.00000 0.00006 
15 1.00000 1.00000 15 0.00000 0.00001 
16 1.00000 1.00000 16 0.00000 0.00000 
17 1.00000 1.00000 17 0.00000 0.00000 
18 1.00000 1.00000 18 0.00000 0.00000 
19 1.00000 1.00000 19 0.00000 0.00000 
20 1.00000 1.00000 20 0.00000 0.00000 
21 1.00000 1.00000 21 0.00000 0.00000 
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Table 2. Summary of the data used to test the assumption of 
stationarity of the first order Markov chain for the Charolais 
herd in 1989. 

Xt Kt-l = 0 Xt 

1 o 1 o 
2 4 0 2 1 12 

3 1 4 3 4 8 

4 2 3 4 2 10 

5 1 3 5 3 10 

6 2 2 6 4 9 

7 2 3 7 1 10 

8 1 2 8 4 10 

9 2 3 9 2 10 

Week 10 3 1 Week 10 1 12 

11 2 2 11 2 11 

12 2 2 12 2 11 

13 2 2 13 2 11 

14 1 3 14 3 10 

15 2 2 15 2 11 

16 1 3 16 3 10 

17 2 2 17 1 12 

18 1 2 18 4 10 

19 2 3 19 2 10 

20 3 1 20 2 11 

21 2 3 21 2 10 
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Figure 1. Distribution of the occupation time X 
p = 0.25, and selected values of p. 
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Figure 2. Weekly horn fly counts for selected Charolais cows and mean fly count 
for the herd in 1989. 
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