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ANALYSIS OF REPEATED MEASURES DATA 

RAMON C. LITTELL 

Department of Statistics 
Institute of Food and Agricultural Sciences 

University of Florida 
Gainesville, FL 32611 

ABSTRACT 

1 

Data with repeated measures occur frequently in agricultural research. This paper is a brief 
overview of statistical methods for repeated measures data. Statistical analysis of repeated 
measures data requires special attention due to the correlation structure, which may render 
standard analysis of variance techniques invalid. For balanced data, multivariate analysis of 
variance methods can be employed and adjustments can be applied to univariate methods, as 
means of accounting for the correlation structure. But these analysis of variance methods do not 
apply readily with unbalanced data, and they overlook the regression on time. Regression curves 
for treatment groups can be obtained by fitting a curve to each experimental unit; and then 
averaging the coefficients over the units. Treatment groups can be compared by applying 
univariate and multivariate methods to the group means of the coefficients. This approach does 
not require knowledge of the correlation structure of the repeated measures, and an approximate 
version of it can be applied with unbalanced data. 

Key words: repeated measures, analysis of variance, regression, random coefficient model 

1. INTRODUCTION 
The expression "repeated measures data" refers to multiple measurements on the same unit. 

In the general sense, the term "unit" could refer to an experimental unit in a designed experiment, 
a sampling unit in a sample survey, or a subject in a retrospective study. In most situations, the 
repeated measures are over time, but they could be over space as well. The term "point" will be 
used to refer to a point in time or a point in space. 

Data with repeated measures occur in virtually all fields of agricultural research. Perhaps the 
most frequent occurrence is in growth measurements of plants or animals over time. Other 
examples of repeated measures over time include crop yields from mUltiple harvests on 
experimental plots, daily milk yields from individual cows, and weekly livestock prices at 
individual auction markets. Examples of repeated measures in space are moisture determinations 
at several depths in soil core samples, measurements of a pollutant at numerous points on a line 
transect, and amounts of spray deposition at several sites within citrus trees. 

For the sake of convention and uniformity, we shall use terminology for repeated measures 
in time. Also, we shall use the term "unit" to refer to the sampling unit or experimental unit, 
whichever the case may be. 

Studies with repeated measures data have traditionally been analyzed as "split plot in time" 
experiments. This means that a split plot analysis of variance is performed with the "units" on 
which the repeated measures are taken treated as main-plot units and the "units" at particular 
points in time treated as a sub-plot units. This approach has many shortcomings. The repeated 
measures must be taken at the same time points on each unit, and there must be a certain 
correlation structure between the repeated measures on the same unit in order for analysis of 
variance F statistics to be valid. Also, trends over time are commonly ignored when the "split plot 
in time" approach is used. In recent years, many alternative statistical methods have been 
developed. 

This paper provides a brief survey of several methods for analysis of repeated measures data. 
It draws from recent work of several authors and the facilities of certain computer program 
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packages. Section 2 discusses analysis of variance of "balanced" repeated measures, in which all 
units have complete data at a specified set of points. Methods for this case are well developed and 
several program packages provide adequate computing facility for these methods. Disagreement 
exists, however, on the merits of various methods, and when one is preferred to another. Section 
3 discuses a regression approach to repeated measures data in the balanced case, treating time as 
a regression variable. Section 4 discusses analysis of "unbalanced" repeated measures data, in 
which case different units have data at different points. Methods of analysis for this situation are 
much more complicated, and generally require some degree of approximation. 

2. ANAL YSIS OF VARIANCE FOR BALANCED REPEATED MEASURES DATA 
Repeated measures data will be called "balanced" if every unit has complete data at the same 

time points. For balanced repeated measures data, the traditional method is the split-plot in time 
analysis of variance. This is also called the "univariate" repeated measures analysis of variance. 

An example of balanced repeated measures data is given in Freund, Littell and Spector 
(1986). These data came from a large study of the eff::-cts of nutrition and exercise on physical 
strengths of geriatric citizens. Concern here is with the exercise aspects of the study, which 
involved three weight training programs to which subjects were randomly assigned. Each 
subject's strength, as determined by the amount of weight the subject could lift, was measured 
every other day for two weeks. The first program was a control, in which no training was 
.employed (CONT). The second program utilized a weight training system in which the number 
of repetitions of the exercise was increased incrementally with time (RI). In the third program, 
the amount of weight was increased incrementally over time (WI). Data are shown in Table 1, 
with means and standard deviations in Table 2. Mean profiles for the three programs are plotted 
in Figure 1. 

The exercise therapy study is typical of many repeated measures designs in which subjects 
are randomly assigned to "treatment" groups, and a response variable is measured repeatedly over 
time. 

A model for data from this type of study is 

where Yijk is the response of the jth subject in the ith treatment at the kth time, and ~il: is the 

population mean for treatment i at time k. The errors eijk are assumed normally distributed with 

mean zero and V(e jj) = V, where eij=(ejjl , ... ,eijt)'. 

A key issue with repeated measures data is the structure of the covariance matrix V. Here 
are five particular structures in terms of mathematical conditions on O"kk" the element in row k, 
column k', of V, that playa role in repeated measures data: 

Structure 

l. Unstructured 

2. Spherical 

3. Compound symmetric 

4. Huynh-Feldt 

5. Autoregressive 

no restrictions 

equal variances 
zero co variances 

equal variances 
equal covariances 

unrestricted variances 
restricted covariance 

covariance function of 
time interval between 
repeated measures 

~1athematical Condition 

V = (O"kk') positive definite 

O"kk = cr, 
O"kk' = 0 

O"kk = cr, 
O"kk' = 8cr 
O"kk = 2Tk+¢ 
O"kk' = Tk+Tk, 
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A "univariate" analysis of variance (split plot in time analysis of variance) for the exercise 
therapy data is shown in Table 3. The asterisk next to the P-values for Time and Time*Program 
F values is a flag that the validity of these F tests depends upon V having a certain mathematical 
structure. Many sources state that the required condition is compound symmetry, but in fact it 
is the Huynh-Feldt (H-F) condition. See Huynh and Feldt (1970). However, there is probably 
little practical distinction between the two conditions. The H-F condition is equivalent to any 
set of orthonormal contrasts of the repeated measures having a spherical distribution. 

Both the compound symmetry and H-F conditions are questionable from a practical point of 
view. There is little evidence to indicate that either of these conditions should occur in nature. 
A more realistic condition for repeated measures in time is the first order autoregressive structure. 
It accommodates the feature that measures close in time will be more highly correlated than 
measures far apart in time; in particular, covariance between two repeated measures is a function 
only of their distance apart in time. 

Multivariate methods can be used to test the Time and Time*Treatment effects which do not 
require any particular structure of V. These can be constructed by computing sets of contrasts 
among the repeated measures and applying multivariate analysis of variance techniques (Cole and 
Grizzle, 1966). Many of the multivariate tests can also be obtained directly by some computer 
programs; in particular, the REPEATED statement in the ANOV A and GLM procedures in the 
SAS System. The generality of the multivariate methods tends to come at a cost in statistical 
power. For the exercise therapy study, multivariate tests (based upon Pillai's trace) produce the 
results in Table 4. 

It is not uncommon to obtain very different results regarding Time*Treatment interaction 
from the multivariate test and the univariate test. The univariate test in Table 3 produced 
P=O.0005 and the multivariate test in Table 4 produced P=0.1943. One must know which, if 
either, of these P-values to believe. A general approach for analysis of variance of repeated 
measures data is to use the univariate tests if the H-F condition holds, and use the multivariate 
tests if the H-F condition does not hold. The problem is in knowing whether the H-F condition 
holds. 

Tests of significance have been recommended to determine if the H-F condition holds; i.e. 
to determine if the mathematical conditions are met which are required for validity of the 
univariate analysis of variance F statistics for the Time and Time*Treatment interaction. One of 
these tests, which is available in the SAS System under the name "Mauchly's criterion," is a 
likelihood ratio test for the null hypothesis that the H-F condition holds versus the alternative 
hypothesis that V is unstructured. Tests for the validity of the H-F condition have recently been 
discredited, however. (See Looney and Stanley, 1989). This leaves this general approach of 
choosing between the univariate and multivariate tests in a state of limbo. 

Alternatively, adjusted versions of the univariate tests can be employed. These procedures 
entail adjusting the significance probability of the univariate analysis of variance F tests 
according to the degree of departure from the H-F conditions. Box (1954) proposed a measure 
E of the degree of departure from the H-F conditions. The value of E is between (t-1)-1 and 1, 
where t is the number of time points. The value E=l indicates the H-F condition holds, while 
decreasing values of E indicate increasing departure from the H-F condition. Box (I 954) showed 
that significance probabilities of the univariate F tests for the Time and Time*Treatment effects 
can be adjusted by discounting the numerator and denominator degrees of freedom by multiplying 
them by E. Thus E=1 would produce no adjustment of the P-value. On the other extreme, 
E=(t-I)"1 would produce the most severe adjustment, reducing the degrees of freedom for time 
from t-l to I, for Time*Treatment from (t-l)*(a-l) to a-I (where a is the number of treatment 
groups), and for Error from (n-a)*(t-l) to n-a (where n is the number of units altogether). 
However, in practice one would not usually know the value of E. A conservative adjustment is 
to adjust the significance probabilities as if E=(t-l)-1. Another approach is to estimate € from the 
data. Greenhouse and Geisser (1959) and Huynh and Feldt (1970) proposed estimates of E. See 
Milliken and Johnson (1984) or Milliken (1990) for good discussions of these methods. Looney 
and Stanley (1989) make recommendations concerning a combination of the adjusted, unadjusted 
and multivariate tests for the Time and Time*Treatment effects. 
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. Univariate, multivariate and adjusted univariate P-values for the exercise therapy data are 
summarized in Table 5. All three tests for the Time effect are significant with P < 0.0001. 
However, this is the "main effect" of Time; that is, the effect of Time averaged across programs. 
The plot in Figure 2 suggests that the Time trends are not parallel. This is to be expected because 
RI and WI are active programs and should produce strength measurements which increase with 
Time, whereas CONT is inactive and should not result in strength increasing with Time. 
Therefore, the significance of the Time trend averaged across Programs is of little practical value. 
The nature of the Time*Program interaction is a more important issue. Recall that the univariate 
test for Time*Program has a P-value of 0.0005 and the multivariate test for Time*Program has 
a P-value of 0.1943, giving conflicting conclusions from the two tests. Mauchly's test for the 
validity of the H-F condition yielded P < 0.0001, which indicates the H-F condition does not 
hold. Therefore, the univariate P-value for Time*Program is unreliable. On the other hand, the 
multivariate test lacks the power to detect the Time*Program interaction that seems apparent in 
Figure 1. The Greenhouse-Geisser (1959) estimate of the discounting factor € is 0.4233. When 
the degrees of freedom of the univariate test are multiplied by 0.4233, the resulting adjusted P­
value is 0.0130. This P-value seems in agreement with the visual impression off interaction in 
Figure 2. 

3. REGRESSION METHODS FOR BALANCED REPEATED MEASURES DATA 
All of the analysis of variance methods discussed in the preceding section regarding tests of 

significance for the Time and Time*Treatment effects ignore a basic and essential feature of the 
variable Time; namely, that it is Quantitative. Therefore, as in the case of any Quantitative 
variable, a more effective method of analysis is usually obtained by employing some form of 
regression methodology. That is, one should think in terms of fitting curves to the Time variable. 
Typically, one would potentially have a different regression curve for each treatment (in this case, 
each Program). 

The regression approach has many advantages. First, and perhaps most importantly,it directs 
the data analysis toward a major objective of the study by focusing on trends over time. Second, 
it provides a reduction in the number of parameters to be estimated; instead of the t means 
J.Lil, ..• ,J.Ljt for the ith treatment, one would have only the parameters of the mean regression curve, 
typically two or three in number. Third, inference can be made in terms of the regression 
parameters. Hopefully, regression functions could be specified so that the parameters have some 
practical interpretation. Fourth, regression curves "smooth" the response over time. Estimates of 
differences between treatments can be calculated from fitted curves that will avoid the erratic 
conclusions often obtained from comparing treatment means at each time point. It is not 
uncommon, when estimating differences between treatment means at individual time points, to 
find the differences vacillate between "significant" and "not significant" from one time to the next 
due to the random variation in the means. 

Regression curves can be fitted to individual units, providing estimates of the regression 
parameters for each unit. Then multivariate and univariate statistical analysis of the unit 
regression parameter estimates can be performed to determine in what manner characteristics of 
the regression curves are affected by the treatment groups. In terms of a model, we have 

where Yij is the vector of repeated measures for the jth unit in the ith treatment group, X is the 
matrix relating the repeated measures to the time points, {3j is the parameter vector for the ith 

treatment, and e jj is the error vector for the jth unit in the ith group. Fitting the model to each 
unit via ordinary least squares (OLS) yields 

as the vector of parameter estimates for unit j in group i. Then bij has expectation E(bj) = {3j, and 
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variance V(bi) = (X'X)"l X'VX(X'X)"l. Therefore, the bij estimates follow a multivariate normal 

distribution, which we write 

It follows that standard methods for the general multivariate linear model can be applied. (See 
Grizzle and Allen, 1969). This provides the basis for a seemingly ad hoc but effective 
methodology for inference. Standard multivariate analysis computer programs can be used to 
perform the analyses, taking the vector bij of parameter estimates for the jth unit in the ith group 

as the "observation" vector. In fact, as will be pointed out in the next section, there is some basis 
for using this approach even in the unbalanced case. A tremendous advantage of this ad hoc 
approach is that it does not require knowledge of V. Therefore, questions of the specific form 
for V (compound symmetry, H-F condition, etc.) are not issues. The cost of not incorporating 
knowledge of V is that the OLS estimate bij is not necessarily the best estimate of the respective 

"true" (random) parameter vector f3 ij for the jth unit in group i. This often is a negligible cost 

because ordinarily the between unit variance is larger than within unit variances. 
In the case of polynomial regression curves, one could fit successively linear, quadratic, and 

cubic curves to individual subjects. (Fitting polynomials above degree three rarely produces 
useful parameter estimates. Even results from fitted third degree polynomials are often of 
questionable merit.) Analysis of variance can be applied to the subject parameter estimates, 
typically beginning with the higher order terms, to ascertain the degree of polynomial required. 
This step is followed by fitting curves of the determined order, and drawing inferences about the 
treatment groups on the basis of these curves. 

Results extracted from using the REPEA TED statement in SAS PROC GLM, which provides 
tests for the significance of parameter estimates from sequentially fitted polynomials, are shown 
in Table 6. (Tests for higher order effects, which were all nonsignificant, were also printed by 
the GLM procedure.) These results indicate quadratic models are adequate, with a hint of lack 
of fit suggested by the average Time Cubic parameter being significantly different from zero at 
the 0.1163 level. Nonsignificance of the Time Quad*Prog interaction suggests the quadratic 
models for the three Programs might be forced to have the same quadratic estimate. But this 
would probably be counterproductive because one would expect the response to the CONT 
Program to be flat. The Time Linear*Program interaction is significant at the 0.0110 level. This 
implies that, if straight lines were fitted for the three Programs, they would have significantly 
different slopes. The significance of the Time Linear effect (p = 0.0028) implies the average of 
the slopes is different from zero. As noted earlier, however, the average trend is probably not 
of great practical value because the slopes differ between the programs. 

Having decided upon the degree of the model, the next step is to obtain equations for fitted 
models. Unfortunately, the GLM procedure in SAS does not provide parameter estimates directly 
from this analysis. But parameter estimates for the treatment curves can be obtained by fitting 
a curve for each subject and then averaging parameter estimates across subjects in the treatment 
groups. Coefficients for equations so obtained for quadratic curves fitted to the weight training 
data are shown in Table 7, along with standard deviations of the parameter estimates. 

Graphs of the average quadratic curves are plotted in Figure 2, with Program means plotted 
around them. Predicted values at Times 1-7 from the fitted curves with standard deviations are 
shown in Table 8. These predicted values were calculated as averages of predicted values from 
the individual subject curves. It is usually advantageous to make comparisons between the 
treatment group at individual Times using these average predicted values rather than using the 
ordinary means because the predicted values have been smoothed by the fitted curve. 

4. ANALYSIS OF UNBALANCED REPEATED MEASURES DATA 
Unbalanced data occur in repeated measures studies in a variety of ways. Study designs 

ordinarily call for all subjects to provide measures at the same time points, but complications in 
the data collection process often cause some subjects to not provide data at some points. In other 
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studies it might not be feasible to even plan for all subjects to provide data at a common set of 
time points. 

Analysis of variance methods, as generalizations of the split plot in time approach, are 
discussed by Milliken and Johnson (1984). Applications of these methods usually assume an 
unbalanced data analog of compound symmetry, because the H-F condition is too complicated 
to formulate with unbalanced data. With this assumption, analysis of variance of unbalanced 
repeated measures data falls in the general category of unbalanced mixed linear models. This 
encompasses a very large and complicated set of problems for data analysis, more than can be 
discussed here. We therefore refer the reader to Milliken and Johnson. Instead, we focus on 
procedures specific to repeated measures data. 

In order to accommodate unbalanced data, we specify the model 

where Yij is the vector of repeated measures and Xij is the matrix relating the repeated measures 

to the time points for the jth unit in the ith treatment group, f3 i is the parameter vector for the 
ith treatment, and eij is the error vector for the jth unit in the ith group. We must now specify 

possibly different covariance matrices for each subject, V(eij) = Vij' This is necessary to reflect 
the dependence of the covariance matrix on the number and spacing of the repeated measures. 
Fitting the model to each unit via OLS yields 

as the vector of parameter estimates for unit j in group i. Then bij has expectation E(bij) = f3 i , and 

variance V(bij) = (Xij'Xi/1Xij'VijXij(Xi/Xi/1. It follows that the group sample means of the unit 
estimates are unbiased estimates of the group population mean; i.e. E(bi.) = f3 i , where the ad hoc 
estimators bi' = ni-1 Ej(bij). 

The model just described is closely related to the so-called random coefficient regression 
(RCR) model. Following the description of Vonesh and Carter (1987), Yij = Xilij + €ij , where f3 ij 

is assumed normally distributed with mean f3i and covariance r, and €ij is normally distributed 

with mean zero and covariance matrix all of appropriate dimension. This makes Vij = XlXi{ + 
all. The RCR model is sometimes criticized for the property that Vij depends upon Xij in this 
manner. See Ware (I985). The RCR model is fitted in stages: First, bij is computed as defined 
above for each subject. Next, an estimator of the covariance matrix of the (combined) vector of 
regression coefficients for all the subjects is obtained. Then (estimated) generalized least squares 
is applied to obtain estimates of the Pi vectors, along with estimates of their covariances. 

Gumpertz and Pantula (1989) proposed using the ad hoc estimators bi .. They showed that 
these estimators have near optimal properties even in unbalanced cases. They also showed that 

the covariance matrix n-1Si is an unbiased estimate of V(bJ, where Si = (ni-1)-1 E/birb;.)(bij-bi.)" 

Although they stated and proved the covariance result in the context of the random coefficient 
regression model, it holds for general Vii" This provides a basis for approximate inference using 

the ad hoc b i . estimators even with unbalanced repeated measures data. Further, the Gumpertz­

Pantula covariance result holds for certain other experiment. designs. 
Considerable effort has been expended in recent years to obtain maximum likelihood 

estimators for repeated measure models with unbalanced data and structured covariance matrices. 
See Ware (1985) for a review. Some of these methods have been implemented in the computer 
program BMDP 5V, employing estimation techniques of Jennrich and Schlueter (1984). The 
BMDP 5V setup assumes that all units potentially had data at the same points (i.e. the data were 
potentially balanced) but some subjects have missing data at some points. The primary limiting 
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aspect of this formulation is that relatively few different time points are allowed. A variety of 
covariance structures are permitted, including compound symmetry, 1st order autoregressive, 
unstructured, and the random coefficient regression model covariance (which is called random 
effects covariance). In addition to parameter estimates for the fitted models, BMDP 5V also 
prints estimates to the covariance matrix under the various assumed structures. 

Data from the weight training study were used to make a preliminary comparison of estimates 
using the ad hoc approach with maximum likelihood from BMDP 5V assuming I st order 
autoregressive errors. The average regression line E(y) = eto + etlt + et2f (across programs) was 

estimated using each of the methods. (The choice to estimate the average regression line was 
made because BMDP 5V estimates this directly, along with estimates of differences of individual 
program parameters from the average.) This was done for the entire data set, and then data were 
discarded in various patterns: 20%, 40% and 60% were discarded (in sequence) at random in the 
Subject by Time array. Then 20%, 40% and 60% were discarded randomly across subjects, but 
with the condition that all missing points are at the end of the series. Thus some subjects have 
complete data, some are missing the last time, some are missing the last two times, etc. Estimates 
and standard errors appear in Table 9. 

Results in this Table 9 indicate that the ad hoc method performs well relative to ML unless 
a large fraction of data is missing, on the order of 50% or more. Performance of the ad hoc 
method is especially poor when a large amount of data is missing at the last end of the series. 
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Table 1. Data for Exercise Therapy Study 

OBS PROGRAM SI S2 S3 S4 S5 S6 S7 

1 CONT 85 85 86 85 87 86 87 
2 CONT 80 79 79 78 78 79 78 

3 CONT 78 77 77 77 76 76 77 

4 CONT 84 84 85 84 83 84 85 

5 CONT 80 81 80 80 79 79 80 
6 CONT 76 78 77 78 78 77 74 
7 CONT 79 79 80 79 80 79 81 
8 CONT 76 76 76 75 75 74 74 

9 CONT 77 78 78 80 80 81 80 

10 CONT 79 79 79 79 77 78 79 

11 CONT 81 81 80 80 80 81 82 
12 CONT 77 76 77 78 77 77 77 

13 CO.l'."'T 82 83 83 83 84 83 83 
14 CONT 84 84 83 82 81 79 78 

15 CO}''T 79 81 81 82 82 82 80 
16 CONT 79 79 78 77 77 78 78 

17 CONT 83 82 83 85 84 83 82 
18 CONT 78 78 79 79 78 77 77 

19 CONT 80 80 79 79 80 80 80 
20 CONT 78 79 80 81 80 79 80 

1 RI 79 79 79 80 80 78 80 

2 RI 83 83 85 85 86 87 87 
3 RI 81 83 82 82 83 83 82 
4 RI 81 81 81 82 82 83 81 
5 RI 80 81 82 82 82 84 86 

6 RI 76 76 76 76 76 76 75 
7 RI 81 84 83 83 85 85 85 
8 RI 77 78 79 79 81 82 81 
9 RI 84 85 87 89 88 85 86 

10 RI 74 75 78 78 79 78 78 

11 RI 76 77 77 77 77 76 76 

12 RI 84 84 86 85 86 86 86 

13 RI 79 80 79 80 80 82 82 
14 RI 78 78 77 76 75 75 76 

15 RI 78 80 77 77 75 75 75 

16 RI 84 85 85 85 85 83 82 
1 WI 84 85 84 83 83 83 84 

2 WI 74 75 75 76 75 76 76 

3 WI 83 84 82 81 83 83 82 
4 WI 86 87 87 87 87 87 86 

5 WI 82 83 84 85 84 85 86 

6 WI 79 80 79 79 80 79 80 

7 WI 79 79 79 81 81 83 83 

8 WI 87 89 91 90 91 92 92 

9 WI 81 81 81 82 82 83 83 

10 WI 82 82 82 84 86 85 87 

11 WI 79 79 80 81 81 81 81 

12 WI 79 80 81 82 83 82 82 

13 WI 83 84 84 84 84 83 83 
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Table 2. Means and Standard Deviations for Exercise Therapy Data 

PROGRAM STRI STR2 STR3 STR4 STR5 STR6 
CONT 

RI 

WI 

mean 79.8 80.0 80.0 80.1 79.8 79.6 
std dev 2.67 2.63 2.75 2.74 3.04 2.95 

mean' 79.7 80.6 80.8 81.0 81.25 81.13 
std dev 3.11 3.22 3.58 3.79 4.12 4.13 

mean 81.0 81.7 81.9 82.5 82.6 82.7 
std dev 3.11 3.35 3.48 3.04 3.34 3.27 

Table 3. Univariate Analysis of Variance for Weight Training Data 

Univariate 

Source of Variation g[ Mean Sguare f f 

Program 2 209.72 3.07 0.0548 

Error(a) = 
Subj.(Program) 54 86.42 

Time 6 8.89 7.43 0.0001· 
Program ·Time 12 3.58 2.99 0.0005· 

Error(b) = 
Subj *Time(Prog) 324 1.20 

Table 4. Multivariate Tests (Pillai's Trace) for Weight Training Data 

Time 

Time·Program 

Multivariate F 

6.46 

1.37 

Significance Probability P 

0.0001 

0.1943 

Table 5. Summary of Univariate, Multivariate and Adjusted Univariate P-values 

Univariate Multivariate Adjusted Univariate 

Time 0.0001 

0.0005 

0.0001 

0.1943 

0.0001 

0.0130 Time·Program 

9 

STR7 
79.6 
3.25 

81.13 
4.18 

83.1 
3.35 
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PROGRAM 

CONT 

RI 

WI 

CONTRAST 

CONTVSTRT 

RI VS WI 

Table 6. Analysis of Variance of Polynomial Trends 

Source of Variation df Mean Sguare E 12 

Time Linear 1 40.514 9.85 0.0028 
Time Lin *Prog 2 20.196 4.91 0.0110 
Error 54 4.115 

Time Quadratic 1 10.577 8.64 0.0048 
Time Quad*Prog 2 0.712 0.58 0.5626 
Error 54 1.225 

Time Cubic 1 1.313 2.55 0.1163 
Time Cub*Prog 2 0.020 0.04 0.9620 
Error 54 0.516 

Table 7. Average Parameter Estimates and Standard Deviations 

PROGRAM 

CONT 

RI 

WI 

Table 8. 

INTERCEPT 

79.61(3.13) 

79.08(3.14) 

80.52(3.39) 

LINEAR 

0.223(1.153) 

0.793(1.192) 

0.601(0.813) 

QUADRATIC 

-0.034(0.137) 

-0.073(0.134) 

-0.035(0.089) 

Estimates and Contrasts of Quadratic Curves 

STRI STR2 STR3 STR4 STR5 STR6 

mean 79.8 79.9 80.0 80.0 79.9 79.7 
std deY 2.70 2.60 2.67 2.77 2.85 2.96 

mean 79.8 80.4 80.8 81.1 81.2 81.2 
std deY 3.08 3.27 3.53 3.56 3.92 4.05 

mean 81.1 81.6 82.0 82.4 82.7 82.9 
std deY 3.22 3.19 3.21 3.24 3.25 3.26 

P-value 0.44 0.21 0.11 0.06 0.03 0.02 

P-value 0.20 0.23 0.25 0.24 0.20 0.15 

STR7 

79.5 
3.21 

81.1 
4.23 

83.1 
331 

0.01 

0.10 
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Table 9. Comparison of Maximum Likelihood and ad hoc Parameter Estimates 

Missing data pattern Estimation Method "'0 "'1 °2 

Complete ML 79.66(0.46) 0.55(0.14) -0.05(0.02) 
ad hoc 79.74(0.43) 0.54(0.14) -0.05(0.02) 

random 20% ML 79.59(0.48) 0.63(0.16) -0.06(0.02) 
ad hoc 79.68(0.45) 0.65(0.19) -0.07(0.02) 

random 40% ML 79.67(0.05) 0.66(0.17) -0.06(0.02) 
ad hoc 80.11(0.65) 0.54(0.23) -0.05(0.03) 

random 60% ML 79.69(0.55) 0.59(0.21) -0.05(0.03) 
ad hoc 79.78(0.83) 0.73(033) -0.07(0.02) 

last 20% ML 79.61(0.46) 0.61(0.15) -0.06(0.02) 
ad hoc 79.61(0.42) 0.65(0.17) -0.07(0.02) 

last 40% ML 79.58(0.47) 0.70(0.19) -0.08(0.03) 
ad hoc 79.63(0.44) 0.74(0.20) -0.09(0.04) 

last 60% ML 79.54(0.49) 0.74(0.28) -0.08(0.06) 
ad hoc 79.22(0.67) 1.34(0.44) -0.22(0.12) 
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Figure 2. Quadratic Regression Curves for Exercise Therapy Programs 
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