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NONLINEAR REGRESSION FOR SPLIT PLOT EXPERIMENTS 

ABSTRACT 

Marcia L. Gumpertz and John O. Rawlings 
North Carolina State University 

159 

Split plot experimental designs are common in studies of the effects of air pollutants on 
crop yields. Nonlinear functions such the Weibull function have been used extensively to 
model the effect of ozone exposure on yield of several crop species. The usual nonlinear 
regression model, which assumes independent errors, is not appropriate for data from nested or 
split plot designs in which there is more than one source of random variation. The nonlinear 
model with variance components combines a nonlinear model for the mean with additive 
random effects to describe the covariance structure. We propose an estimated generalized 
least squares (EGLS) method of estimation for this model. The variance components are 
estimated two ways: by analysis of variance, and by an approximate MINQUE method. These 
methods are demonstrated and compared with results from ordinary nonlinear least squares for 
data from the National Crop Loss Assessment Network (NCLAN) program regarding the 
effects of ozone on soybeans. In this example all methods give similar point estimates of the 
parameters of the Weibull function. The advantage of estimated generalized least squares is 
that it produces proper estimates of the variances of the parameters and of estimated yields, 
which take the covariance structure into account. A computer program that fits the nonlinear 
model with variance components by the EGLS method is available from the authors. 

KEYWORDS: Random effects; Variance components; Mixed models 

1. INTRODUCTION 

Split plot experimental designs are often used in studies of the effects of air pollutants 
on crop yields. For example, in the National Crop Loss Assessment Network (NCLAN) 
program the effects of ozone exposure on yield of soybean were studied at Beltsville, Maryland 
in 1983 (Heggestad et al 1985). In this experiment ozone was dispensed in open top field 
chambers. There were ten treatments, consisting of combinations of five ozone exposure levels: 
charcoal filtered (CF), nonfiltered (NF), NF + .03 ppm, NF + .06 ppm, and NF + .09 ppm; 
and two watering regimes: well watered and water stressed. Thirty chambers were arranged in 
three randomized blocks with 10 chambers per block. Within each chamber two cultivars 
(Corsoy and Williams) of soybeans were grown. In this experiment ozone level and watering 
regime are whole plot treatments and the cultivars are the split plot treatments. 

One of the objectives of this type of experiment is to model the effect of ozone on yield 
to produce estimates of the relative yield loss due to increases or decreases in ozone exposure. 
The Wei bull model has been found to be a flexible monotonically decreasing model that fits the 
data well for several crop species (Rawlings and Cure 1985). The usual nonlinear regression 
model assumes that all observations are taken independently. In the split plot situation the 
observations within a whole plot; i.e. within a chamber in this example, are expected to be 
correlated, violating the assumption of independent observations. In this situation a Weibull 
model for the mean with two random effects, one for the whole plot error and one for the 
subplot error, would be appropriate. This is a special case of a nonlinear model with variance 
components (also called a nonlinear model with random effects). This type of model consists 
of a nonlinear function for the mean and some additive random effects. It is similar to a mixed 
model in the analysis of variance, except that the function for the mean is allowed to be a 
nonlinear function. 

In Section 2 we present the equation for the nonlinear model with variance components 
and give the Weibull model for the soybean data. The method of estimating the parameters 
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called estimated generalized least squares (EGLS) is discussed in Section 3. Implementation of 
estimated generalized least squares requires that the variance components be estimated. Two 
methods of estimating the variance components are presented in Section 4. In the final section 
results for the soybean yield data using estimated generalized least squares are compared to 
the results from ordinary nonlinear least squares. 

2. NONLINEAR MODEL WITH VARIANCE COMPONENTS 

The nonlinear model with split plot errors is a special case of the nonlinear model with 
variance components. In this model there is a nonlinear function for the mean, g(X,B), and - --the random effects, such as whole plot errors, are added to the mean function. The model is: 

where 

g(X,B) is the function for the mean, 
,... --
~k is the kth random effect, and 

£k contains indicator variables for the kth random effect. 

We assume that the random effects are normally distributed and are independent of each 
other: 

~k ...., NCQ, O"i 1); 

~k' ~j independent for k i= j. 

The following data requirements ensure that the parameters can be estimated: 

(2.1) 

1. n ~ p + r + 1. The total number of observations must be at least as large as the number 
of parameters being estimated. 

[ ag(B) ag(B) ag(B)l . 
2. 12(1) has full column rank, where 12(1) = OBI' aB 2 ' ••• , aBp J In nonlInear 

regression the derivative matrix 12(1) corresponds to the design matrix in linear 
regression. This is similar to the requirement that the design matrix have full column 

rank. 

3. Rank of [12(£') I £k] > rank of 12(£.). The indicator variables for the random effects 
must not be linear combinations of the columns of 12(£,). 

4. The matrices £0£0" ... ,£r£/ are linearly independent. 

For the soybean experiment described in section 1 the mean function, g(~,!), is a 
Weibu!! function relating y = soybean yield (kgjha) to x = ozone exposure (ppm). The basic 
Weibull model has been modified to accomodate block, moisture, and cultivar effects and the 

. whole plot chamber-to-chamber variation is added to the Weibull function. The model is: 

_(X:.rl)Aj 

Yijkl = (a + Bi + M j + C1 + (MC)jl) . e J + Cijk + f ijkl , (2.2) 

where i = 1, 2, 3 blocks; j = 1, 2 moisture regimes; k = 1, ... ,5 ozone levels; and I = 1, 2 
cultivars. In this model a gives the maximum yield for Williams soybeans in the well watered 
chambers. The parameters B;, M j' C l , and (MC) jl adjust a for block, moisture, and cultivar 
effects. The Weibull parameter W j gives the ozone level at which yield is reduced 63%, and A j 
is a shape parameter for the Weibull function. The whole plot error is labeled Cijk , and the 
within-chamber error is labeled fijkl. This model has separate parameters Wj and Aj for eac~ 
moisture regime, but not for the two cultivars. Within each moisture treatment the shape of 
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the curve appears similar for the two cultivars but the maximum yield was higher for Williams 
than for Corsoy (Fig. 1). A more flexible model, with separate W jl and), jl parameters for each 
moisture X cultivar combination could also have been fit. A model selection procedure is 
described in Gumpertz and Rawlings (1990) in detail. 

3. GENERALIZED LEAST SQUARES ESTIMATION OF PARAMETERS 

In ordinary nonlinear least squares (OLS) the parameters are estimated by minimizing 
the sum of the squared residuals: 

(y - g(X,8 »)'(y - g(X,8 ». 
""'-I """J~""'" ~ ,....,,""''''''' 

This method gives equal weight to all observations and is the method of choice if the 
observations are all independent and the errors arise from a common distribution. These 
conditions are often satisfied if the data come from a completely randomized design. 

(3.1) 

If the errors do not all have the same variance or if they are not independent, then the 
method of generalized least squares (GLS) may be preferred. This method is similar to 
ordinary least squares except that the parameters are estimated by minimizing a sum of 
squares of weighted residuals, 

(3.2) 

where the matrix Y, the covariance matrix of y, contains information about the relative 
weights to assign ~ the observations. In the split plot design of our example the observations 
within a chamber are correlated. The variance-covariance matrix of y is block diagonal with 
ijkth block: -

The observations do not all contribute independent information and so they are weighted 
accordingly. 

Generalized least squares estimation can be implemented using the Gauss-Newton 
algorithm. The algorithm for minimizing the objective function 

has the following steps. 
1. Supply an initial value, 8 o, for 8. 
2. Premultiply both sides ci the original model by y-1/ 2 , -

y-1/ 2 = y-l/2 (X 8) + y-l/2 E U e . "" r - 2 "" '- "" /;=o""~/; 

Substitute the first order Taylor series expansion of ~-1/2g(~,fO around io into the model ,.,. 

for V-1/ 2y to get the following expression: 
'" '" 
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3. Solve for £, using OLS on y-1/2c.~. - ~(~'£o»: 

fl - £,0 = LQ(iO)'y-lQ(!O)]-l!2(!O)'y-lCl - Z(~,£,o»' 

4. Iterate to convergence. 

In the nonlinear model with random effects the generalized least squares estimator has 
good statistical properties. Under certain conditions it is strongly consistent, asymptotically 
normal, and asymptotically efficient (Gumpertz and Pantula 1990). It is not feasible to use in 
actual practice, however, because the covariance matrix, y, is unknown. 

4. VARIANCE COMPONENT ESTIMATION AND ESTIMATED GENERALIZED LEAST 
SQUARES 

In the context of analysis of variance, procedures for estimating variance components 
are simple if the data come from a designed experiment with no missing observations. In the 
split plot case, for example, the usual procedure is to compute the mean squares for the 
analysis of variance table, set the mean squared errors for whole plots and subplots, MSEa and 
MSEb respectively, equal to their expected values, and solve for O"~ and 0";. 

When the data are unbalanced or when a linear model other than an analysis of 
variance model is used to fit the data, there is no unique unbiased estimator of the variance 
components. The method of minimum variance quadratic unbiased estimation (MIYQUE) is 
one method of obtaining unbiased estimates that is available for unbalanced linear mixed 
models. C. R. Rao (1972) showed that of all quadratic equations of l' the r + 1 quadratic 
forms 

k = O, .. .r, ( 4.1) 

lead to the unbiased estimates of O"i with smallest variance. The MIYQUE procedure is to set 
these quadratic forms equal to their expected values and then solve for the O"Z. This procedure 
is similar to the analysis of variance method for balanced data except that the quadratic forms 
of y that are equated to their expectations are not sums of squares from any traditional 
anilysis of variance. When the data are balanced the MIYQUE estimates coincide with the 
analysis of variance estimates. 

Variance component estimation by MIVQUE can also be viewed as a linear regression 
based on the residuals, r ijk / = Yijkl - Y GLSijld, from the generalized least squares fit of the 
model. If we arrange all of the squared residuals, r7jk/' and cross products of residuals, 
rijklrmnOp, in a vector, set them equal to their expectations, and solve for O"~ and 0"; by 
generalized least squares, the resulting variance component estimates are the MIYQUE 
estimates (Brown 1978). 

Of course the covariance matrix, V, is unknown, so the MIYQUE equations cannot be 
solved exactly. What is done in practice ~ to use an initial guess for the y matrix (this 
procedure is called MIN QUE) or to start with an initial guess and then iterate the procedure, 
updating the y matrix at each iteration (iterated MINQUE). For the soybean data an 

approximation to the iterated MINQUE method was used. In nonlinear regression the 

MIVQUE expression (y - y )'y-IU I: u .,'y-l(y - y) is not exactly a quadratic form of y, so 
"...." "" "'" ,....,,...., "" "" ,...., "" 

by definition the method is not exactly quadratic estimation. The residuals from the ordinary 
least squares fit, y -y OLS' were used in this expression. The initial values for the matrix :£ 
were obtained from a split plot analysis of variance. At every subsequent iteration the 
estimated covariance matrix, V, was updated and the residual vector, y - y OLS' was updated 
using a linearizing approximation. '" '" 

Once the variance components have been estimated, they can be substituted into the 
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generalized least squares equation (3.2) for estimating the parameters of the mean model. The 
estimated generalized least squares algorithm has the following three steps: 
1. Obtain OLS estimate of!. 

2. Estimate variance components using the ANOVA approach or the MIVQUE approach. 

3. Minimize (y - g(X,B »'V-1(y - g(X,B ». 
~ "....,,""""""" ,...", ,.... """"" "',..." 

5. EXAMPLE: EFFECTS OF OZONE ON SOYBEAN YIELD 

The NCLAN study of the effects of ozone exposure on soybean yields was designed as a 
balanced split plot experiment. The only imbalance occured because the observed ozone levels 
for each ozone treatment varied slightly from block to block. The first step in our analysis, 
therefore, was to compute the standard split plot analysis of variance given in Table 1, using 
the nominal ozone treatment levels instead of the actual observed ozone concentrations. The 
analysis of variance indicates that the effect of ozone concentration depends on whether the 
plots were well watered or water-stressed (F- test for ozone x moisture interaction, p-value < 
.0001). Yield decreases as ozone increases (Fig. 1), but the maximum yield is different for the 
two cultivars (p-value < .0001), with the difference between the two cuitivars depending on 
the moisture regime (p-value = .02). 

The Weibull model given in equation (2.2) incorporates this information about cultivar 
and moisture level effects. There is a separate set of parameters for each moisture level and 
the maximum yield is allowed to vary depending on moisture level, cultivar, and block. The 
second step in the analysis ~ to fit the Weibull curve by the method of estimated generalized 
least squares using the SASt.!9 1 macro program NLINVC (available from the authors). Tables 
2 and 3 give estimates of the variance components and their standard errors computed three 
different ways: 1) analysis of variance method, 2) approximate iterated MINQUE (labelled 
NLINVC-MML in the table), and 3) approximate maximum likelihood (labelled NLINVC-ML 
in the table). The analysis of variance and the iterated MINQUE estimates of the variance 
components are similar. The iterated MINQUE estimates are slightly larger than the analysis 
of variance estimates, probably because the Weibull model does not fit the treatment means 
exactly; that is, there is some lack of fit in the Weibull model as compared to the analysis of 
variance model. The approximate maximum likelihood estimator of the variance components 
is asymptotically normal and efficient (Gumpertz and Pantula 1990) but the sample size of 
this experiment may not be large enough to warrent its use. The NLINVC-ML estimates of 
the variance components appear to be biased downward in this experiment, especially the 
estimate of cr~. Consequently the NLINVC-ML variance component estimates were not used 
for any further analysis. 

The parameters of the Weibull model estimated by ordinary least squares and 
estimated generalized least squares are reported in Table 4. The EGLS estimates were 
computed using both the analysis of variance and the iterated MINQUE estimates of the 
variance components. The two sets of EGLS estimates were identical, and the OLS estimates 
were very similar to the EGLS estimates. Under the assumptions of the nonlinear model with 
variance components (2.1), the asymptotic variance matrix of the ordinary least squares 
estimator is given by the expression 

(5.1) 

This is not the varia~ matrix printed out ?y st~ndard nonlinear regression programs such as 
PROC NLIN in SAS'!:9, which is MSE . [J2(!)')2(!)]-1. The usual nonlinear regression 
programs assume that there is only one source of random error, which is estimated by MSE. 
This estimate is intermediate between the two variance components required in a split plot 

lSAS is a registered trademark of SAS Institute, Inc., Box 8000, Cary, NC 27512-
8000. 
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experiment. Therefore, standard nonlinear regression programs will usually underestimate the 
variance of parameters that measure differences among whole plots and overestimate the 
variance of parameters that measure differences among subplots within a whole plot. The 
correct asymptotic standard errors computed by NLINVC and the incorrect standard errors 
from PROC NLIN are shown in Table 5. PROC NLIN underestimates the variance of all 
parameters having to do with block, moisture, and ozone effects and overestimates the 
variance of the parameters regarding cultivar effects. 

When the appropriate standard errors are compared, the OLS and EGLS Weibull 
parameter estimates have very similar standard errors in the soybean experiment. Table 6 
gives the standard errors of the parameter estimates computed by OLS, EGLS using analysis 
of variance to estimate the variance components, and EGLS using the iterated MIN QUE 
estimates of the variance components. The first column of this table is the same as the second 
column of Table 5. The standard errors of the EGLS estimates are taken from the asymptotic 

. variance matrix, 

(5.2) 

The standard errors of the OLS estimates were computed using equation (5.1) where :£ is 
based on the iterated MINQUE variance component estimates. Therefore, the OLS standard 
errors are directly comparable to the standard errors of the EGLS estimates computed using 
the MINQUE variance components. Comparison of the first and third columns of Table 6 
shows that for this particular data set the standard errors of the OLS and the EGLS estimates 
are very similar to each other. The standard errors for EGLS estimates computed using the 
ANOVA variance component estimates were smaller than the other two sets of estimates 
because the variance component estimates from the analysis of variance method were smaller 
than from iterated MINQUE. It appears that this difference is due to some lack of fit of the 
Weibull model. For the purpose of assessing the variability of the Weibull parameter 
estimates it is realistic to include the lack of fit, so the standard errors based on the MINQUE 
variance components are emphasized here. 

·6. SUMMARY 

The nonlinear model with variance components (2.1) is appropriate for experiments 
with randomized block, split plot, and nested designs where the objective is to fit a nonlinear 
model. The data do not need to be balanced to apply the estimated generalized least squares 
method presented in this paper. In estimated generalized least squares the variance 
components are first estimated using the analysis of variance if the data are balanced, or using 
an approximate iterated MINQUE procedure when the data are unbalanced. There are several 
other methods of estimating the variance components that could be used; these two methods 
do not exhaust the possibilities. The estimated variance matrix is substituted into the 
generalized ieast squares estimating equations (3.2) to obtain the EGLS estimates of the 
parameters of the mean function. The estimated generalized least squares approach produces 
estimates that are more efficient than ordinary least squares when the sample size is large 
(Gumpertz and Pantula 1990). 

When the sample size is small or moderate, ordinary least squares may give estimates 
that have standard errrors as small or smaller than estimated generalized least squares. In the 
example of Section 5 the variation among chambers, (T~, was not estimated very precisely; the 
variance component estimate was not even twice its standard error (Tables 2 and 3). In this 
type of situation the uncertainty in &~ contributes more to the EGLS parameter estimates 
than to the OLS parameter estimates and so OLS may be preferred. If the parameters are 
estimated by ordinary least squares, variance component estimates are still required in order to 
obtain correct asymptotic standard errors. Standard nonlinear regression programs do not 
produce the correct asymptotic standard errors for model (2.1). The correct standard errors, 
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given by expression (5.1), take the covariance structure into account. In the soybean example 
- ordinary least squares and estimated generalized least squares produced very similar point 

estimates and standard errors for the parameters of the Weibull function. 
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Table l. Analysis of Variance 

Source df Mean Square P-Value 

Block 2 58,600 .65 

Ozone 4 20,500,000 .0001 

Moisture 1 159,000 .29 

0 3 X moisture 4 1,420,000 .0001 

Error a 18 302,000 

Cultivar 1 20,100,000 .0001 

Cultivar X moist. 1 852,000 .021 

Cultivar X 03 4 226,000 .19 

Cult. X 0 3 X moist. 4 153,000 .37 

Error b 20 135,000 
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Table 2. Estimates of Variance Components 

"MINQUE" "ML" 

Component ANOVA NLlNVC-MML NLlNVC-ML 

q~ 83503 97181 55972 

q2 
b 134624 158033 147209 

Table 3. Standard Errors of Variance Components 

"MINQUE" 

Component ANOVA NLlNVC-MML NLlNVC-ML 

q; 54592 57295 33935 

q~ 42572 42423 36592 

Table 4. Weibull Parameter Estimates 

EGLS EGLS 

Parameter OLS ANOVA MINQUE 

(l' 8036 8000 8000 

8 1 -194 -193 -193 

8 2 -14 -15 -15 

r -1971 ~1963 -1963 '-1 

Ml -1005 -1047 -1047 

( CMhl 759 763 763 

WI .12 .12 .12 

~1 1.48 1.55 1.55 

w2 .092 .092 .092 

~2 1.92 1.92 1.92 
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Table 5. Standard Errors of Parameter Estimates 

Ordinary Least Squares 

Parameter NLiN NLlNVC 

a 361 418 

8 1 215 258 

8 2 216 259 

C1 264 222 

Ml 576 672 

(CM)ll 367 309 

WI .012 .014 

Al .44 .53 

w2 .0035 .0042 

A2 .32 .38 

Table 6. Standard Errors of Parameter Estimates 

OLS EGLS EGLS 

Parameter NLlNVC ANOVA MINQUE 

a 418 382 413 

8 1 258 237 256 

8 2 259 238 257 

C1 222 204 221 

Ml 672 591 639 

(CM)l1 309 282 305 

wI .014 .013 .014 

Al .53 .50 .54 

w2 .0042 .0040 .0043 

>'2 .38 .35 .38 
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Fig. t Effect of ozone concentration on soybean yield. 
Symbol indicates cultivar. Williams or Cars~y. 
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