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NEAREST NEIGHBOR ADJUSTED BEST LINEAR UNBIASED PREDICTION 
IN FIELD EXPERIMENTS 

Walter W. Stroup 
Department of Biometry, University of Nebraska, Lincoln, NE 68583-0712 

Abstract: In field experiments with large numbers of treatments, inference 
can be affected by 1) local variation, and 2) method of analysis. 

The standard approach to local, or spatial, variation in the design 
of experiments is blocking. While the randomized complete block design is 
obviously unsuitable for experiments with large numbers of treatments, 
incomplete block designs - even apparently well-chosen ones - may be only 
partial solutions. Various nearest neighbor adjustment procedures are an 
alternative approach to spatial variation. 

Treatment effects are usually estimated using standard linear model 
methods. That is, linear unbiased estimates are obtained using ordinary 
least squares or, for example when nearest neighbor adjustments are used, 
generalized least squares. This follows from regarding treatment as a 
fixed effect. However, when there are large numbers of treatments, 
regarding treatment as a random effect and obtaining best linear unbiased 
predictors (BLUP) can improve precision. 

Nearest neighbor methods and BLUP have had largely parallel 
development. The purpose of this paper is to put them together. 

Key Words: linear model, fixed effect, random effect, generalized least 
squares, best linear unbiased prediction, nearest neighbor, spatial 
correlation. 

1. INTRODUCTION 

Experiments with large numbers of treatments are often of interest in 
agricultural research. For example, a plant breeder may wish to screen new 
cultivars or varieties; it is rare for such an experiment to have fewer 
than a dozen varieties and one having as many as a hundred or more 
varieties would not be unusual. Such trials may continue over two or more 
growing seasons with some varieties deleted and others added as the study 
progresses. For example, many states have variety-yield testing programs 
which proceed on this basis. 

In this paper, two issues of vital concern in experiments with large 
numbers of treatments will be considered: local - or spatial - variation 
and best linear unbiased prediction (BLUP). 

BLUP as an alternative to conventional best linear unbiased estimation 
(BLUE) has been used with great success in animal breeding studies 
involving large numbers of treatments (e.g. sires) and unbalanced data. 
Recently, Hill and Rosenberger (1985) have found that BLUP's advantages 
apply as well to long-term plant variety evaluation. Such work suggests 
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that BLUP's advantages may be generally applicable to field experiments 
with large numbers of treatments. 

The problem of local variability in experiments with large numbers of 
treatments is perhaps more widely appreciated. Nearest neighbor adjustment 
(NNA) methods, one aspect of which focuses on the problem of local 
gradients, have received a great deal of attention in recent years. 

BLUP and NNA have to date seen largely parallel development. The 
purpose of this paper is to bring them together. The next section will 
briefly review important background. Then, a nearest-neighbor BLUP will be 
developed and some comparisons between it and other methods currently in 
the literature will be presented. 

2.1 BEST LINEAR UNBIASED PREDICTION 

The basis for analysis of variance, regression, and other methods 
which dominate current statistical practice in agriculture is the mixed 
linear model, whose general form is 

Y ~ XB + ZU + E, 

where Y is a vector of observations, B is a vector of fixed effects, X is 
a matrix of known constants determined by the design (treatment and/or 
regression) with respect to the fixed effects, U is a vector of random 
effects, Z is a the design matrix with respect to the random effects, and 
E is a vector of residuals. U and E are uncorrelated, E(U)=E(E)=O, 
Var(U)-G and Var(E)=R. Thus, E(Y)=XB and Var(Y)=V=ZGZ'+R. 

It is instructive to consider how fixed and random effects have been 
dealt with in "statistical tradition" . Statistical methods texts have 
typically distinguished between them along these lines: 

FIXED EFFECT 

Specific levels included in 
experiment as a result of 
deliberate choice. 

Inference is based on estimable 
functions of the form K'B (e.g. 
treatment means, differences, 
contrasts, etc.). 

RANDOM EFFECT 

Specific levels included in 
experiment as a result of random 
sample of target population. 

Inference is based on variance or 
covariance components of G and R 
or functions of these components 
(e.g. heritability). 

Despite cases for which it is not obvious whether an effect is fixed or 
random, in conventional statistical practice the distinction between the 
two types of effects is quite rigid: if one is interested in treatment 
means or difference, then, by definition, the effect is fixed. The fixed 
effect vector is estimated (optimally) via generalized least squares by 
solving the equation 

b = (X'V-1X)-- X'V-1y (1) 
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and the function K'b is the best linear unbiased estimator (BLUE) of K'B, 
-assuming K'B estimable (see Searle, 1971). 

However, an alternative form of inference with the mixed model is the 
best linear unbiased predictor (BLUP) of the predictable function K'B + 
M'U, where K'B is estimable. The BLUP can be obtained by solving the mixed 
models equations as discussed by Henderson (1975) and Harville (1976): 

(2) 

Using this solution, K'b + M'u is the BLUP of K'B + M'U. 

From this perspective, even if the objective is to estimate treatment 
means or differences, it does not automatically follow that the effect in 
question is fixed. It may be more desirable to regard it as random and 
obtain a BLUP than to regard it as fixed and obtain a BLUE. The dilemma 
for the data analyst is when? Although a precise answer is not available 
and more work admittedly is required, a provisional answer seems to be as 
follows. When there are relatively few treatment levels, the conventional 
approach to estimating fixed effects via BLUE is fine. However, if the 
number of levels is large (say, 20 or more) and the distribution of the 
treatment effects is reasonably symmetric then BLUP appears to be better. 
This is what Hill and Rosenberger (1985) found and is confirmed by the 
simulation study discussed below. 

Intuitively, the difference between BLUP and BLUE results from BLUP's 
use of the distribution among the treatment effects, as expressed by 
relevant elements of Var(U)=G, to shrink extreme observations toward the 
mean. When there are many treatments and relatively few replications, some 
treatments will inevitably have extreme high or low estimated effects. 
BLUE has no provision for attenuating them; BLUP uses the treatment effect 
distribution. When there are fewer treatments, the likelihood of extreme 
treatment effect estimates is not nearly as great; the attenuation is BLUP 
is not as important, and the relative imprecision of the estimate of G 
makes the quality of attenuation poor. Thus, with few treatment levels, 
BLUE would be preferred. 

2.2 N~A~£ST NEIGHBOR METHODS 

Regardless of whether BLUP or BLUE are used, neither will result in 
accurate inference in the presence of strong, undealt with, local 
gradients. For example, consider the graph given in Figure 1. This is from 
a plant breeding experiment conducted at the Aridoculture Center in 
Settat, Morocco. The experiment involved 24 varieties of wheat and was 
conducted in 3 randomized complete blocks. Each block was a linear strip. 
Figure 1 contains the residuals for the 24 plots in the first block; the 
other blocks show similar patterns. Obviously, a strong, non-random trend 
is present. Figure 1 is a excellent illustration of a "local gradient"; 
such patterns are not unusual in field experiments. 
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Three basic approaches to the local gradient problem are 1) incomplete 
block designs, 2) nearest neighbor adjustments, and 3) spatial covariance 
models. 

Incomplete block designs are well-established in statistical 
literature and good discussions on them can be found in any experimental 
design text. A major advantage of these designs is that they can be 
analyzed using standard methods, e.g. SAS-GLM. A minor disadvantage is 
that balanced or partially balanced incomplete block designs may not exist 
or be easy to construct for the number of treatments, replications per 
treatment, and block size required by the researcher. However, computer 
software is being developed to select "approximately balanced" designs for 
most applications; while these are not true BIB or PBIB designs - a fact 
which makes some practitioners nervous - they are usually reasonable 
designs and are clearly preferable to the existing alternatives, namely an 
RCBD or nothing! A major disadvantage of incomplete block designs is the 
fact that it is often unclear HOW to block, that is, which sets of 
experimental units really are homogeneous. Uniformity trials are often 
suggested, but this can be rather glib advice: in many cases such a trial 
is not feasible; in other cases, the local gradients may vary from growing 
season to growing season as a result of sub-surface dynamics, rendering 
the uniformity trial not merely useless but severely misleading. 

There are a variety of nearest neighbor methods. Papadakis (1937) 
presented the first widely used method. Many articles have appeared in 
recent years, e.g. Bartlett (1978), Wilkinson, et. al. (1983), Besag and 
Kempton (1985), Gleeson and Cullis (1987), Cullis, et. al. (1989). As 
Gleeson and Cullis (1987) note, nearest neighbor adjustment (NNA) methods 
all the following common approach. The linear model can be denoted as 

where T is a vector of treatment effects, X2 is the design matrix for 
treatment, A is a vector of other effects such as block, location, etc., 
Xl is its design matrix, S is a "smooth trend" (e.g. the patterned 
variation over plots in Figure 1), and E is random residual variation have 
variance 102 . The form of S may be described, e. g. using some spatial 
covariance process such as an ARMA or ARlMA model, but the premise of NNA 
methods is that S is too complex to be efficiently estimated with the data 
available. Thus, the data are re-expressed in terms of local differences 
in order to simplify the form of Var(S + E). This re-expression is done 
using a difference operator D, discussed immediately below. 

The "pt difference operator" is a very commonly used form of D. 
Consider an experiment with t treatments conducted in randomized complete 
blocks. A block from this design can be visualized as 

I Tel) I T(2) I ... I T(t-l) I ~ 

where T(i) represents the ith treatment in spatial order in the block. 
Letting Y(i) be the observation associated with T (i) then the first 

Conference on Applied Statistics in Agriculture
Kansas State University

New Prairie Press
https://newprairiepress.org/agstatconference/1990/proceedings/17



difference among the observations is defined as 

<4.-1 - Y(t) - Y(t-l)' 

Thus, the difference matrix for the jth block is 

[ 
1 -1 0 . . . 0 1 o 1 -1 0 

o O. 1 -1 

and the difference matrix is 

D -

0 

:r 1 
D2 

0 

number of blocks. where r is the Another difference operator typically 
used in nearest neighbor analysis is the second difference, given by 

<4.-2 = Y(t-1) - ~ [Y(t-2) + Y(t) J • 

The form of D for the 2nd difference (also called "centered first 
difference") follows analogously to above. In theory, any difference 
operator can be defined. While those discussed above only involve one
dimensional arrangements of treatments, forms ofD for two-dimensional 
arrangements have considered. See, for example, Wilkinson, et. al. (1983). 

Applying the difference matrix D to the nearest neighbor model yields 
the re-expressed model 

or 
d WT+F+f 

where d - DY, W=DX2, F=DS, and f=De. Note that, because of the nature of 
the differencing operation, which is applied within blocks, DX1A - O. 
Although Var(F) may have any form, the general purpose of the differencing 
operation is to simplify the "smooth trend." Typically, the approximation 
Var(F) = Inof2, where n=rank(D) , is used. Thus, Var(d) = Var(F) + Var(f) 
= Inoi + DD'02. Besag and Kempton note that in many instances, 0 2 is 
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negligible relative to C7i; if so, Var(d)::::InC7i. 

The BLUE of estimable functions K'T can be obtained using the GLS 
solution for the vector of treatment effects: 

where t is the estimate of T. Note that in obtaining the NNA BLUE, T is 
implicitly a vector of fixed effects. 

To date, all nearest neighbor methods in the literature obtain BLUE's 
of the treatment effects. Gleeson and Cullis (1987) obtain BLUP's on the 
systematic trend, i.e. within-block gradient effects. Cullis, et. al. 
(1989) obtain BLUP' s for "standard" plant varieties, but obtain BLUE's for 
all remaining treatment effects. However, no comprehensive nearest 
neighbor method for obtaining BLUP's has been reported. 

To obtain the NNA BLUE, T will be considered a vector of random 
effects such that E(T)=O and Var(T)=G. Typically, G=I t C7r 2 • The BLUP for T 
can now be obtained solving the mixed model equations. For the NNA model, 
the difference matrix eliminates the fixed effects component of the model. 
Thus, only the lower right-hand quadrant remains. Solving, the NNA-BLUP of 
T is 

The primary difference between NNA BLUP and BLUE is that BLUP utilizes 
information regarding variation among treatment effects contained in G. 

While NNA works well enough in many cases, there are obj ections. Among 
these are 1) it is clumsy to apply in two-dimensional cases; 2) it is not 
clear how to handle "border plots"; 3) it is not clear how to handle 
missing data; and 4) it is not clear that simple differences adequately 
address many complex spatial patterns. Indeed, these issues, especially 2) 
through 4), frequently are dealt with in practice by seemingly arbitrary 
rules of thumb. An alternative to NNA is to model the local gradients 
directly by including spatial covariance components in Var(Y), especially 
in R. 

One alternative is to model spatial covariance using ARMA or ARIMA 
models. This has been discussed by Gleeson and Cu11is (1987). Another is 
to use models from geostatistics. These, often referred to as "kriging," 
have been discussed by Journel and Huijbregts (1978) and have seen wide 
application in many disciplines, but not as yet in the analysis of field 
experiments. However, in principle, such application is not ,difficult. 

There are many "kriging" models. All model the covariance between 
observations as a non- increasing function of distance. That is, two 
observations close together would be highly correlated, whereas two more 
distant observations would be less correlated, or uncorrelated. For 
example, in the "spherical" model 

Conference on Applied Statistics in Agriculture
Kansas State University

New Prairie Press
https://newprairiepress.org/agstatconference/1990/proceedings/17



2 r ij - (7 

R"" 

r ij = 0 of h 2: c 

(3) 

if h < c, where h is the 
distance between the i th and j th 

observations 

Using this covariance model, the GLS equation (1) or mixed model equation 
(2) can be solved to obtain BLUE or BLUP, respectively, of estimable or 
predictable functions of T, the .vector of treatment effects, depending on 
whether treatments are considered fixed or random. If the components of R 
are unknown, they can be estimated using maximum likelihood (ML) or 
restricted maximum likelihood (REML). Here, two components or R must be 
estimated, (72 and c. Taking the vector of pt derivatives of the likelihood 
function of Y with respect to (72 and c respectively and the matrix of 
expected values of 2nd derivatives, the Fisher Scoring algorithm can be 
used to obtain ML or REML estimators. This method is adapted from Harville 
(1977). An example is given in section 4. 

3. NNA BLUP VS. NNA BLUE AND NON-NNA ALTERNATIVES - SIMULATION STUDY 

175 

To evaluate NNA BLUP versus alternative methods, a simulation study 
was performed. The alternative methods were NNA BLUE, incomplete block 
BLUE, incomplete block BLUP, and randomized complete block BLUE. For the 
NNA methods, both 1st and 2nd difference operators were using and Var(d) 
was modeled with (72=0 and with 0 2>0. Since the differences between BLUP and \ 
BLUE are most likely to be important in unbalanced data, 2 unbalanced 
simulations were performed. The first, called the "2-year experiment, It 
used 30 treatments, 20 observed in the "first year" with 2 complete block 
replications; 10 treatments were dropped and 10 new treatments added for 
observation in the "second year." The second simulation, called the "3_ 
year experiment," was similar except that 24 treatments were used. 12 
treatments were observed, replicated in 2 complete blocks, during the 
"first year, It 6 were dropped and 6 new treatments added for the second 
year, and likewise for the third year. For each simulated experiment, 
treatment means were estimated (or predicted, in the cases involving 
BLUP). MSE, correlation, and rank correlation of the estimated/predicted 
versus actual means were calculated for each case. 

Each set of complete blocks was structured so that it could also be 
viewed as an incomplete block design. That is, each complete block could 
alternatively be partitioned into several incomplete blocks and analyzed 
accordingly. For example, in the "2 -year experiment, " a typical 
arrangement was: 
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Rl 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 

R2 5 9 13 17 1 10 14 18 2 6 15 19 3 7 11 20 4 8 12 16 

where R1 and R2 denote the two complete blocks and the divisions within 
the blocks signify incomplete blocks. This particular arrangement 
represents 2 replications of a 4 x 5 rectangular lattice. 

In the "3-year experiment," a representative arrangement was: 

Rl 1 2 3 4 5 6 7 8 9 10 11 12 

R2 5 9 1 12 2 6 8 10 3 4 7 11 

The local gradient was simulated with Uf2=2, u2=1, and uT 2=2. This was 
used because it produced a local gradient large enough relative to 
treatment variance to affect inference if not accounted for without being 
unrealistically large and because it produced local gradients similar to 
those actually observed in the field. Figure 2 gives an example of a 
simulated gradient. Note its similarity in form to the data from Morocco 
in Figure 1. 

The results are given in Table 1. The main findings can be summarized 
as follows. First, using MSE as a criterion, BLUP was consistently more 
precise than BLUE. Second, the nearest neighbor methods, were consistently 
more precise than the incomplete block alternatives. Third, among the 
nearest neighbor methods, estimating u2 rather than setting u 2=0 did not 
improve the precision - this confirms the validity of the Besag and 
Kempton's (1985) simplification and is good news for users, since 
computing requirements are sharply reduced when u 2=0. Fourth, among nearest 
neighbor methods, the 1st difference method resulted in greater precision 
than the 2nd difference method. While this may be a consequence of the way 
local gradients were simulated, the fact that the simulated gradients were 
similar to those observed in field data suggests that simple difference 
operators are adequate in practice. Fifth, when NO local gradient was 
present, the 1st difference NNA-BLUP compared favorably to non-NNA methods, 
suggesting that its use will not "hurt" anything, even when not needed. 
Finally, when spatial variability IS present, the results obtained using 
the standard RCBD approach are catastrophic. 

4. A "SPHERICAL KRIGING" EXAMPLE 

Figure 3 describes data from a hypothetical experiment whose error 
structure is described by the "spherical kriging" covariance matrix given 
in (3). The data are arranged in an 8 plot by 8 plot grid. Imagine that 
these data result from a uniformity trial and that the objective is to 
evaluate 16 treatments. Thus, 4 replications are possible. A superficial 
look at the contour plot might suggest dividing the "field" into 4 squares 
and assigning treatments using a randomized complete block design -
typically, this is what field researchers will in fact do. Upon closer 
inspection, the plots within the 4 squares are not really homogeneous; a 
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more careful researcher might partition these squares into rows (say - or 
'columns) and assign the treatments using, for example, a 4x4 balanced 
lattice design. An even more effective approach would use the gradients to 
define blocks, even though the result may be non-rectangular, possibly 
discontinuous blocks. Most field researchers would be reluctant to 
actually do this. There are many reasons for this reluctance, some 
legitimate, some not. Given this reality, in this comparison the latter 
blocking scheme will not be considered a viable alternative. 

Table 2 contains the results of these two approaches compared with the 
method of calculating REML estimates of 0'2 and the range parameter 
described in equation (3) and then using the estimate of R to compute GLS 
estimates of the treatment effects. In this case, BLUE was used rather 
than BLUP, since the data are balanced. Note that this method, referred to 
in Table 2 as the "spherical kriging" method,. results in much more 
accurate inference, both in terms of a closer match between the "true" and 
estimated treatment effects and in terms of reduced standard error of 
treatment differences. This is typical of several simulated data sets with 
the same or similar spatial covariance parameters. 

Obviously, more study is needed, including a simulation study of 
adequate size and scope. However even this limited study does indicate 
that 1) the parameters of covariance models suggested by geostatistics 
can indeed be estimated using standard variance component methods (e.g. 
REML) , 2) the estimation of treatment effects in the presence of such 
spatial correlation can thus be integrated into standard mixed linear 
model methodology, and 3) such estimators appear to be more precise than 
those obtained using standard analysis of blocked designs. 

5. SUMMARY AND CONCLUSIONS 

In experiments with large numbers of treatments, unaccounted for 
spatial variability can dramatically decrease the precision of estimated 
treatment effects. Both NNAmethods using difference operators to simplify 
the covariance structure and direct estimation of the covariance 
parameters using REML appear to be effective in accounting for spatial 
variability. For unbalanced experiments, e.g. long-term studies, classical 
estimation (BLUE) results in less efficient estimates of treatment effects 
than BLUP. In such experiments, treatment effects seem to behave more like 
random than fixed effects and thus should be modelled accordingly. 

There are several areas for further study. All the methods described 
warrant further investigation; their properties under many conditions in 
which they might be used are not fully understood. There may be 
alternatives to the REML and ML algorithms used in this paper that are 
preferable in certain cases. More systematic study of "best case" and 
"worst case" performance of these methods is needed. Appropriate 
confidence interval and hypothesis testing procedures are not well 
developed for any but the simplest NNA methods. Kackar and Harville (1984) 
have discussed approximate procedures for the general mixed model, but 
these need to be adapted to the cases discussed in this paper. Finally, 
most of the methods discussed here require prodigious computer resources 
(e.g. time and memory). Efficient computing algorithms need to be 
developed and software useable to data analysts needs to be developed. 
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Figure 1. Moroccan data: plot of residuals for each block 
PLOTID denotes identification number of plot in block. 

BLOCK=l 

PLOT OF RESIDUAL*PLOTID LEGEND: A = lOBS, B 2 OBS, ETC. 
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Figure 2. 
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Example of typical nearest neighbor gradient plots from 
simulated data 
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Figure 2. Contour plot for hypothetical uniformity trial from Section 4. 
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Table 1. Simulation results for estimation of treatment effects. 

2 YEAR EXPT - WITH NEIGHBOR EFFECT 

METHOD OF ANALYSIS MSE CORR RANK. CORR 

1st DIFF, 0'2",,0, BLUP 1.349 .822 .797 
1st DIFF, 0'2:;::,0, BLUE 1.830 .822 .798 
2nd DIFF, 0'2:;::,0, BLUP 1.573 .798 .776 
2nd DIFF, 0'2:;::,0, BLUE 2.107 .800 .778 
1st DIFF, 0'2>0, BLUP 1. 376 .823 .798 
1st DIFF, 0'2>0, BLUE 1. 863 .820 .795 
2nd DIFF, 0'2>0, BLUP 1.561 .796 .772 
2nd DIFF, 0'2>0, BLUE 2.509 .779 .752 
INC BLK, BLUP 2.107 .741 .716 
INC BLK, BLUE 2.112 .734 .707 
RAND COMP BLK 8.459 .571 .546 

3 YEAR EXPT - WITH NEIGHBOR EFFECT 

METHOD OF ANALYSIS MSE CORR RANK. CORR 

1st DIFF, 0'2:;::,0, BLUP 1. 252 .840 .816 
1st DIFF, 0'2:;::,0, BLUE 1. 860 .819 .799 
2nd DIFF, 0'2:;::,0, BLUP 1.571 .809 .787 
2nd DIFF, 0'2:;::,0, BLUE 2.384 .783 .765 
1st DIFF, 0'2>0, BLUP 1. 255 .841 .818 
1st DIFF, 0'2>0, BLUE 1. 825 .823 .802 
2nd DIFF, 0'2>0, BLUP 1. 518 .803 .784 
2nd DIFF, 0 2>0, BLUE 2.805 .762 .745 
INC BLK, BLUP 1.769 .792 .769 
INC BLK, BLUE 2.794 .750 .730 
RAND COMP BLK 5.658 .648 .635 
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Table 1 (continued) 

2 YEAR EXPT - NO NEIGHBOR EFFECT 

METHOD OF ANALYSIS MSE CORR 

1st DIFF, 0 2:::::0, BLUP 1.743 .798 
1st DIFF, 0 2:::::0, BLUE 2.558 .789 
2nd DIFF, 0 2:::::0, BLUP 2.116 .759 
2nd DIFF, 0 2:::::0, BLUE 3.177 .751 
INC BLK, BLUP 1.767 .807 
INC BLK, BLUE 2.453 .798 
RAND COMP BLK 1.779 .844 

3 YEAR EXPT - NO NEIGHBOR EFFECT 

METHOD OF ANALYSIS MSE CORR 

1st DIFF, 0 2:::::0, BLUP l. 894 .759 
1st DIFF, 0 2:::::0, BLUE 2.974 .747 
2nd DIFF, 0 2:::::0, BLUP 2.528 .717 
2nd DIFF, 0 2:::::0, BLUE 4.120 .703 
INC BLK, BLUP l. 704 .769 
INC BLK, BLUE 2.813 .748 
RAND COMP BLK 2.054 .810 

RANK CORR 

.769 

.761 

.730 

.722 

.777 

.770 

.815 

RANK CORR 

.741 

.730 

.702 

.688 

.752 

.730 

.784 
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Table 2. Comparison of Treatment Effect Estimates and Standard Errors 
Produced by RCBD, Lattice, and "Spherical Kriging" Analyses in 
the Presence of Spatial Covariance* 

Parameter*· 

1"1 
1"2 
1"3 
1"4 
1"5 
1"6 
1"7 
1"8 
1"9 
1"10 
1"11 
1"12 
1"13 
1"14 
1"15 
1"16 

3 
3 
2 
2 
1 
1 
o 
o 
o 
o 

-1 
-1 
-2 
-2 
-3 
-3 

3 
3.24 
NA 

2.22 
2.93 
0.73 
0.59 
1.40 
0.80 

-1.68 
-0.37 
0.64 
1.21 
0.56 

-1.19 
-0.69 
-1. 57 
-2.60 
-2.96 

NA 
3.51 
1. 32 

Lattice 

2.68 
2.92 
1.05 
1.11 
1.77 
1.40 

-1.13 
-0.98 
1. 66 
1.25 

-0.95 
-1. 57 
-1. 23 
-0.94 
-2.49 
-4.52 

NA 
1. 75 
1.05 

Spherical 

2.94 
3.27 
1.53 
1.41 
1.11 
1.00 

-0.95 
-0.18 
0.51 
0.54 

-0.56 
-0.96 
-1.61 
-1.79 
-2.99 
-3.30 

3.39 
3.71 
0.58 

* Using data depicted in Figure 3 with treatment effect added. 

** Ti denotes ith treatment effect, c denotes range, 0 2 denotes error 
variance, and s.e.(1"1-1"2) denotes standard error of the difference 
between treatments 1 and 2. NA means Not Applicable. 
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