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ANALYSIS OF GENOTYPE X ENVIRONMENT INTERACTION BY 
GRAPHICAL TECHNIQUES 

George C.J. Fernandez 
Department of Agricultural Economics 

University Of Nevada- Reno 
Nevada Reno NV 89557 

Abstract 

Genotype x Environment interactions results from the 
changes in the magnitude of differences among genotypes 
(non-crossover or quantitative interactions) or changes 
in the relative ranking of the genotypes (crossover or 
qualitative interactions) in different environments. 
Non-crossover interactions are usually associated with 
variance heterogeneity and non-additivity. The 
analysis of variance combined with joint regression 
analysis failed to differentiate between the crossover 
and non-crossover interactions. Tedious computations 
are necessary in comparisons of all possible pairs of 
genotypes in all possible pairs of environments in the 
crossover detection tests. Therefore, differentiating 
the non-crossover interaction caused by variance 
heterogeneity and non-additivity from crossover 
interaction by simple but effective methods such as 
exploratory data analysis should be carried out before 
assessing the stability in GEl studies. The 
effectiveness of the four graphical methods i) variance 
heterogeneity diagnostic plot (Box et ale 1978), ii) 
transformable non-additivity diagnostic plot, (Box et 
ale 1978) iii) Emerson and Hoaglin's (1983) non~ 
additivity diagnostic plot, and iii) Gabriel's bi-plot 
(1971) in detecting non-crossover interactions 
resulting from variance heterogeneity and non
additivity are presented in this paper. Baker's (1990) 
three simulated and the spring wheat data sets were 
used to evaluate the effectiveness of these four 
graphical techniques. 

Key words: crossover and non-crossover interactions; 
variance heterogeneity; transformable non-additivity 
diagnostic plot; bi-plot; exploratory data analysis. 

1. Introductions 

Genotype x Environment Interaction (GEl) is an 
important consideration in multi-environmental plant 
breeding trials, when the test genotypes exhibit 
inconsistent relative performance over environments. 
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Significant GEl results from the changes in the 
magnitude of differences among genotypes or changes in 
the relative ranking of the genotypes in different 
environments. The GEl when present reduces the 
progress from selection in anyone environment. 

A qualitative or crossover interaction arises when 
the ranks of the true genotype mean vary among the 
environments while the quantitative or non-crossover 
interaction involves the variation in the magnitude of 
genotype means among environments (Peto, 1982; Gail and 
Simon, 1985). Haldane (1946) and Gregorius and Narnkoong 
(1986) claimed that only the crossover interaction is 
practically important. Non-crossover interactions are 
usually associated with variance heterogeneity and non
additivity of the GE data matrix. Thus, differentiating 
between the crossover and non-crossover design is 
important in decision making relating to plant breeding 
strategies, since the presence of crossover interaction 
emphasizes the need for breeding programs for specific 
adaptation to certain environments. 

Several statistical methods are proposed to assess 
the GEl or the environmental sensitivity of genotypes 
tested under a wide range of environments (Fernandez, 
1991). The most popular methods have used analysis of 
variance combined with joint regression analysis to 
determine the environmental sensitivity of the 
genotypes (Finlay and Wilkinson, 1963; Eberhart and 
Russell, 1966; Fernandez et ale 1989). When the 
genotype mean in an environment is regressed on an 
environmental index (environment mean - grand mean), 
the regression coefficient and a function of squared 
deviation from the regression would provide estimates 
of environmental sensitivity statistics. With this 
model, the sums of squares due to environments and 
genotype x environments are partitioned into 
environment-linear, GxE-linear, and deviation from the 
regression model. Baker (1990) used the conventional 
joint regression analysis on three simulated data sets 
and concluded that this method failed to differentiate 
between the crossover and non-crossover interactions. 

For detecting crossover interaction, Baker (1990) 
used the tests developed by Azzalini and Cox (1984) and 
Gail and Simon (1985). Tedious computations involving 
comparisons of all possible pairs of genotypes in all 
possible pairs of environments are required in these 
tests. For example, 3620 possible quadruple 
comparisons are necessary for a 9 x 10 GE data matrix 
(Baker, 1990). Therefore, differentiating the non
crossover interaction caused by variance heterogeneity 
and non-additivity from crossover interaction by simple 
but effective methods such as exploratory data analysis 
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should be carried out before assessing the stability in 
GEI studies. 

Exploratory data analysis is the "manipulation, 
summarization, and display of the data to make them 
more comprehensible to human minds, thus uncovering the 
underlying structure in the data and detecting 
important departure from this structure!1 (Andrews, 
1978). Examining a plot of predicted values and the 
residuals is a widely used exploratory data analysis to 
detect the violation of assumptions in ANOVA and 
regression models (Fernandez, 1992). The feasibility 
of using some graphical techniques to detect the non
crossover interactions should be evaluated as 
alternative to the complex crossover detection tests. 

The objectives of this study were to investigate 
the effectiveness of the four graphical methods i) 
variance heterogeneity diagnostic plot (Box et ale 
1978), ii) transformable non-additivity diagnostic 
plot, (Box et ale 1978) iii) Emerson and Hoaglin's 
(1983) non-additivity diagnostic plot, and iv) 
Gabriel's bi-plot (1971) in detecting non-crossover 
interactions resulting from variance heterogeneity and 
non-additivity. Baker's (1990) three simulated and the 
spring wheat data sets were used to evaluate the 
effectiveness of these four graphical techniques. 

2. Baker's (1990) simulated data sets: 

2.1 Random effects model: 

The statistical model, Baker (1990) used for 
generating simulated data was: 

(1) 

where Gi , ~, and GEijrepresent random genotype, 
environmental, and GEI effects respectively. The data 
comprise of 8 genotypes evaluated in 10 environments 
(table 1). In this model, the changes in genotype rank 
result from differences in genotype response to 
unpredictable factors in the environment. This model 
should show no relationship between the GEl effects and 
the environmental deviation. However, joint regression 
analysis produced regression coefficients that vary 
from -.2 to .2 particularly for this small simulated 
data with eight genotypes. The range in regression 
coefficient decreases as the number of genotypes 
increases. In this simulated data, about 10% of the GEl 
variance was attributed to the heterogeneity of 
regression coefficients (Baker 1990). 
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2.2 MultiDlicative model: 

Baker (1990) used the following model to generate 
a simulated data with mUltiplicative effects: 

y.. = J/ + (G. - G . ) (E - E . ) 
1J f""" 1 mm J mm (2) 

Where, Yijis the function of the product of random 
normal deviate Gj and Ej • This data also comprise of 8 
genotypes evaluated in 10 environments (table 1). The 
important feature of this model is that there was no 
crossover interaction. This type of non-crossover 
interaction involves heterogeneity of variance, non
additivity, and high correlation among environments. 
Significant regression coefficients, insignificant mean 
square deviation from the joint regression analysis; 
and a positive correlation between genotype mean and 
the regression coefficients were characteristic of this 
data. 

2.3 Yield-disease model: 

The simulated data for this model were generated 
by the following statistical model (Baker 1990) 

(3) 

where Bj is 0 for resistant genotypes and 0.3 for 
susceptible genotypes. The disease incidence is assumed 
to be greater under environmental condition that favors 
higher yield. This data also comprise of 8 genotypes 
evaluated in 10 environments (table 1). As in the 
mUltiplicative model, the interaction was reflecting a 
non-additive model and there were no deviations from 
the joint regression analysis. The yield disease model 
differs from the mUltiplicative model in that crossover 
interactions occurred and differed from the random 
effects model in that the crossover interactions were 
related to specific causes, the degree of disease 
resistance. 

2.4 Sprinq wheat yield data (Baker 1990): 

This data comprise of nine genotypes grown in 10 
environments (table 1). Significant crossover 
interaction was observed as in yield disease model due 
to differential disease resistance potentials. 
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3. Graphical techniques to detect non-crossover 
interaction: 

3.1 Variance heterogeneitv diaqnostic plot (Box et al. 
1978) : 

A plot between log of environmental standard_ 
deviation (Sj) and the log of environmental mean (Y J ) 
allows to judge the extent of variance heterogeneity 
and suggests which power transformation if any would 
help to remove it. A scatter plot with no consistent 
trend indicates the absence of variance heterogeneity 
and a linear trend suggests the presence of variance 
heterogeneity. If the regression is not significant 
when log (S) regressed on log (Y), data transformation 
is usually not necessary. A significant regression 
(P<O.05) indicates the data should be transformed and 
the regression coefficient is estimated. The power (A) 
of the transformation can be estimated by subtracting 
the regression coefficient (p) from 1. The value of the 
power, (A) indicates the appropriate transformation. 
For example, if p approximately equals 2, then A = 1-p 
= -1. Thus, the appropriate transformation would be 
reciprocals. 

3.2 The transformable additivity diaqnostic Dlot (Box 
et al. 1978): 

In a two-way data structure, a value of the 
response is observed for each combination of genotype 
and environment. Where: 

( 4 ) 

First an additive model is fitted and the ~f ~, and ~ 
are estimated. The transformable additivity diagnostic 
plot (Box et al. 1978) plot illustrates the 
relationship between the interaction component, GE and - u 
Y ijl where 

( 5 ) 

( 6) 

A scatter plot with no consistent trend indicates the 
absenoe of transformable non-additivity and a 
curvilinear plot suggests the existence of non
crossover interaction resulting from transformable non
additivity. 

Conference on Applied Statistics in Agriculture
Kansas State University

New Prairie Press
https://newprairiepress.org/agstatconference/1991/proceedings/12



3.3 Emerson and Hoaglin's (1983) non-additivity 
diagnostic plot: 

This plot allows the extent of any non-additivity 
to be judged and suggests which power transformation if 
any would help to remove it. The diagnostic plot 
illustrates the relationship between the interaction 
component, GE ij and the comparison value (cvi) , where: 

(7) 

A scatter plot with no consistent trend indicates that 
the data do not depart systematically from an additive 
model. Alternatively, if we see a linear plot, the 
slope of this diagnostic plot guides us to a 
transformation that should help to remove the non
additivity_ If the slope is ~, the power near (I-p) 
provide a useful power transformation. 

3.4 Gabriel's biplot (1971): 

The GElj component is partitioned into a sum of 
multiplicative terms using principal component 
analysis: 

YIj = j.l + Gt + ~ + L ail bj! + e Ij (8) 

Let Au is the u1h eigenvalue and b lul b2ut • is the u1h 

eigenvector. When scaled so that Lj b2ju = 1, the b lu ' 

b 2ut •• represents the environmental loadings for the u 1h 

principal component while a luf a2u1 • represent the 
genotype scores on that principal component axis, and 
Au = L a~ is the contribution to the GEl sums of 
squares arising from the u 1h component (Kempton, 1984). 
Thus, the biplot display of principal component 
analysis where two dimensional approximation to a two 
way table (rows x column) can be obtained from the 
first two principal components. For a table consisting 
of GEl components, the genotypes (row points) and 
environments (vector coordinates) can be plotted in the 
same graph (the biplot) . 

In all four data sets, number of environments 
(columns) were greater than the number of genotypes. To 
obtain unique principal components, the number of row 
points (observations) should be greater than the 
columns (variables). To satisfy this requirement and to 
be consistent with all four data analyses, certain 
environments were not included in all four graphical 
analyses (table 1). 
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4. Results and Discussions 

The Box et ale (1978) variance heterogeneity 
diagnostic plots (Fig.l) revealed the presence of 
significant heterogeneous variances among environments in 
the multiplicative and yield disease models. A scatter 
plot with no consistent trend in the random effects model 
confirmed variance homogeneity. In addition, I-slope of 
the linear regression model between the log SJ and YJ can 
be useful in deciding the suitable power transformation 
that can be used to remove the variance heterogeneity. 
The suggested power transformations that can remove the 
variance heterogeneity were y-2.92 , y-2.66 , and yO for the 
multiplicative, yield disease, and the spring wheat data 
respectively. However, the suggested power 
transformations based on the slope were not appropriate 
in the context of the data for the multiplicative and the 
yield disease models. 

A curvilinear plot in the transformable additivity 
diagnostic plots (Box et al.1978) (Fig.2) confirmed the 
presence of non-crossover interaction in addition to 
variance heterogeneity in the multiplicative model. 
Scatter plots were observed in other three models 
confirmed the presence of crossover interactions. 

Scatter plots were observed in Emerson and Hoaglin's 
non-additivity plots for the random effects and spring 
wheat data (Fig. 3) confirmed the absence of non
additivity in these models. A highly significant linear 
relationship in the multiplicative model confirmed the 
presence of non-addi ti vi ty or the non-crossover 
interaction. The recommended power transformation to 
remove non-additivity based on the slope was -3.7. 
However, this is not an appropriate power transformation 
within the context of the data. In the yield disease 
model, a significant linear trend was observed. This 
could be attributed to the variance heterogeneity of the 
yield disease data. Thus, Emerson and Hoaglin's non
additivity plot failed to separate non~additivity and 
variance heterogeneity when they are present together. 

The biplot displays points for genotypes and vector 
coordinates for envlronments on the same plot so that the 
expected response of a genotype in a particular 
environment may be derived from visual inspection of 
their relative positions on the biplot. The biplot will 
display a major portion the variation of the two-way GEl 
data matrix. The relative length of the vector line will 
represent the variance of the environments and their 
angles represent their correlations. The ranking of 
genotypes in a particular environment will be achieved by 
ordering the projected points. 
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In the multiplicative model, the presence of 
transformable non-additivity was revealed by the highly 
significant correlations (0.999) among the high yielding 
and the low yielding environments. About 99.9% variation 
in the data could be explained by the first dimension in 
the biplot display which separated the low yielding 
environments (Envl-Env4) from the high yielding 
environments (EnvS-EnvlO) (Fig. 4). 

In the yield disease model, the first dimension 
which explains 88% of the variation separated the low 
yielding environments (Envl-Env4) from the high yielding 
environments (EnvS-EnvlO). The nature of the crossover 
interactions in the yield disease model was revealed by 
the pattern of grouping of similar environments and 
genotypes and the separation of dissimilar environments 
by the relative positions of the genotypes in the biplot. 
The relatively hiaher oerformance of disease resistant 
genotypes, B,- D f -and E in high yielding environments 
where the disease pressure is expected to be higher is an 
indication of crossover interaction. 

In the spring wheat data, the first dimension which 
explains 76% of the variation separated the high yielding 
environments (Env3, Env6, and EnvlO) from the low 
yielding environments. The nature of the crossover 
interactions in this data was revealed by the position of 
interacting genotypes and environments in the biplot. 
Relatively higher yields of genotypes C and G in the high 
yielding environments and relatively lower yields of 
genotypes D and I in the low yielding environments 
clearly indicate the presence of crossover interaction in 
this data. 

S. Summary 

The variance heterogeneity diagnostic plot 
effectively detects the heterogeneity of variance. The 
transformable non-addi ti vi ty could be separated from 
crossover interaction by the transformable non-addi ti vi ty 
diagnostic plots (Box et al.1978) and the biplots. Non
crossover interaction attributed to both variance 
h~te~o~eneity, can be, detected by the pre~ence of 
slgnlflcant llnear plot In the Emerson and Hoaglln's non
additivity plots. In addition, the biplot technique is 
useful in showing inter-unit distances among the 
genotypes and environments and thus facilitate the 
clustering of genotypes as well as display variances and 
correlations among the environments. Thus, these 
exploratory ~raphical techniques are valuable tools in 
the GEl studles before estimating and interpreting the 
traditional stability statistics. 
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Table 1. Baker's (1990) data sets. 

1. Random effects model 

Gem. El E2 E3 z E4 E5 E6' E7 ES z E9 E10 
207 235 
211 241 
214 239 
201 250 
235 262 
244 251 
243 251 
263 285 

A 170 173 180 184 202 193 171 218 
192 192 209 
211 203 213 
192 216 213 
211 204 239 
213 195 221 
213 214 240 
239 246 254 

B 154 190 172 191 187 
C 185 183 181 214 197 
D 177 195 194 208 203 
E 190 204 210 193 199 
F 192 176 206 218 213 
G 170 204 196 214 221 
H 202 228 209 218 235 

2. Multiplicative model 

Gen. 
A 
B 
C 
D 
E 
F 
G 

H 

El 
200 
200 
200 
200 
200 
200 
200 
200 

200 
203 
215 
216 
220 
232 
236 
236 

Gen. El E2 z 

A 163 168 
B 164 174 
C 172 177 
D 176186 
E 177 186 
F 178 183 
G 181 186 
H 181 186 

E3 
200 
204 
227 
229 
236 
257 
263 
264 

200 
206 
236 
239 
248 
278 
286 
287 

E5 
200 
207 
241 
245 
255 
289 
297 
299 

E6 
200 
207 
244 
248 
258 
294 
303 
305 

E7 
200 
209 
256 
261 
275 
321 
333 
335 

3. Yield-disease model 

E3 E4' E5 E6 
169 170 177 177 
175 176 191 192 
177 178 186 186 
187 188 203 204 
187 189 204 204 
184 184 192 192 
186 187 194 194 
187 187 195 195 

E7 
179 
195 
188 
207 
208 
194 
196 
197 

EB 
200 
211 
268 
273 
290 
345 
359 
362 

E9' 
200 
213 
279 
285 
304 
368 
385 
388 

El0 
200 
215 
291 
299 
321 
395 
415 
419 

ES E9' E10 
181 188 189 
200 214 215 
190 197 198 
212 226 228 
212 226 228 
196 203 204 
199 206 206 
199 206 207 

4. Spring wheat (9) x Environment (10) - qrain yield 

Gen. El E2 
A 294 348 
B 325 404 
C 305 314 
D 332 380 
E 284 290 
F 270 289 
G 227 324 
H 307 285 
I 260 314 

E3 
428 
421 
427 
402 
361 
344 
399 
373 
409 

432 
452 
463 
403 
396 
365 
424 
410 
316 

485 
548 
486 
424 
418 
422 
450 
453 
351 

478 
448 
506 
376 
386 
387 
464 
396 
364 

E7 
213 
240 
214 
214 
194 
169 
175 
204 
176 

E8 
317 
345 
316 
326 
273 
270 
272 
282 
291 

E9 
204 
226 
196 
219 
189 
175 
177 
184 
183 

El0 
354 
355 
353 
349 
320 
306 
343 
326 
328 

Z Yield data from these environments were not analyzed. 
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1. Random-effect model 
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